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We report measurements of the resistive behavior as a function of the perpendicular magnetic
flux in a square proximity-coupled Josephson-junction array. The array was made by a novel ion-

beam sputtering technique using the University of Chicago scanning ion microscope. The magnetic
flux produces a uniform frustration of phase ordering between the superconducting islands in the
array. We have measured both the Ohmic and non-Ohmic resistances as a function of temperature
at several values of the frustration index f =it}/$0, the ratio of the applied flux P to the supercon-
ducting flux quantum $0——hc/2e. We compare the resistive transitions in the array with no frustra-
tion at f=0 and f=1, with weak frustration at f =0.05, with commensurate frustration at f=—',
and with incommensurate frustration at f=1—1/r and at f =1/r [r=(1+&5}/2, the golden ra-

tio]. We find that the transitions at both f=0 and f=1 resemble the Kosterlitz-Thouless transi-

tion of a two-dimensional superfluid. The transition at f=0.05 is much broader and is not de-

scribed by the Kosterlitz-Thouless theory. Instead, the resistance has a pinned flux-flow behavior at
low temperatures. The transitions at f= t and the irrational frustrations are similar to each other

but different from the unfrustrated transitions, a result which differs from the expectations of argu-
ments based on the ground-state properties of the array for those fluxes. Our data support the idea
that some type of freezing occurs for incommensurate frustration; however, we did not observe the
hysteretic effects one might expect to see when cooling and heating through a glass transition.

I. INTRODUCTION

In this paper we will report on the behavior of
Josephson-junction arrays in the presence of a magnetic
field. Such arrays provide an elegant realization of how
frustration can be introduced into a system without any
disorder in the underlying Hamiltonian. This frustration
can be easily tuned by varying the strength of the field.
We will compare the nature of the transitions that occur
in the frustrated arrays with that which occurs in the un-

frustrated cases when the field is zero. The arrays consist
of a periodic lattice of superconducting islands coupled
by the proximity effect through a normal metal region. '

Applying a perpendicular magnetic flux to the array leads
to a coupling energy between neighboring islands

E; = —Jocos(8; —81 —A;J ) .

Here, Jo (A/2e)i,——(T), i, (T) is the temperature depen-
dent critical current in the junction between the islands,
8 is the phase of the Cooper-pair wave function on the
jth island, and A; =(2e/Ac) JJ. A dl is a phase. factor
proportional to the line integral of the vector potential
A, between islands i and j. As a result, the arrays are
physical realizations of the two-dimensional uniformly
frustrated XY model. The frustration index is f =P/Po,
which is the ratio of the flux P per unit cell to the super-
conducting flux quantum Po =hc /2e.

The frustration oscillates periodically as a function off
with a period equal to one. When f has an integral value
the phase order in the array is unfrustrated. In this case,
as in two-dimensional (2D) superconducting films, it
has been shown that there should be Kosterlitz-Thouless

vortex unbinding transition. This has been verified by
experiments. " When one applies a field to the array
the nature of the ground-state changes, and it is no longer
clear that a Kosterlitz-Thouless transition occurs. At ra-
tional values of the flux, ordered ground states of vortex
superlattices exist. ' ' Analyses of the ground state have
led both to estimates for the zero-temperature properties,
such as the critical current and ground-state energies,
and to estimates for the transition temperatures. In par-
ticular, Teitel and Jayaprakesh have proposed' that, for
the case f =p/q, where p and q are integers that do not
share a common factor, the upper bound on the dimen-
sionless transition temperature (kT/Jo ) is proportional
to 1/q. The nature of the phase transition has not been
determined. For exainple, in a square array at f = —,',
known as the fully frustrated XY model, ' the transition
could have critical fluctuations due to either a vortex-
antivortex unbinding (leading to a Kosterlitz-Thouless
transition), or to domain boundary motion (leading to an
Ising-like transition}.

These ground-state arguments have led to the con-
clusion that no transition to a superconducting state
occurs when f is irrational. ' ' This conclusion has re-
cently been challenged by Halsey' and Choi and
Stroud, ' who have suggested that there may be a transi-
tion into a vortex glass state: a disordered metastable
state in which the mobility of the vortices is impeded by
neighboring vortices. Halsey's Monte Carlo simulation
found that the metastable states carry a nonzero critical
supercurrent, in contrast to the ground-state prediction
of Iz(T=O, f+p/q)=0. (We will use upper case I to
denote the current through the entire array and lower
case i to denote the current through a single junction. }
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These ideas are related to the notion that the glass transi-
tion in supercooled liquids of close-packed spheres is due
to the uniform frustration that results because tetrahedra
cannot pack without defects in a Euclidean three-
dimensional space. ' Both this model of the structural
glass and Halsey's "superconducting glass" rely on uni-
form frustration without disorder to give rise to the
glassy properties of the system. We note, however, that
the superconducting arrays are two-dimensional and
may, as with 2D spin-glasses, ' never truly freeze until
zero temperature. Nevertheless the dynamics of the ar-
rays may get progressively more slow as the temperature
is lowered until the vortex pattern appears stationary on
the time scale of any experiment. In this case the system,
caught in a long-lived metastable state, appears to be a
superconducting glass.

In this paper, we report measurements of the resistive
transitions in a square proximity-coupled Josephson-
junction array at several values of f. The array was made
by a novel ion-beam technique using the University of
Chicago scanning ion microscope. We will compare the
unfrustrated transitions at f =0 and f =1, the weakly
frustrated transition at f = —,'„ the fully frustrated transi-
tion at f= —,', and the incommensurately frustrated tran-
sitions at the irrational flux values f =1—1/r and
f = 1/r [ r= ( & 5+ 1 ) /2 = 1.618. . . , the golden ratio].
We find that the transitions at f =0 and f =1 are quite
similar and resemble the Kosterlitz-Thouless transition
previously seen at f =0 in arrays. In contrast, at f = —,'0,

the transition is substantially smeared out and no longer
has the characteristics of a Kosterlitz-Thouless transi-
tion. No dramatic difference is seen between the resistive
transitions at the commensurate flux f = —,

' and at the
nearby incommensurate fluxes f =1/r and f =1—1/r
These transitions show a behavior that is intermediate be-
tween the unfrustrated transitions and the transition at a
small flux.

