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Scalar relativistic self-consistent calculations of the band structure of Ne, Ar, Kr, and Xe have
been performed with the augmented-plane-wave method using the Hedin-Lundqvist local-density
(LD) expression for exchange and correlation. The trends with increasing atomic number in this
inert-gas solid series are presented for the valence-band width, LD band gap, and for low-lying
conduction-band eigenvalues. A simplified form of self-energy correction that accounts for dynami-
cal exchange and correlation processes to the single-particle excitations is included. Comparisons
are made with previous studies using diferent methods. The present approach is most reliable for
valence-band properties and gives semiquantitative agreement with experimental values of the
band-gap and conduction-band separations.

I. INTRODUCTION

A number of studies of the electronic structure of
rare-gas crystals has been presented in the past. The
most systematic study of the whole class was given by
Trickey et al. ' They performed self-consistent but non-
relativistic calculations using the augmented-plane-wave
(APW) method in the Xa approximation. In this paper
we present relativistic self-consistent calculations of the
band structure using the APW method for the rare-gas
crystals (RGC) Ne, Ar, Kr, and Xe using the exchange
and correlation potential treated in the local-density
theory of Hedin and Lundqvist. A systematic compar-
ison of the RGC, including previous related work, is
made. The results have been corrected to give more real-
istic approximations to true excitation energies using the
theory of Pickett and Wang. A calculation of the elec-
tron momentum distribution and of Compton profiles in
the impulse approximation will be given in a subsequent
paper. " Also a Slater-Koster parametrization of the
unoccupied states has been presented in Ref. 5. Band-
structure calculations of the RGC have been performed
in the past with different approximations for different ele-
ments. Rossler has published relativistic, but non-self-
consistent, calculations by the Korringa-Kohn-Rostoker
(KKR) method, and Kunz and Mickish have presented
self-consistent but nonrelativistic calculations by the
Hartree-Fock (HF) method. After a brief review of these
and other previous calculations, we present our results
and compare them with others, making a more systemat-
ic comparison with those of Rossler and Kunz and Mick-
ish. The reason we are comparing with Rossler is that his
calculations are fitted to measured values and therefore
we are effectively comparing to experiment. On the other
hand, the first-principles calculations of Trickey et al. '

determined equilibrium lattice constants via total energy

calculations that are, except for Ne, very close to experi-
ment. However, these calculations underestimate the en-
ergy gap, and when parametrized to correct the gap they
underestimate the valence-band width.

II. GENERAL REMARKS FROM RELEVANT WORKS

Individual calculations of the band structure for each
of the RGC have been performed with various methods
that differ mainly in the treatment of the exchange poten-
tial. This treatment is considered crucial for determining
the eigenenergies, and divides the calculations into two
groups; the "HF group" using the exact exchange, and
the "local-density-approximation (LDA) group, " using
statistical exchange and including correlation in the
local-density theory: [e.g., a= l (Slater), a= —', (Kohn-
Sham, Gaspar), a adjustable (Xa), or Hedin-Lundqvist~].
In the HF approximation the empty virtual orbitals are
generally diffuse in self-consistency, thus their energies
are quite high. The lighter the nucleus the less screening
appears in the electrons, the smaller the overlap of the
occupied orbitals, and the narrower the valence bands;
the more diffuse the virtual orbitals, the wider the con-
duction band. Thus the HF results are characterized
by wide conduction bands and large gap. Correlation
corrections are necessary to reduce the gap and narrow
the bands. ' ' The LDA overestimates the correlation
energy, reducing the gap to about half the experimental
value and giving narrow conduction bands. ' Al-
though the valence bands are, with a suitable adjustment
of the exchange potential, very similar to the HF bands, '

this adjustment seriously affects the conduction bands.
The simplest way to perform such changes is to change
the a parameter. ' ' Increasing a separates the bands,
and the valence electrons become more tightly bound. '

This improves the gap but destroys other ground-state
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III. METHOD OF CALCULATION
AND APPROXIMATIONS

