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Thermionic emission and Gaussian transport of holes in a GaAs/Al„Ga, „As
multiple-quantum-well structure
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We present and test a modified thermionic emission model for time-resolved charge-carrier trans-

port perpendicular to the layers of multiple quantum-well structures in an electric field. The predic-
tions of the model on the nature (Gaussian transport) and the dynamics (transport times, field

dependence of the mobility) of carrier transport agree favorably with our experiments performed for
the case of holes and allow an accurate determination of the band offset.

I. INTRODUCTION

The study of carrier transport across semiconductor
heterostructures is a field of growing interest for both
basic research and potential applications. For thin bar-
riers transport properties are dominated by tunneling
processes. In the double barrier case one observes nega-
tive difFerential resistance due to resonant tunneling. ' A
similar effect occurs in multiple-quantum-well (MQW)
structures when the electric field is such that different
electronic subbands of neighboring wells have more or
less the same energy. For small electric fields and nar-
row barriers and wells the broadening of the subbands
due to the quantum-mechanical coupling between the
wells enables carrier transport within one subband
(Bloch, miniband conduction). '

For thicker barriers tunneling processes are only dom-
inant for very high electric fields when the barriers are
triangular (Fowler-Nordheim regime). At moderate elec-
tric fields carriers must be transferred to higher-energy
states (e.g., thermally activated) before crossing the bar-
rier. Then Fowler-Nordheim tunneling only leads to a
lowering of the effective barrier height.

In the conventional thermionic emission experiment
one measures the temperature dependence of the (dc)
current from a highly conducting region across a barrier.
This method has been applied to Schottky and sernicon-
ductor heterojunction barriers.

In the present work we study the dynamics of ther-
mionic emission in a MQW structure and relate the
response times to the design parameters of the sample.
Thus a more detailed experimental and theoretical under-
standing of the thermionic emission process is achieved.
Some preliminary results have been published elsewhere.

In Sec. II we present our modified thermionic emission
model. The predicted shapes of photocurrent transients
and transport times are compared with our experimental
data in Sec. III. We give our conclusions in Sec. IV and
some details of our model in the Appendixes.

The quasi-Fermi-level EF is determined by the total car-
rier density n, in the well, i.e., by the condition

n, = J"dn '.
(2)

Ec, v

The emission currents J„,Ji (in the x direction) over the
barriers to the right and left, respectively, are given by

J„I—— ev„n . (3)
r, l

As in standard thermionic emission theory the integra-
tions in Eqs. (2) and (3) are easily carried out in velocity
space (assuming that E Ec is kineti—c energy) with the
final result

1/2

J i =ell
27TPO

E
p —

k T8
(4)

From the continuity equation we get wri, = —(J„+J, ) /e,
which we write in the form

period d. At a given electric field F we assume that the
barriers to the right and left of the well are of the
effective heights E„and EI ——E„+deF, respectively. So a
carrier of charge e and effective mass m ' must be higher
in energy than one of the barriers in order to be able to
leave the well.

Consequently, as the electronic transport properties
are determined by the occupation of states close to the
top of the barrier, the application of a three-dimensional
density of states and the use of Boltzmann statistics are
good approximations. Then the carrier density dn in the
well in an incremental energy range dE over the
conduction- (or beyond the valence-) band edge Ec (Ev)
is given by

4~(2m )
~ E —EF

dn = (E Ec v) —exp dE .
k~T

II. THE MODEL

In order to obtain the emission rates we first consider
an individual quantum well of width w in a MQW of with

mn, =—
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k TB1

2~m

E, I
P (6)

1 1
V

+r ~l

So the carrier population mn, of the well decays by
thermionic emission to the right and left with the time
constants ~, and ~I, respectively.

Next we generalize this result to the MQW case. For
simplicity (a more general case is discussed in Appendix
B) we assume that the emitted carriers from one well are
captured in the two neighboring wells. If qk(t) denotes
the number of carriers in the kth well (k =1, ,N), we get
the rate equations

r

and the diffusion constant

1 1D=d
+r +I

(12)

It is trivial to express Eq. (11) in terms of a field-
dependent mobility p (which remains finite for F~0). A
well-known solution of (10) is the Gaussian propagator
function

q&
———1 1 1—+—q&+ —q2,tl 'TI

1 (x Ut—)g(x, t)= exp
2mDt

(13)

1
qk = qk-i-

Tr

1 1 1+ qk+ qk+i
+r +1 +I

(7)

1
qw= A —i—

7 r

1 1+ Ar.
+r

If the charge at time t =0 is generated by a short light
pulse, the initial condition reads

1 —exp( —ad )
qk(o}=QO exp[ —a(k —1)d ]

1 —exp( aNd )—
with the total photogenerated charge Qo and the absorp-
tion coefficient a.

