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We show that possible forms for the density matrices of states of a two-dimensional electron gas
(2D EG) are profoundly limited when the electrons are constrained to lie in the lowest Landau level.
In particular for any number of particles the matrices may be expressed in terms of their diagonal
elements in a position representation. The simplification which is known to occur for Hartree-Fock
calculations in a single Landau level of the 2D EG is a specific consequence of this general property.

Following the discovery of the fractional quantum Hall
effect’ (FQHE) interest in the strong-field two-
dimensional-electron-gas system has increased. In the
limit where the field is sufficiently strong that only the
lowest Landau level is occupied, the electrons in the gas
may be thought of as executing cyclotron orbits with ra-
dius [ =(#c/eB)!’*> where B is the magnetic field
strength. This restriction to the lowest Landau level
greatly constrains the form of the many-electron wave
functions in a way which, as discovered by Laughlin,3
leads to a theoretical explanation for the FQHE. In this
Brief Report we show that the N-particle density ma-
trices for this system are also constrained by the restric-
tion to the lowest Landau level. In particular, we show
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where y,[r] is the M-electron ground-state wave func-
tion. The diagonal elements of py[r;r'] give the n-
particle distribution function which we denote by

nylr]=pylrr] . 2)

The restriction to the lowest Landau level is most con-
veniently expressed in the symmetric gauge where it im-
plies that>*

Yolr]l=folzlexp [—);‘, |z | 2/4] , (3)

where z; =x; —iy,, we are using / as the unit of length
and f[z] is analytic in each of the z;’s. Using Eq. (3) in
Eq. (1) we have
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that they are uniquely determined by their diagonal ele-
ments in a coordinate representation. This fact has been
used implicitly by Laughlin® in a study of the hierarchy
of fractional states. We also rederive the Hartree-Fock
equations for this system and demonstrate that it is this
property for the one-particle density matrix which leads
to the unusual situation that the Fock operator can be ex-
pressed explicitly and solely in terms of the electron den-
sity. We also comment on the off-diagonal density ma-
trices with N > 1.

We begin by defining our notation. At zero tempera-
ture the N-particle density matrix for a system of M elec-
trons is given by
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In Egs. (4) Fy[s,t] is a function analytic in each s; and #;
and is uniquely determined by Eq. (4b) if only the diago-
nal elements of py[r,r] are known. By substituting
(z+2£)/2 for x; and (zf —z,)/2i for y, we can write
ny[r] in the form

ny[r]=Gylz*,z], (5)

where Gy[z*,z] is also an analytic function of each z;
and z;. It follows that

N FhEM
Fy[z*,z]1=T] exp 2 Gylz*,z], (6a)
k=1
and hence that
N —lzi|? =1z |?  zfz
pnlr.r’']1=]1 exp
P 4 4 2
XGylz*,2']. (6b)

Equations (6) are our basic result. To illustrate their
power we consider the case of a state of uniform electron
density. For this case, n,[r]=N/A4 =v/27 where 4 is
the system area and v is the Landau-level filling factor. It
follows from Eq. (6b) that
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for any such state. We note that the second factor in the
last form of Eq. (7), which is a phase factor of unit magni-
tude, may be removed by modifying the definition of the
density matrix to make it gauge invariant. From Eq. (7)
we see that no uniform-density state can have off-
diagonal long-range order in the one-particle density ma-
trix such as exists in superfluids.

The nonlocal effective potential representing Coulomb
interactions in the Hartree-Fock approximation may be
expressed as

e2
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We can in general write
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where 4 is the system area and g =g, —ig, is the wave
J
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This can be simplified using Eq. (12) and the sum rule,
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to obtain
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[Note that the magnetic length has been exhibited explic-
itly in Eq. (15b).] Thus, because of the restriction to the
lowest Landau level which leads to Eq. (1), the Fock term
depends only on the electron density and leads to an
effective electron-electron interaction which is attractive
at short distances (large 5q). This result [Egs. (15)] has
been obtained previously’~’ in terms of Landau-gauge
eigenstates but the present derivation makes it clear that
it is a consequence of the special properties of the one-
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vector in complex notation. Using Eq. (6) it follows that
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where {6,,(r)] are the symmetric-gauge angular-

momentum eigenstates in the lowest Landau level,
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and LJ(x) is a generalized Laguerre polynomial. The
second form for the right-hand side of Eq. (10) follows
from the first by expanding each of the exponentials and
comparing with Egs. (11) and (12).

Using Eq. (10) in Eq. (8) and Fourier expanding
e/ |r—r'| gives
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particle density matrix in the lowest Landau level. Equa-
tions (15) gives an explicit and exact expression for the
exchange potential which may be contrasted with ap-
proximate expressions based on the local-density approxi-
mation.?

Finally we discuss approximations for the N-particle
off-diagonal density matrices of uniform electron density
states, like the incompressible fluid states®>°~!! responsi-
ble for the fractional quantum Hall effect. For N=1 a
rigorously exact expression has already been given [Eq.
(7)]. For N =2 Girvin'? has shown that the two-particle
distribution function can always be expressed in the form

p_r 2
ny(ry,r,)= [-2.1;7 [l—e [ry—ry]%72
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(16)

where the sum is over odd values of / only. {C;} values
for Laughlin’s incompressible fluid states at v=1 and 1
are given in Ref. 13. Using Egs. (5) and (6b) it follows
from Eq. (16) that
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For larger N there are circumstances where the superpo-
sition approximation may be expected to be reliable. For
the N-particle distribution function this implies that

v

N n
= eCn—r, 12, a9

i<j

nylr]=

where g (| r;—1; | ?)=(27/v)’n,y(x;,1;) is the pair corre-
lation function which depends only on the square of the
difference coordinates [see Eq. (16)]. Using Egs. (5) and
(6) again gives as the corresponding approximation for
the density matrix
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In closing we emphasize that the special properties of
the one-particle density matrix discussed here are unique
to the strong magnetic field limit where Landau-level
mixing may be ignored. We find an exact expression for
the exchange potential in the strong-field limit which is a
nonlocal functional of the electron density. Our results
will be useful for testing the accuracy of local-density ap-
proximations and also for suggesting nonlocal correc-
tions.
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