The RGC crystallize in the fcc structure. The lattice
constants were taken from Wyckoff and are listed in
Table I. It should be noted that the lattice parameters
calculated by Trickey et a/. , ' with the exception of Ne,
are very close to experiment. Our calculations were per-
formed in the muffin-tin approximation, self-consistently,
on a mesh of 20 k points in the —,', section of the first Bril-
louin zone (BZ), using a standard symmetrized APW
code without linearization. These calculations were sca-
lar relativistic, i.e., the Dirac equation was solved in the
crystal, neglecting the spin-orbit coupling. For a general
k point, 70 plane waves were used that correspond to a
level of convergence better than 0.1 mRy. The crystal
potential was calculated on a doubling linear mesh of 218
values inside the muffin-tin sphere. The exchange poten-
tial was calculated using the local-density theory of
Hedin and Lundqvist. For the calculation of the energy
bands and the density of states, the 20-k-point self-

TABLE I. Quantities used in the self-energy calculations: eo,

high-frequency dielectric constant; r„electron density parame-
ter; Eg, energy gap; A, =Ace~/EF, and a, lattice constant. The
value of eo for Ne is somewhat uncertain, due to lack of precise
experimental information.

&0 Eg (Ry) a (a.u. )

properties such as cohesive energy, lattice constant, and
valence-band width, which otherwise are quite accurate
in the LDA."' The valence-band width, for example,
narrows with increased a due to decreasing over-
lap. "" ' Increasing the lattice constant drastically
compresses the conduction band, while the gap is practi-
cally unaffected. ' This effect is also due to a decrease of
the overlap. It was once believed ' that in the LDA the
lighter the atom, the more compressed the conduction
bands, contrary to the HF approximation and to the ex-
periment. Generally this is not true for the LDA, where
we find the correct trend. Increasing the atomic number
widens the valence band, compresses the conduction
band, and lowers the gap, in agreement with the HF re-
sults and the experiment, but the magnitude of the gap is
about half the experimental one. The bandwidths are
quite reasonable as shown below.

Efforts have been made in the past to improve the
value of the energy gap in the LDA, by either changing a
(Refs. 8 and 15-17) or approximating it in various
ways. ' ' The most promising methods seem to be the
recently developed calculation of self-interaction correc-
tion' ' ' ' (SIC) or the single-particle excitation theory,
such as that of Pickett and Wang. We have applied the
latter approach in this work and find a significant im-
provement in the size of the energy gap.

consistent crystal potential was used to generate energies
for a 33-k-point mesh in the —,', of the first Bz. Then the
energy bands were calculated on a fine k-point mesh by a
Fourier-series interpolation taking into account the com-
patibility relations. These interpolated bands were used
to calculate the density of states by the tetrahedron
method. The core levels were treated in the soft-core
approximation as described elsewhere. The above
choices are considered as the optimum ones for accurate
results and reasonable computing time, according to the
results of a study of various approximations in APW cal-
culations. The APW results were corrected using the
self-energy function of the single-particle excitation as
described in the next section.

IV. SELF-ENERGY CALCULATION

W(k, t0) = v(k) 4me

Qk e(k, co)

where 0 is the normalization volume. The 68'approxi-
mation has been studied most thoroughly for the
electron-gas problem, where the random-phase approxi-
mation (RPA) is a reasonable choice for dielectric func-
tion e(k, to).

The application of this approach to crystalline nonmet-
als required two essential generalizations: (1) the under-
lying spectrum in G was generalized to include a gap E,
and (2) the RPA dielectric function must be made ap-
propriate for a nonmetal, which differs from that of a
metal in both its k and co dependence. This was done us-

ing the screening function of Levine and Louie, which
introduces a single constant A, but produces a realistic
and causal screening behavior. This constant is deter-
mined by the static, long-wavelength dielectric constant
E'o through the defining equation

It is now well understood that the LDA underestimates
the energy gap of nonmetals. Formally there is no
justification for interpreting the LDA gap as the optical
gap, but Pickett and Wang and others have shown that
an appropriately defined self-energy can be added to the
LDA bands to give true excitation energies. Their for-
mulation leads to very good energy gaps in a variety of
semiconductors (Si, GaP, SiC, diamond}. For Ge and
GaAs the resulting gaps are poor, but this appears to be
due to the extremely small gaps given by LDA in these
materials; the self-energy should be applied (ideally} to
the exact density-functional gap, which is unknown.