II. BACKGROUND THEORY AND EXPERIMENT

To compare the nature of the transitions occurring at
the different fluxes, we have measured the Ohmic and
non-Ohmic electrical resistance as a function of tempera-
ture at each flux. We will briefly discuss what informa-
tion these quantities provide about the state of the vor-
tices in the array.

The Ohmic resistance R is proportional to the density
of unbound vortices in the array which are free to
move and also able, therefore to dissipate energy when a
current is applied through the array

R ( T)/R„=b nf ( T)p( T),
where R„ is the normal state resistance, 6 is the lattice
constant, nf is the density of free vortices, and p( T) de-
scribes the temperature dependence of the vortex mobili-
ty caused by the thermal activation across a single junc-
tion in a square array: p(T)=[20(J0(T)/ 10k3T)]
where 20 is the hyperbolic Bessel function of order 0.
Note that nfb is the number of vortices per cell in the
array, which may be produced by thermal activation

a (T)= [din[ V(I)]/din(I)] & (2)

This definition is used because, in a vortex unbinding
transition, a (T) is related to the renormalized interisland
coupling strength J'(T). In the presence of a current
density I/(Nb) the potential energy for a vortex pair of
separation s is

U(s) =($0/c) t [I/(Nb)]s 2m(I, /—N)ln(s/b) j, (3)

where I,' is the critical current of the array renormalized
by thermal effects such as vortex fluctuations and Nb is
the width of the array. Essentially, a bound vortex pair
in a current is a metastable state since the Lorentz force
will exceed the vortex attraction for pair separations
greater than s, /b =I,'/I. The non-Ohmic resistance is
proportional to the density of current-depaired vortex
pairs nfJ which is determined by the equilibrium between
the thermal activation rate over the energy barrier
F. =2nJ'1n(I, /I) and the recombination rate with other
free vortices, a binary process

R„r/R„~ nf; --[exp[( 2rrJ'/ks —T)ln(i, /i)]]'
(n J"/ks T)= i/i C

Therefore, in the limit of vanishing measuring current,
the exponent gives direct information about the renor-
malized coupling between the islands at temperatures
near to and below the transition [in contrast to the un-
renormalized (or bare) coupling, JD, which appears in the
Hamitonian]: a(T) 1 =m J'(T)/k&—T (=mK is known
as the renormalized reduced superfluid stiffness con-
stant; J is also known as the superfluid helicity
modulus).

The theory for the Kosterlitz-Thouless transition
which includes renormalization of the bare coupling also
leads to a universal relation ' between the transition tem-
perature and the renormalized superfluid density,
represented by J* in our experiment, at the transition
temperature: k+TKr/J'(TK~)=~/2. Thus, a —1 will

jurnp from 0 to the universal value of 2 at the tempera-
ture where the Ohmic resistance from free vortices van-
ishes in a Kosterlitz-Thouless transition.

Both the linear and nonlinear responses will contribute
towards an understanding of the nature of the transitions
at different fluxes. For the unfrustrated transition there
are well-developed theories for the temperature depen-
dence of the Ohmic resistance above and for the non-
Ohmic resistance below the transition temperature.

nfrb or by an applied magnetic flux nf&b2=f .The
vanishing Ohmic resistance of the superconducting state
occurs when the vortices bind in pairs with antivortices,
as below the Kosterlitz-Thouless transition temperature
in the unfrustrated XY model, or, possibly, organize in
more complicated vortex lattices.

Higher measuring currents produce a non-Ohmic resis-
tance, R „&

——V„&/I. This dissipation results from
current-assisted thermal activation of bound or pinned
vortices. We will define a non-Ohmic power-law ex-
ponent a(T) that is the low-voltage slope of the I V-
curve on a log-log plot
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Lobb, Abraham, and Tinkham extended the theories for
continuous films to include arrays. Unfortunately no
theory for the temperature dependence of the resistance
exists for fractional values of f. Several authors have
proposed that a transition occurs at f=—,

' with a
nonuniversal jump in the value of a which may depend on
the lattice structure. '

Experiments have only clarified the physics at f =0
where a Kosterlitz-Thouless transition has been bound
both in proximity-coupled arrays by Resnick et al. and

by Abraham et al." and also in insulator-junction arrays
by van Wees, van der Zant, and Mooij, In disagree-
ment, however, Brown and Garland found a jump to
a=2 instead of to a =3 at all fluxes in a triangular
proximity-coupled array. They did not explain the ab-
sence of the "universal jump" in a ( T, ) from 1 to 3 in the
unfrustrated transition. In one other study of an array
with f different from an integer, van Wees and co-
workers have measured the Ohmic and non-Ohmic
resistance in a square array at f =0 and f = —,

' finding a
jump to a =3.2 at f =0 and to a =5 at f = —,'. No stud-
ies have yet reported the behavior of the transition at an
incommensurate value of the flux. Leemann et al. mea-
sured the sheet inductance (as distinct from resistance) in
a square array, which showed a Kosterlitz-Thouless tran-
sition at f =0 and f =1. They also found an enhanced
inductive response at f =—,

' and f =—,
' compared to other

nonintegral fluxes, which they interpreted as evidence of
the formation of an ordered state at those commensurate
fractional fluxes.