This self-energy correction, which has not previously
been applied to wide-gap insulators, is included here for
the rare-gas solids as a first test for this class of materials.
The self-energy is based on the "68' approximation" of
Hedin and others, where G denotes the single-particle
Green"s function and 8' is the dynamically screened
Coulomb interaction

Ne
Ar
Kr
Xe

(1.4)
1.58
1.78
2.0

1.80
2.14
2.32
2.52

1.53
1.02
0.84
0.67

2.27
1.45
1.11
0.87

8.3696
9.9324

10.8111
11.7106

A,Ed=fico /(eo —1)' (2)

where EF and co& are the Fermi energy and plasma fre-
quency of the electron gas with density equal to the aver-
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Ek=Ek' "+&(Ek» (3)

age valence electron density of the solid. Since eo and Eg
can be calculated from the resulting corrected band
structure, A, and Eg can be determined self-consistently,
but this has not been necessary in the previous studies
and will not be attempted here. The various parameters
entering the calculations for the ROC are given in Table
I. EG was chosen from a zone average of the direct band

gap, anticipating the self-energy correction which would
result and including it in accordance with Eq. (3) for Ek.
EG is thus very close to the zone average of the direct gap
in the quasiparticle bands, that is, it is self-consistent.

The Pickett-Wang theory leads to a self-energy correc-
tion which enters as an energy- and density-dependent
potential. (As in the previous studies the imaginary part
will be neglected, as it vanishes for bands near the gap. )

Since we are primarily interested in determining the mag-
nitude of the correction, we make the simplifying approx-
imation of evaluating the density variable in the self-

energy always at the average valence electron density.
This "mean-density approximation" was shown to give
most of the correction in the previous studies.

The correction then is given by

a simple scalar equation for the excitation energy Ek in

terms of the LDA eigenvalue Ek which converges easi-

ly by iteration once the "mean-density self-energy" X(E)
is determined. Before discussing the results, it is
worthwhile to recall the basis of the Pickett-Wang
theory. The self-energy was formulated in terms of a
homogeneous semiconducting electron-gas model which
should be a good ansatz when the gap is small compared
to the valence-band width, which has been true in the
previous studies. This ratio of gap to valence-band
width is reflected in the constant A, , which is of the order
of 0.25-0.5 for semiconductors. From Table I it can be
seen that A, for the rare-gas solids lies above the range of
formal validity of the theory. These values of A, range
from 0.87 to 2.27 and reAect the large gaps and small
valence-band widths in these insulators. In addition, in
making our mean-density approximation, we are neglect-
ing a systematic difference between the valence and con-
duction states, which is that the valence p states are
strongly bound near the atoms and lie in a higher than
average density region, while the conduction states lie
much more in the interstitial region and therefore sample
a lower electron density. As a result the mean-density
approximation may tend to lead to smaller corrections
than the full theory would give.

LDA
(a) V. RESULTS AND COMPARISONS
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FIG. 1. Characteristic widths as a function of element.

We consider first the APW results in the LDA before
applying the self-energy correction. In Fig. 1 we have
plotted as a function of Z certain characteristic levels
which reAect the variation of the energy gap and the
width of the conduction band. We have taken as the ori-
gin the state I &5 which is the top of the valence band
which we have also indicated as the Fermi level in our
figures of the energy bands. We note from Fig. 1(a) that
the value of the conduction I

~
level decreases as a func-

tion of Z from 0.838 Ry for Ne to 0.409 Ry for Xe.
These widths represent the energy gap between valence
and conduction bands and, as expected in the LDA, are
much smaller than the measured values. The positions of
the d-like levels I 25 and I,2 with respect to the s-like I,
level describe the s-d separation and the d-band width of
the conduction bands. We note that similarly to the ener-

gy gap the s-d separation decreases as a function of Z
while the d-band width undergoes a decrease by more
than a factor of 2 from Ne to Ar and then remains ap-
proximately constant for Kr and Xe. Although they
overestimate the measured values as analyzed by
Rossler, these conduction-band widths are in closer
agreement to experiment than the energy gap.

Applying the self-energy correction causes a substan-
tial increase in the value of the energy gap which brings
our results to approximately 10% under the measured
values. On the other hand, the self-energy correction
gives a moderate increase of the conduction-band separa-
tions which worsens the agreement with experiment.
Figure 1(b) shows the variation with Z of the levels I,,
I 25, and 1,2 for our self-energy corrected results.

Tables II, III, IV, and V show a detailed comparison at
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TABLE II. Energies at high-symmetry points for solid neon.

This work
LDA QPC Ref. 9 Ref. 7 Ref. 6 Expt.

Gap

VB%'

CB%'

I is

2s

I2

Xi

Xq
X3
Xs
X4
Xs

L)
L3
L2

L3

r„
X4
Xs

Lq

L3
W2

W3

I 2s -I i

Xi-1 )

L, -r,

0.838

2.635
2.498
2.170
2.314

1.339
2.298

3.062
1.677
3.163
1.399
1.949

1.281
2.067
1.249
2.208
2.419

0.000
—0.049
—0.017

—0.055

—0.005
—0.018
—0.033

1.332
0.501
0.443

1.217

3.192
3.056
2.724
2.872

1.813
2.856

3.621
2.193
3.723
1.881
2.489

1.746
2.615
1.709
2.765
2.977

0.000
—0.065
—0.022

—0.073

—0.007
—0.024
—0.044

1.508
0.597
0.530

1.868

3.494
3.201
3.278

2.348
3.362

2.693

2.420
2.972

2.315
3.084
2.254
3.169
3.477

0.000
—0.034
—0.012

—0.036

—0.019

1.629

3.890

2.618

2.235
2.926

2.201

2.063

3.566

0.000
—0.022
—0.000

—0.029

0.000

0.989
0.571

1.526

2.702

2.040

2.335

2.07
2.62

1.96
2.70
1.85

1.176
0.514
0.440

1.526'

—0.096

'Reference 6.
Reference 27.
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FIG. 2. The band structure and density of states for solid neon.



6222 BACALIS, PAPACONSTANTOPOULOS, AND PICKE'I I 38

TABLE III. Energies at high-symmetry points for solid argon.

This work
LDA QPC Ref. 13 Ref. 9 Ref. 7 Ref. 6 Ref. 16 Expt.

Gap

I )s

I2s

Xi

X2
X3

Xs
X4
Xs

L)

L3

L2

L3

0.595
1.313

1.699
1.141
2.325
1.494

0.788
1.657
1.437
0.909
2.080
1.476
1.099

0.813
1.575
1.110
1.436
0.971
1.449
1.762

0.879
1.682

2.079
1.499
2.701
1.869

1.107
2.038
1.812
1.245
2.456
1.852
1.454
1.818

1.136
1.955
1.466
1.811
1.314
1.823
2.142

0.979
1.518

2.692
1.411

1.168
1.856
1.592
1.251

1.620
1.410
1.783

1.176
1.756
1.397
1.598
1.297

2.770

1.361
2.194

2.456
1.972

2.245

1.551
2.525

I.865

1.865
2.227

1.593
2.472
1.927
2.357
1.712
2.197
2.560

1.119 1.015
2.066 1.51
3.691
3.397
1.860 1.397
3.316

1.1881.340
3.272
2.184
1.536
3.037
2.221 1.60
1.691 1.51
2.250 1.64

1.640
1.221

1.396 1.136
2.419
1.838 1.37
2.184 1.62
1.550 1.37
1.44
2.963

0.955
1.472

1.359

1.138

1.555
1.201

1.582
1.395

1.133

1.347
1.557
1.298

1.015'

I)s
X4
Xs

0.000
—0.094
—0.034

0.000
—0.127
—0.046

0.000 0.000
—0.041 —0.084
—0.015 —0.033

0.000
—0.074
—0.007

0.000
—0.047
—0.018

VBW L2
L3
8'2

CBW I 2s-I )

Xi-I )

L)-I )

'Reference 6.
Reference 27.

—0.104
—0.012
—0.066
—0.038

0.546
0.193
0.216

—0.141
—0.015
—0.051
—0.089

0.621
0.228
0.257

—0.044
—0.005
—0.016
—0.028

—0.009
—0.013

—0.088
—0.088

0.741 0.313
0.221 0.180
0.277 0.125

—0.051
—0.006
—0.019
—0.033

—0.125

0.382
0.173
0.121

Ar

- 25.0
5

—20.0

K
LU
Z
LU

25' ~

0.5—

0.0—

—15.0

—10.0
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FIG. 3. The band structure and density of states for solid argon.
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high symmetry points of our LDA and our quasiparticle
(QP) corrected results to those from other studies. The
origin of the energy scale is shifted to the top of the
valence band I ». Other results are given for complete-
ness, but a comparison is made mainly with the experi-
ment adjusted bands of Rossler, and the correlation
corrected results of Kunz and Mickish (KM). The ex-
perimental values for the valence-band widths and gaps
are taken from Schwentner et al. and from Rossler.
The experimental gaps and bandwidths are given in the
last column of Tables II-V. Figures 2-5 show the ener-

gy bands and densities of states including the QP correc-
tion.