III. EXPERIMENT

Our arrays were fabricated using a new focused ion-
beam sputtering technique. The University of Chicago
scanning ion microscope can focus a 40-keV Ga+ beam
to a spot less than 0.1 IMm in diameter. Even though the
beam has a small total current, on the order of 10 "A,
the focused beam has a substantial current density, about
0.1 A/cm . This current density is sufficient to sputter
through metal films several hundreds of Angstroms thick
with a line writing speed of 10 pmls. The sputtered lines
are typically 0.2-pm wide and their spacing can be con-
trolled to 0.05 LMm. The maximum size of our arrays was
limited to less than 200 IMm by the maximum undistorted
field of view of the microscope.

The fabrication of an array is a simple two-step pro-
cess. First, we evaporate onto a glass substrate a normal
metal film (1000 A of copper) immediately followed by a
superconducting metal film (300 A of Pbo 50Sno 50).
Second, to make a square array we cut two perpendicular
sets of grooves through the top layer using the ion beam.
We made our arrays with a lattice constant of 1 pm,
which is substantially smaller than arrays that have been
previously studied. The distance between the islands was
about 0.2 pm, again a much smaller distance than previ-
ous proximity-coupled arrays. The array measurements
reported here were made on a 128 &(128 square array.

Resistance measurements were made using supercon-
ducting leads evaporated with the original film used to
make the array. We measured the I-V curves by passing

a low-frequency square-wave current through the array
and measuring the voltage in phase with the current
across the array with a PAR 124a lock-in amplifier using
the 100:1 transformer in the lock-in model 116
preamplifier. An external Helmholz coil produced the
magnetic flux. One superconducting flux quantum per
cell in the array corresponded to an applied Geld of ap-
proximately 20 Oe.

Since there are three independent experimental param-
eters, temperature (T), magnetic field (H), and current
(I), we needed to determine an experimental protocol for
changing them during an experiment. Hysteresis in the
superconducting properties in the H-T and in the I-T
planes has been suggested as a signature of the glassy su-
perconducting state at irrational values of f. Brown and
Garland have reported hysteresis in the behavior of the
resistance in "zero-field cooled" arrays compared to
"field-cooled" arrays. In measurements below the tran-
sition temperature we took care to make measurements
only after setting the magnetic field to the desired value,
and then cooling the array through the transition temper-
ature to 1.3 K. The I-V curves were measured at each
temperature without changing the magnetic flux. We
looked for hysteresis in the Ohmic resistance, nonlinear
resistance, and low-temperature critical currents in the
H-T plane as well as the I-T plane. We saw a measur-
able hysteretic effect only in the low-temperature proper-
ties at f =0. The increased resistance and decreased crit-
ical currents we observed after cooling the array at f =0,
changing the flux and then returning to zero magnetic
field, were probably due to a small amount of residual
flux. The hysteretic behavior was noticeably solely near
to f =0 because the transport properties are most sensi-
tive to changes of fiux near f =0, where changing f by

produces measurable effects.
The transition temperature of the superconducting is-

lands and the sample leads is approximately 5 K. Below
this temperature the resistance of the array drops to 0.2
0, which we define as the array's normal resistance R„.
We will use R to refer strictly to the Ohmic resistance
measured in the lowest portion of the I-V curves. The
resistive transition of the array occurs below 3.2 K.

In order to compare the behavior of the transitions for
the different fluxes we will have to make several impor-
tant corrections to take into account the fact that the
coupling between islands in the array is a function both
of the magnetic flux and of the temperature. These
corrections are also necessary in order to compare our ex-
periment to the theoretical predictions.

The geometry of our array introduces a different cou-
pling between adjacent islands as the flux is changed from
f =0 to f=1. The reason for this is that, since the su-
perconducting islands expel the flux, almost all of the
magnetic field is trapped in the region between the is-
lands, i.e., in the junction itself. Since our array is
square, with a relatively narrow island separation, the
flux per junction is about half the flux per plaquette as is
shown in Fig. 1. The flux in the junction reduces the crit-
ical current in the junction, and therefore the coupling
between islands depends on the magnetic flux:
&(f)=J(f=0)sin(m.

~ f ~

r)l(m
~ f ~

r), where the ratio of
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FIG. 1. Schematic drawing of a plaquette in a square array.
The effective plaquette area A~ where the magnetic Aux in the
array is confined, is cross hatched; the junction area Az where
the proximity effect tunneling between neighboring islands
occurs, is striped vertically. When the space between islands is
small then A~ =2AJ.

junction area to plaquette area r is approximately equal
to —,

' in our array, as we argued above. As a result, the ra-
tios between the coupling at the lowest integer values of
f, J (f =0):J (f = 1):J (f =2), are 1:0.6366:0. The cou-
pling actually is expected to vanish near f =2, and,
indeed, we do not observe a minimum in the resistance
there as we do at f=0 and f = 1.

In addition to the flux dependence of the interisland
coupling, we must also include the effects of the tempera-
ture dependence of the coupling between islands in order
to compare the transitions at f =0 and f =1 and the oth-
er fluxes in more detail. Following Lobb and co-workers
we define an effective dimensionless temperature
t =k&T/J(T, f), where J(T,f) is the coupling between
islands, which is proportional to the temperature-
dependent single junction critical current:
J(T f)=(iri/2e)i, (T f). We measured the critical
current at f =0 for the array at low temperatures, where
the effects of vortex fluctuations are small. We obtained
the high-temperature single-junction critical current by
fitting our data to the single proximity-coupled junction
critical current formula:

i (T)=i (0)(l —T/T, ) e

using the dirty limit for the normal metal coherence
length,

g(T)= IhD [(/2a) kqT]I'

where D is the electron diffusion constant in the normal-
0

metal region. The fitting parameters are d =2500 A,
T„=5.0 K, i, (0)=5.0 mA, and g(T„)=200 A. The
coherence length is considerably shorter than it would be
for a pure copper film, probably due to alloying of the
evaporated tin with the copper and also to the presence
of implanted gallium in the junction region, both of

which would increase the junction resistance. The flux
dependence was put in using the factor described in the
previous paragraph:

J(T,f)=J(T,f =0)sin(n
~ f ~

/2)/(m.
~ f ~

/2) .