A. Neon

Table II shows typical energy levels from various cal-
culations and experiments and Fig. 2 shows the energy
bands and total density of states (DOS). As we men-
tioned above, the LDA band gap is just over half the ex-

perimental value, while our self-energy correction brings
it to within 20% under the measured value. The results
of KM overestimate the gap by 10%. For the valence-
band width (VBW) our LDA results are much better than
for previous studies. We find a width of 0.055 Ry while
KM find 0.029 Ry compared to the experimental value of
0.096 Ry. Our QP corrected results give a VBW of 0.073
Ry in even better agreement with experiment. For the
conduction band we have tabulated the energy differences
I 25-I „X,-E'&, and L&-I

&
to provide a measure of the

bandwidths. We note that our LDA results are in close
agreement with the experiment adjusted values of
Rossler. Our QP corrected results overestimate the mea-
sured values by about 20% while those of KM exceed the
experimental values even more. The energy bands of Fig.
2 are wide and free-electron-like.

B. Argon

Our results for Ar are shown in Fig. 3 and Table III.
The energy bands are narrower than those of Ne with the

TABLE IV. Energies at high-symmetry points for solid krypton.

This work
LDA QPC Ref. 29 Ref. 10 Ref. 7 Ref. 6 Expt.

Gap

VBW

CBW

I ls

I zs

X)

X2
X3

Xs
X4
Xs

Ll

L3

L2

L3
I is

X4
Xs

L2

L3
8'2

r„.-r,
X,-r,
L)-I l

0.497

1.171

1.416
0.986
2.264

0.659
1.434
1.322
0.766
1.994
1.371
0.982
1.251

0.680
1.409
0.955
1.317
0.865
1.210
1.493
0.000

—0.095
—0.035

—0.105

—0.012
—0.039
—0.067

0.489
0.162
0.183

0.734

1.468

1.714
1.279
2.551

0.926
1.729
1.619
1.044
2.281
1.667
1.274
1.548

0.950
1.705
1.245
1.615
1.151
1.507
1.787
0.000

—0.125
—0.047

—0.138

—0.016
—0.052
—0.089

0.541
0.189
0.212

0.84

1.50

1.80
1.36

1.04
1.85
1.65
1.10

1.76
1.42
1.74

1.026
1.895
1.375
1.805
1.355

1.895
0.000

—0.085
—0.035

—0.095

—0.015

1.112

1.875

2.071
1.728

1.261
2.212
2.088
1.382

2.378
1.656
1.934

1.303
2.170
1.522
1.857
1.509
1.849
2.186
0.000

—0.190
—0.035

—0.208

—0.029

0.998

1.772
4.051
3.103
1.581
3.618

1.175
2.382
1.912
1.306
3.301
1.956
1.581
2.059

1.237
2.154
1.544
1.912
1.435

3.551
0.000

—0.088
—0.015

—0.103

—0.000

0.583
0.177
0.239

0.838

1.32

1.220

1.000

1.47
1.04

1.43
1.34
1.47

0.948

1.19
1.44
1.19
1.25

0.360
0.180
0.132

0.838'

—0.169

0.382
0.162
0.110

'Reference 6.
Reference 27.
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FIG. 4. The band structure and density of states for solid krypton.

conduction bands looking similar to the s-d complex of
bands in a transition metal. The LDA band gap is 60%
of the experimental value while the self-energy correction
improves our result to almost 90%. KM, including
correlation corrections, overestimate the gap by about
10%. As in Ne the VBW is in much better agreement
with experiment than both previous LDA calculations
and the Hartree-Fock calculations of KM. We find a
width of 0.104 Ry while KM, Mattheiss, ' and Azama, '

find 0.096 0.044, and 0.051 Ry, respectively, the experi-
mental value being 0.125 Ry. Trickey et al. " found a
VBW of 0.121 Ry in excellent agreement with experi-
ment, but with the usual underestimation of the gap.
They parametrized the exchange coeScient a to correct
the value of the gap, but this resulted in a VBW of 0.050
Ry. Our QP correction (QPC), while it gives an excellent
value for the gap, retains the good agreement of the VBW
with experiment.

The conduction-band separations from I
&

are also
shown in Table III. Both our LDA and QPC values are
between those of KM and experiment.