Several other effects must be considered when analyz-
ing the data which are not so simple to take into account
as quantitatively as we have done for the flux and temper-
ature dependence of the coupling. These efFects will
influence our interpretation of the data, however, and so
we will briefly discuss the important additional correc-
tions.

The theory of the Kosterlitz-Thouless transition pre-
dicts that the current-voltage exponent measured in the
limit of zero measurement current jumps from 1 to 3 at
the Kosterlitz-Thouless transition temperature in an
infinite system. We measure the exponent at nonzero
current and nonzero frequency in a finite sample, and so
we expect that the sharp features of the transition will be
broadened by several effects.

(i) Above the transition, where the low-current dissipa-
tion is primarily produced by the density of thermally ac-
tivated free vortices, some of the dissipation in the array
will also be due to unpaired vortices generated by the
measurement current itself. Therefore the voltage-
current exponent a will have a non-Ohmic contribution
and will have a value somewhat greater than 1.

(ii) The finite size of the sample smears out the drop to
zero density of thermally activated free vortices. As the
transition temperature is approached, the activation ener-

gy to create a vortex in a finite sample will not diverge as
it would in an infinite system. The correlation length in
the finite sample cannot exceed about L /2, where L is the
size of the sample. The reduced resistance, which equals
the density of free vortices, will therefore reach a value of
about (2b/L) instead of zero as it would in an infinite
system at the transition temperature. The minimum re-
duced resistance in our 128X128 array, R;„/R„, is
about ~l

(iii) There are additional sources of Ohmic dissipation
due to performing the measurement at a nonzero frequen-
cy. Even in an infinite system below the transition tem-
perature, where the density of free vortices is zero, there
will still be an Ohmic dissipation due to the dynamics of
the thermally generated vortex pairs. ' ' The vortex pair
density, unlike that of individual free vortices, does not
drop to zero below the transition temperature. A current
polarizes the pair orientation, which relaxes with a
characteristic time tD =s /D, which is determined by the
vortex diffusion constant D and the pair separation s. In
a finite sample there is an additional source of Ohmic dis-
sipation due to thermally activated vortices generated
near the edge of the array. ' These vortices are not free
since they are pinned to the edge of the sample by an at-
tractive potential to the edge of the array, which is exact-
ly half of the energy needed to create a vortex pair, Eq.
(3), replacing the pair separation s by the distance from
the vortex to the edge of the array. These vortices will
relax in an applied current just as bulk vortex pairs do.

The magnitude of the dissipation due to vortex dynam-
ic effects may be estimated from the vortex diffusion con-
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stant D. The vortex diffusion constant can be calculated
from known quantities:

D =k&T(2e/h) b R„=Qb

so that we can calculate a vortex hopping rate
A=1.7X10 s '. Measurements at frequency ~ cannot
distinguish vortex pair with separations
s/b=[(D/b )/co]' (=40—130 lattice spacings at our
measurement frequencies of 20-200 Hz}. Since this dis-
tance is comparable to the size of the array, the addition-
al dissipation in the array due to vortex-pair dynamic
effects will be comparable to the dissipation due to the
finite-size effects discussed above.

Evidently, the vanishing Ohmic dissipation caused by
the rapid decrease in the density of thermally activated
free vortices can only be followed in our experiment
down to a value which is approximately 0.001 of the nor-
mal resistance. The resistance reaching this value indi-
cates that the Kosterlitz-Thouless transition temperature
for an infinite system has nearly been reached.

IV. RESULTS AND ANALYSIS

In Fig. 2 we plot the resistance as a function of temper-
ature normalized by the normal resistance R ( T)/R„ for
several different values of f. The resistance axis is on a
logarithmic scale. As we have discussed above, a number
of effects must be included in order to analyze this data.
Nevertheless a few qualitative conclusions may be made
by examining the raw data. The resistance drops rapidly
as the temperature is lowered for all fiuxes. For f=0
and f=1 this drop is steepest and become successively
less steep at f=0.05, 0.50, 0.38, and 0.62. It is evident
that the temperature dependence of the resistance

changes as the Sux is varied. This fact has been noted be-
fore, 2 ' and implies that for difFerent values of f the
nature of the transition is changing beyond a simple shift-
ing of the transition temperature. The resistance oscil-
lates as a function of Aux, with deep minima at integral
values of f and secondary minima at f =—,', —,', and —'„as
has been previously seen (see the inset to Fig. 2,
where the voltage is plotted as a function off at constant
current and temperature; note that this voltage is due in

part to Ohmic and in part to non-Ohmic processes since
as the fiux is varied the transition temperature oscillates
about the measurement temperature}. A distinct
thermally activated tail appears in the resistance at f =0
below R /R„=10

Figure 3 shows a representative sample of non-Ohmic
I-V curves measured at several temperatures through the
transition region for f=0. Similar I Vcur-ves were mea-
sured for each value off. The solid lines are plotted only
to show slopes of 1 and 3 on the full logarithmic plot and
are not meant to represent fits to the data. To character-
ize the non-Ohmic response and to compare between the
different fluxes, we will use a single parameter from each
I-V curve. For each flux, the exponent a ( T) was defined
as the logarithmic derivative of the I-V curve evaluated
at a voltage of 1 nV: a =[(I/V)d V/dI] t/

Clearly, this one parameter does not fully describe the
entire I-V curve. What the slope a(T) measures is the
crossover in the resistive behavior, from a high-
temperature Ohmic resistance dominated by the motion
of free vortices (a =1), through the transition tempera-
ture, below which the dissipation is a nonlinear function
of the current (a &1), caused by current-activated vor-
tices such as is described by Eq. (2) in Sec. II. The choice
of evaluating the slope of the I-V curve at V=1 nV
represents a compromise between the sensitivity of the
measurement and measuring the slope at a relatively low
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FIG. 2. The reduced resistance R/R„as a function of tem-

perature T plotted for several values of the Aux per plaquette,

f =//go. The resistance is plotted on a log, o scale. Inset: The
voltage V as a function of f, measured at T=2.20 K and I =5
pA. Several rational values off are pointed out. Note that the
voltage is not necessarily proportional to the Ohmic resistance
as defined in the text.

FIG. 3. A set of I Vcurves measured at-f =0 for the follow-

ing temperatures (the effective temperature t follows in
parentheses): (a) 2.979 K (4.51); {b) 2.893 K {3.41); (c) 2.804 K
(2.56); 9d) 2.730 K {1.98) (e) 2.656 K (1.56); (fj 2.540 K (1.08); (g)
2.376 K {0.64); (h) 2.202 K (0.36); (i) 2.056 K (0.22). Similar I-V
curves were measured for each value of the flux per cell f. The
sohd lines are plotted only to show slopes of 1 and 3 on the full
logarithmic plot and are not meant to represent fits to the data.
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amount of dissipation. As shown in the discussion of Eq.
(2), the advantage of measuring the slope at lower
currents in a Kosterlitz-Thouless transition is to obtain
the renormalized intervortex interaction strength J' at
larger distances.

In Fig. 4 we plot a(T) for several values of f. From
this graph it is evident that the temperature dependence
of the non-Ohmic exponent changes as a function of the
flux, as was also true for the Ohmic resistance, which
again implies that the nature of the transition changes as
the flux is changed. Our data disagree with the data of
Brown and Garland for a triangular array which indicat-
ed a universal form for a(T/T, (f) ) at different values of
flux."

In examining the data more quantitatively we shall first
compare the transitions at f =0 and f =1 to previous
work and to the predictions for a Kosterlitz-Thouless
transition in an unfrustrated array. We will then examine
the data at f=0.05, and finally at the fluxes f =0.5,
0.381, and 0.618, where the frustration is greater.

A. Integer Aux

In the transition at f =0 the value of a rises above 1

beginning at 2.80 K, when R /R„of the array (measured
at lower currents) has dropped to 0.01. The exponent
then reaches a value of 3 at 2.60 K, when the reduced
resistance has dropped to 0.001. At f=1 the results are
similar, with a rising from 1 to 3 in a temperature inter-
val of about 0.2 K where R /R„drops from 0.1 to 0.001.

Our data for the rise in a from 1 to 3 when measured at
a low voltage combined with a rapidly decreasing resis-
tance is similar to earlier work on proximity coupled ar-
rays. Abraham et al. measured a 0.2-K temperature
width for the exponent (measured at 10 nV in a
1000X 1000 square array) to rise from 1 to 3 at the tem-
perature where their measured resistance vanished at
f=0." Brown and Garland measured a temperature
width of 0.05 K at f=0 and f=1, but their data show a
rising rapidly only from 1 to 2.z Unlike the Brown and
Garland experiment, the resistance in our array has not

quite dropped to zero when a =3. However, as we have
argued in the last section, several effects prevent our mea-
sured reduced resistance from falling below about 0.001
at the transition temperature. We therefore conclude
that the rapid rise in a from 1 to 3 at the temperature
where R /R„=0.001 is consistent with previous work at
f =0 which found a Kosterlitz-Thouless transition.

In order to make more quantitative conclusions, we
will next compare R /R„and a at the different fluxes as a
function of the inverse effective temperature 1/t which is
essentially the reduced interisland coupling J( T,f)/kz T.
The reduced resistance and I-V exponent a, each as a
function of inverse effective temperature, are shown in
Figs. 5 and 6, respectively. Using the effective tempera-
ture as the experimental parameter shows that the transi-
tions at f =0 and 1 are quite similar to each other as a
function of the interisland coupling and that both transi-
tions are clearly distinguished from those at the other
fluxes. The resistance at all fluxes has a qualitatively
similar behavior, with a rapid drop in resistance that has
an activated effective temperature dependence down to
R/R„=0.001. Such thermally activated behavior has
also been noted in insulator junction arrays. The non-
linear exponent at f =0 and 1 depends linearly on 1/t at
temperature's below which the exponent reaches a value
near 3. The exponent at the noninteger fluxes rises more
slowly as the effective temperature is decreased, increas-
ing somewhat more rapidly at f = —,'.

The transitions at f =0 and 1 have two features distin-
guishing them from those at the other fluxes, the large
effective activation energy describing the drop in resis-
tance above the transition and the rapidly rising non-
linear resistance exponent a below the transition. The
transition temperatures are also the highest at these two
fluxes.

Some quantitative differences exist between the transi-
tions at the integer values of f. Even after including the
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FIG. 4. The current-voltage exponent a =[(I/V)dV/
dI]i & „v, as a function of temperature T plotted for several
values of the flux per plaquette f=Pl/a. The exponent is plot-
ted on a log&0 scale.

FIG. 5. The reduced resistance R/R„as a function of in-
verse effective temperature 1/t (which is defined in the text),
plotted for several values of the flux per plaquette f =tl)/Pp.
The resistance is plotted on a log&0 scale.
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R/R„=0.001 there is a much slower decrease in resis-
tance as a function of 1/t for all fluxes. In this range of
temperature there is a small effective activation energy of
0.3 to 0.4.