C. Krypton

Krypton has also been studied extensively, and similar
conclusions to those of Ar can be drawn from Table IV
and Fig. 4. We find a LDA gap of 0.497 Ry, increasing
to 0.734 Ry after we applied the self-energy correction
while the experimental value is 0.838 Ry, and that of KM
is 0.998 Ry. The VBW is found to be 0.105 Ry from the
LDA and 0.138 Ry from the QPC which is close to the
experimental value of 0.169 Ry. The VBW's given by
KM and Trickey et al. " are 0.103 and 0.116 Ry, respec-
tively.

The conduction-band separations from I, are also
shown in Table IV. Our results are again between those
of KM and experiment but closer to experimental values
than in Ne and Ar. Again all calculations overestimate

This work
LDA QPC Ref. 6 Expt.

Gap I I 0.409 0.605 0.673 0.673'

Ii2
I2s

Xi
X2
X3
Xs
X4
Xs

L)
L3

L2

L3

I Is

X4
Xs

0.944
0.777

0.508
1.088
0.587
1.136
0.884
1.056

0.539
0.751
1.083
0.765
0.963
1.189

0.000
—0.112
—0.043

1.172
1.004

0.718
1.313
0.805
1.360
1.113
1.281

0.752
0.977
1.309
0.992
1.191
1.412

0.000
—0.140
—0.056

1.07
0.945

0.820
1.21
0.82
1.20
1.13
1.22

0.791
0.95
1.18
0.96
1.05

VBW L2 —0.123 —0.153 —0.221b

L3

W3

CBW I qs-I )

X,-r,
L,-r,

'Reference 6.
Reference 27.

—0.015
—0.049
—0.081

0.368
0.099
0.130

—0.019
—0.063
—0.103

0.399
0.113
0.147

0.276
0.103
0.099

0.272
0.147
0.118

TABLE V. Energies at high-symmetry points for solid xe-
non.
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FIG. 5. The band structure and density of states for solid xenon.

the conduction-band separations compared to experi-
ment.

D. Xenon

In xenon relativistic etfects should be rather important.
Our calculations do not include the spin-orbit (SO) cou-
pling while they were included in the semiempirical cal-
culations of Rossler. As a result the comparisons shown
in Table V are not accurate for the k points that split due
to the SO interaction. Our LDA band gap is 0.409 Ry
and our self-energy corrected result is 0.605 Ry compared
to the experimental value of 0.673 Ry. The VBW in-
creases from a LDA value of 0.123 Ry to the QP correct-
ed value of 0.153 while experiment gives 0.221 Ry.
Trickey et al. ' give an energy gap of 0.452 Ry and a
VBW of 0.133 Ry. Studies of the band gap as a function
of pressure are given in Ref. 28.

The conduction-band separations are also shown in
Table V. As in the other inert solids our results overesti-
mate the measured values. Figure 5 shows the energy
bands and DOS for Xe. These bands (within the approxi-
mation of neglecting the SO interaction) are similar to
those of Kr. Both Kr and Xe have energy bands much
narrower than the other two inert solids.

VI. CONCLUSIONS

From the figures and the tables we see that the main
features of the band structures of the ROC are that in go-

ing from Ne to Xe (i) the valence-band width increases,
(ii) the conduction-band separations decrease, and (iii) the
energy gap decreases. These three features have also
been seen experimentally. While the Hartree-Fock calcu-
lations find the same trends, that is not the case with all
previous LDA calculations. Apart from these trends
quantitative comparisons show that (i) the calculated
valence bands are, in all approximations, more
compressed than the experiment shows, (ii) the calculated
conduction bands are all wider than experiments indicate,
and (iii) the band gaps are narrower in the LD, and wider
in the HF, approximation. However, both the LD and
the HF results come close to the measured band gaps
when the self-energy and correlation corrections are ap-
plied to the respective methods. In addition, the relativ-
istic APW calculation with HL correlation and exchange
potential (this work) gives better valence-band widths and
conduction-band separations than the HF (Ref. 7) and
the KKR (Ref. 6) results. Evidently the ground-state
properties are the most reliable, the conduction bands are
less accurate, and the gaps are reasonable when the self-
energy correction is applied. Our results are used in two
applications, both of which are not sensitive to the value
of the energy gap. One application is for the Slater-
Koster parametrization of the conduction bands of the
inert-gas solids for general use, and the second is for the
calculation of the electron momentum distributions and
the Compton profiles presented in a subsequent paper.
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