The temperature dependence of a below the transition
follows a 1/t dependence which approximately agrees
with predictions for the Kosterhtz-Thouless transition:
a (t)—1=2t, /t The measured slopes of a —1 versus 1/t
are 1.7 at f =0 and 1.3 at f =1, values that are within
25% of the predicted values of 2.12 and 1.28. At f =0
Van Wees and co-workers measured a faster increase in
a below the transition and Abraham et al." measured a
slower increase (as a function of 1/t)

FIG. 6. The current-voltage exponent a =[(I/V}dV/
dI] y i „v as a function of inverse effective temperature 1 /t
(defined in the text), plotted for several values of the flux per
plaquette, f=Pl/0. The exponent is plotted on a linear scale.

temperature and flux dependences of the coupling, the
resistive transition at f = 1 occurs at a depressed effective
temperature with respect to the f =0 transition. The
theoretical estimate of Kosterlitz- Thouless for the
effective transition temperature t, is n /2=1. 57. . .; how-

ever, this prediction takes into account all renormaliza-
tions of the interisland coupling. Our analysis, which
uses estimates for the coupling extrapolated from lower
teinperatures, does not take into account all such renor-
malizing effects. This analysis results in an overestimate
for the coupling near the transition and gives an experi-
mentally estimated value of t, that is lo~er than the
theoretical value. Monte Carlo calculations of the
specific heat for the XFmodel find a value for t, of 0.95.
In our array we have estimated the transition as the point
where a =3 and R /R„=0.001, and we find the effective
transition temperature is 1.06+0.07 at f =0 which is
consistent with the Monte Carlo results. For the case
where f=1 we find that t, =0.64+0.07, which is a 40%
depression in the t, compared with the f =0 case. This
is not in agreement with the simple hypothesis that only
the strength of the single-junction coupling determines
the state of the unfrustrated array. A large depression in

t, at f =1 compared with t, at f =0 was also seen by
Leemann et al. , although they did not explicitly take
into account the flux dependence of the single-junction
critical current. Brown and Garland measured at a slight
depression of t, at f=1, but did not use the effective
temperature in analyzing their data.

The effective activation energies for the resistance data
in the region above the transition are 12 and 9 at f=0
and f =1, respectively. An effective transition tempera-
ture of 0.92 at f =0 and a large activation energy of 14
was seen by van Wees and co-workers who attributed
the magnitude to the activation energy of a single vortex
at low temperatures in their 128 X 384 array. The
effective activation energies at the other fluxes are consid-
erably lower than at the integer fluxes: 3.9 at f=0.05,
3.7 at f= —,', and 3.1 at f =1/r and 1 —1/r. Below

8, J'=0.05

The application of a small amount of flux, f =0.05,
significantly broadens the resistive transition compared to
f=0. As seen in Fig. 5, the resistance drops much more
slowly as a function of effective temperature than at both
f=0 and at f =1. The behavior of the non-Ohmic resis-
tance has also changed as compared to the integer fluxes:
a(1/t) rises much more slowly as temperature is de-
creased than at the integer fluxes. The I-V power-law ex-
ponent reaches a value near 2, when the reduced resis-
tance has dropped to 0.001, and does not approach a
value of 3 until much lower in temperature. The transi-
tion does not resemble a Kosterlitz-Thouless transition.
Brown and Garland have also measured the Ohmic and
non-Ohmic properties at a low flux in their triangular ar-
ray, but they found no difference in the transition as com-
pared with the integer fluxes if they plotted the exponent
on a reduced temperature sc lae:~ as[T/T, (f),f].

Notice, however, that the resistance still drops reason-
ably rapidly as a function of 1/t at f =0.05 even though
the applied flux produces a fixed excess number of un-
paired vortices. This is in contradiction to Eq. (1), which
asserts that the resistance should flatten out at a value of
R/R„=f at low temperatures. In this case the density
of thermally activated free vortices is small since the den-
sity will be proportional to the applied flux. Our results
finding a dropping resistance at nonzero values off agree
with the previous measurements of Kimhi, Leyvraz, and
Ariosa and Brown and Garland at small values of the
frustration, and calls into question the assumption that
the mobility of the vortices is only weakly dependent on
temperature.

The presence of pinning effects has been previously
noted in resistance measurements in a small magnetic
field, both in continuous superconducting films,
where a nonzero current is required to depin the vortices
from preferred sites usually associated with inhomo-
geneities in the film, and also in measurements of ar-
rays. Gray, Brorson, and Bancel have even called into
question the interpretation of the temperature depen-
dence of the resistance in the films according to predic-
tions based on a renormalization treatment of the
Kosterlitz-Thouless transition that do not take into ac-
count pinning effects.

We certainly observe the effects of pinning at f =0.05
below the f =0 transition temperature, when the low
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current R /R„ falls below 0.05. Instead of analyzing the
non-Ohmic I V-curves at f =0.05 by evaluating the log-
arithmic derivative as we have done above, an alternate
analysis gives some insight into the non-Ohmic mecha-
nism. We follow a procedure to treat the non-Ohmic
resistance in granular aluminum films used by Gray and
co-workers. We subtract the f =0 non-Ohmic voltage
measured at each value of current and temperature from
the I-V curves measured for f =0.05 at the same current
and temperature (see the left half of Fig. 7}. This subtrac-
tion is an attempt to eliminate the effects of vortex-pair
breaking effects on the f =0.05 non-Ohmic resistance.
The resulting I-V curve has the classic "ffux-flow" shape:
a low-current Ohmic region and a high-current region
with a constant value of the differential reduced resis-
tance (1/R„)dV/dI=R~/R„= f. The measured re-
duced flux-flow resistance has a temperature-independent
value approximately equal to f (R(t/R„=0. 05 0.06}.-
The intercept on the current axis obtained by extrapolat-
ing the constant difFerential resistance region of the I-V
curves back to V =0 defines the depinning critical
current I,tt( T). We interpret the depinning current as the
current required to move all of the vortices produced by
the applied field.

On the right-hand side of Fig. 7, we have plotted the
temperature dependence of

I,N(T,f =0.05)/I, (T,f =0),
the ratio of the depinning current at f=0.05 to the criti-
cal current measured at f =0 at the same temperature (or
extrapolated from measurements at lower temperatures
as described above in the calculation of the effective tem-
perature). The depinning current rises from zero at the

f =0 Kosterlitz-Thouless transition temperature and
reaches a value near to 0.5 at temperatures well below the
transition temperature at f =0.05 that we have defined

by our measurements of the Ohmic resistance.

Our interpretation of the Ohmic resistance that we
measure in the low-current region must also be altered, at
least in the temperature region below the f =0 transition
temperature. Instead of representing the density of free
vortices in the array, as we have assumed above, the re-
duced resistance is apparently proportional to the density
of free vortices which is also thermally activated over a
pinning potential barrier.

Finally, notice from Fig. 2 the large effect a small
amount of flux has on the resistance above the f =0 tran-
sition temperature. In a first-order approximation the to-
tal reduced resistance would be the density of thermally
activated vortices plus the density of vortices added by
the external flux:

R(T,f=0.05)/R„—R (T,f =0)/R„=f .

The measured R /R„at f =0.05 is increased significantly
over R/R„at f=0 at temperatures above T,(f =0).
Qualitatively, the additional resistance is due to the
breaking of vortex-antivortex pairs by the screening
effects of the free vortices that are produced by the field.
Pairs with a separation comparable to the free-vortex
separation will be broken and will contribute to the Ohm-
ic resistance. These effects have been treated self-
consistently in continuous films by Doniach and Huber-
man and also by Mjnnhagen.

The enhancement of reduced resistance over the zero-
field resistance at small values of f slightly above the
zero-field transition temperature is also apparent in the
data of Brown and Garland in triangular arrays, where
the effect is perhaps even more pronounced. The data of
Kimhi and co-workers in square arrays does not show
such an enhancement at temperatures slightly above
T,(f =0}. Unlike the resistive behavior at the
Kosterlitz-Thouless transition, the enhancement of the
resistance by a small amount of flux is not expected to
have universal properties. However, the existence of
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FIG. 7. Right: The method used to define I,tt. Shown are the current-voltage curves measured at T=2.420 K V(I,f =0.05),
V(I f=0), and EV(I)+ V(I f=0.05)—V(I f=0). The difference curve b V(I) is then used to define the flux-flow resistance
Rtt [dV/dI]t„, &

and th——e flux-flow critical current for that flux and temperature I,tt which is the current-axis intercept of the flux-

flow regime of EV(I). Left: The ratio of the flux depinning current (measured at f=0.05) to the critical current at f =0, I,tt
(1/t, f =0.05)/I, (1/t, f =0), plotted as a function of the inverse effective temperature 1/t.
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such large differences in the experimental literature prob-
ably indicates that the theoretical analysis applied is in-
complete. Clearly, any theoretical interpretation of the
experimentally observed effect of the field on the Ohmic
resistance in the high-temperature region must first con-
front the contradictory results of these measurements.

Recently, measurements of the magnetic-field depen-
dence of the resistive transition in continuous two-
dirnensional superconducting films have also found more
complicated behavior than expected theoretically, includ-
ing evidence of vortex pinning with a field dependent pin-
ning energy that dropped to zero at the f =0 Kosterlitz-
Thouless transition temperature.

C. f = ~i, f =1/~, and f =1—1/~

The transitions at f = —,', 1/r, and 1 —1/~ are
depressed the most in temperature and effective tempera-
ture compared with the integer fluxes and f =0.05, yet
the transitions themselves represent an intermediate be-
havior between the integer and small flux transitions.
This conclusion follows from comparing the rise in the
non-Ohmic slope a (1/t) in Fig. 6 with the decrease in the
reduced resistance as a function of the inverse effective
temperature in Fig. 5.

This behavior is most marked at f =—,', where the resis-
tance R (1/t)/R„ is larger than at f =0.05, yet a (1/t)
increases at a similar or perhaps somewhat faster rate as
the effective temperature is decreased. When
R (f =1/2)/R„reaches a value of 0.001, at an inverse
effective temperature of 2.16, the value of a(f = —,'} is
2.6%0.2. For f =0.05 at the same reduced resistance
value, a (f=0.05) was 2.0+0.2.

Our estimate of the transition temperature at f =—,
' in

a square array differs from that determined by Van Wees
and co-workers who used a different criterion. Van Wees
and co-workers found an inverse effective transition tern-
perature of about 4, which they determined by finding the
highest temperature where a reached a constant value
when measured at different voltage levels approaching
zero voltage. They defined a critical value of the I-V ex-
ponent a (t, )=5.5 by this procedure. The r, ineasured by
this method does not necessarily correlate with the be-
havior of the resistance, which in their experiment had
reached a very low value of R /R„, well below 10 5, for
their 128X384 island array. Our f= —,

' resistance data
for values of R/R„greater than 0.001 resembles what
they measured over the same effective temperature range:
Our resistance drops with an effective thermal activation
energy of 3.7 (versus a value of 4.7 that they measured)
below a higher-temperature regime where the effective
activation energy is smaller.

Monte Carlo simulations provides the best theoretical
estimate for the properties of the transition in the fully
frustrated XF inodel on a square lattice. From the simu-
lation of Teitel and Jayaprakash, the transition occurs at
an effective temperature near 0.45, about 50% reduction
from an estimate based on ground-state energies for a
vortex-antivortex unbinding transition at f = —,. Due to
the two degenerate ground states at f = —,

' a set of Ising-

like excitations on the vortex lattice exists, and these ex-
citations rather than vortex unbinding may be responsi-
ble for destroying the ordered state. The jump seen in the
nonlinear exponent does not equal the universal value for
a Kosterlitz-Thouless transition, corresponding instead to
a value of a(t, } at the transition of about 3.5 to 4 (we
have calculated the expected jump in a from the value of
the renormalized coupling J* measured in the simula-
tions a —1=m.J*/k&T; note that J* is the same as the
helicity modulus calculated in the Monte Carlo simula-
tion}. Other theories have also suggested that the transi-
tion occurs at a reduced effective temperature with a
nonuniversal jump at the transition, or even that a com-
bined Kosterlitz-Thouless and Ising-like transition occurs
at f = —,

' in a square array.
Our measurements agree with the simulations in es-

timating a transition temperature of about 0.46, but we
find a value of a (t, }=2.6, much lower than 3.5. This re-
sult would seem to be inconsistent with the Kosterlitz-
Thouless stability criterion for the superfluid, which pre-
dicts a minimum value of a (t, ) )3. On the other hand,
the non-Ohmic dissipation at a noninteger value of f is
not necessarily due to breaking of vortex-antivortex pairs
by the current. The non-Ohmic mechanism may be more
complicated since the vortex lattice itself can also be al-
tered by a measuring current. Therefore a measurement
of the nonlinear resistance may not be simply related toJ' as in the vortex-pair unbinding theory. Unfortunate-
ly, no theory for the non-Ohinic transport aside froin the
flux-flow model exists. The flux-flow model does not
work well at the larger fluxes near f = —,', as no reasonable
region of constant dV/dI can be found in the I-V curves
at these fluxes.

The temperature dependence of the nonlinear exponent
at fluxes near f =—,

' has a behavior intermediate between
the sharp rise integer values off and the slow smooth be-
havior at f =0.05. At f = —,', a rises from 1 to a value of
2.6 when R /R„=O. OOI in a temperature range which is
about 0.25 K wide. At the incommensurate value

f = 1/~ (=0.618) the initial rise in a is similar, from 1 to
2.4 upon a decrease in the temperature of 0.25 K. Com-
pared with f=0.05, at f = —,

' and at f =1/r the transi-
tion region is narrower and the value of a is greater when
R /R„=0.001. The temperature dependences of the two
curves are the same within experimental error if the tem-
perature axes are shifted by about 0.03 K. Thus, both the
Ohmic and non-Ohmic data show that a transition tern-
perature depression of 0.03—0.04 K is the major effect on
the temperature dependence of the resistive transition on
changing the flux from —,

' to 1/~.
The effective temperature dependence of the resistance

also shows little difference between the commensurate
and the incommensurate transitions. The effective ac-
tivation energy of the Ohmic resistance decreases from
3.7 at f = —,

' to 3.1 at f =1/~ and f =1—1/r As a re-.
sult, the effective temperature at which R/R„=0.001 is
depressed to t, =0.38 at the incommensurate fluxes,
down from t, (f= —,

' }=0.46. Halsey's Monte Carlo simu-
lation' found a glass transition at an effective ternpera-
ture of approximately 0.25. The increase in a(1/t) is
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substantially the same below the transition for the incom-
mensurate fluxes and for f = —,'.

The lack of a significant difference between the resis-
tive transitions at commensurate and incommensurate
fluxes differs from the expectations of arguments based
on the ground-state properties of the array in those
fluxes. ' ' On the other hand, the possibility that a freez-
ing of vortices as the temperature is lowered in the in-
commensurate state could explain the similarity of the
transitions at f=1/r and 1 —1/r with the transition at
f = —,'. However, we did not observe the hysteretic effects
one might expect to see when cooling and heating
through a glass transition. The nature of the transitions
with frustration remains a complex problem. A theory
for non-Ohmic effects could provide some basis for trying
to understand the transitions. At the same time, the
effects of pinning, evident at f =0.05, must also be con-
sidered.

V. CONCLUSIONS

In conclusion, we have measured the resistive behavior
as a function of temperature and frustration in a square
Josephson-junction array. The transition for f =0 and 1,
when the array is unfrustrated, are similar to each other
and have characteristics similar to a Kosterlitz-Thouless
vortex unbinding transition. This result agrees with
several previous square array measurements " of the
Ohmic and non-Ohmic behavior at f =0, and with mea-
surements ' of the Ohmic behavior for nonzero integer
values of f. The measurements of Brown and Garland
in a triangular array do not agree with these results, al-
though there is no theoretical reason to expect a different
transition in the unfrustrated triangular array compared
with the unfrustrated square-array.

Applying a small amount of flux to the array, f =0.05,
significantly broadens the transition compared to the in-
teger fluxes, and the transition no longer resembles a vor-

tex unbinding transition. In one other comparable mea-
surement, Brown and Garland do not see such a change
in the transition between f =0 and 0.043. Our resistance
measurements show that vortex pinning is probably
occurring at low temperatures, which probably compli-
cates the theoretical interpretation of any underlying
transition.

We find that the transitions with a large frustration, ei-
ther commensurate, as at f = —,', or incommensurate, as at

f = 1/r, are similar to each other, but different from both
the unfrustrated and weakly frustrated transitions if the
Ohmic and non-Ohmic resistive response are considered
together. The similarity of the transitions is not expected
theoretically. The nature of the transition at f = —,

' is un-

clear from our experiment, and we do not find evidence
of a sharp transition as described by van Wees and co-
workers. A better theoretical interpretation of the non-
Ohmic behavior for these fluxes may help to improve our
understanding of these transitions. The resistive behavior
for the incommensurate values of f show that some type
of vortex freezing is occuring, and thus our results do not
preclude the possibility that a superconducting glass state
forms for irrational values of the frustration.
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