For the situation that the current to the left can be
neglected (I/r„»1/rI =0) we briefly mention that the
solution of the rate equations reads (omitting the index of
~„)

Note that, from Eq. (13),Dt naturally appears as the vari-
ance of g:

Dt = &x' —(x »' i, . (14}

As g has the property g (x,O) =5(x) with the Dirac distri-
bution 5(x), the solution of (10) with an appropriate ini-
tial condition n (x,O) =no(x) is given by

n(x, t)= fg(x y)n—o(y)dy . (15}

j (t)=—f f g(x —y}no(y}dx dy,
L o o

(16)

We take into account the absorbing boundaries at the
edges x =0 and x =L of the sample of thickness L =Nd
approximately by restricting the integration in Eq. (15) to
the interval [O,L].

As shown in Appendix A, the total current density j is
then given by

qi(t)
=e

qtt( t)
N —1

1 0

~ 0

0
q)(0)

() q~(0)

and the integration over the x variable can be done
analytically in terms of the Gaussian error function. Fi-
nally we mention that, both in the discrete and in the
continuous case, it is trivial to include an additional
recombination process with time constant ~„,which just
gives an extra factor exp(

tlat„,

) i—n the occurring car-
rier populations and current densities.

(N —1)!

Bn Bn, 82n= —V +2D3x
(10)

where we have defined the drift velocity

(9)

From Eq. (A10) of Appendix A it is then easy to write
down an explicit solution for the total current j (t).

In the following we show that for large N there is a
close correspondence between Eq. (7) and Gaussian trans-
port. For this purpose we introduce the carrier density
n(x, t). If we put xk kd, qk(t) sh——ould be replaced by
den (xk, t ). Hence, neglecting higher-order terms, we get
from Eq. (7) by Taylor expansion

III. EXPERIMENTAL RESULTS AND DISCUSSION

For an experimental test of our model we chose a 100-
period GaAs/Al„Ga„As MQW structure. The undoped
MQW is sandwiched between window layers of 300-nm
n+-type Alo 5Gao 5As on the substrate side and 800-nm
p+-type A!05Ga05As on the top side. The structure is
grown by molecular-beam epitaxy on a (100)-oriented
n+-type GaAs substrate and processed into mesas of 0.27
mm active area with CrAu Ohmic contacts. The n+-
type A!0 ~Gao ~As layer serving as an etch stop, the sub-
strate beyond the active area of some of the samples is re-
moved.

The barrier and well widths b =13.5 nm and m =12.1

nm, respectively, are determined by x-ray diffraction
(with a slight difference to the designated values of Ref.
9). The actual Al content x of the barriers of the MQW
is determined by theoretical fits to the x-ray diffraction
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curves' with the result x =(33.0+0.4%).
For our measurements we use a nitrogen-pumped dye

laser (500 ps pulse length, 5 Hz repetition rate) to excite
the MQW structure and a TEK 7912AD transient recor-
der to detect the time-resolved photocurrent which is
averaged over several hundred shots and corrected for
the dark signal.

In order to minimize space-charge effect we apply
pulsed bias and measure the photocurrent transients at
low excitation density ( =10' cm ). In our measure-
ments there is a large difference between the shape of the
transients obtained with pulsed and dc bias (Fig. 1) which
we understand in the following way. One sort of carriers
(electrons) is captured very efFectively by some traps for a
time much longer than the repetition time of the laser. In
the dc-bias case this causes a gradual development of
space charges in the MQW region. As can be calculated
from the Poisson equation, these space charges give rise
to a band bending which influences the signal. For
pulsed bias, however, space charges are reduced: During
the switch-off time of the voltage, the band bending lead
to an injection of carriers (holes) at one contact and a
subsequent neutralization of space charges by recombina-
tion. This interpretation is confirmed by the fact that the
shape of the transient only depends on the length of the
pause between the bias pulses and is independent of the
temporal position with respect to the laser shots. We con-
clude from our experiments that the mentioned carrier
injection occurs within a few ps. Hence the transients
should be due to the motion of one sort of carriers (holes),
and we may actually take a one-carrier model to describe
the data. We mention that these arguments hold for
drifting electrons and trapped holes in the same way.
The shape of the signal under different illumination con-
ditions will demonstrate, however, that we are actually
dealing with hole transport. Of course, at large excita-
tion densities ( &10' cm ) the shape of the transients
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FIG. 1. Photocurrent transients at a temperature of 200 K,

an electric field of 43.8 kV/cm and 780 nm front illumination
using pulsed bias (solid line) and dc bias (dashed line).
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FIG. 2. Photocurrent transients (solid lines) and computer
simulations (dashed lines) at 200 K, 540 nm backside illumina-
tion, and different electric fields, as indicated by the arrows.

becomes dependent on the density itself, and the
difference between dc and pulsed bias is no longer impor-
tant.

Some photocurrent transients (backside illumination by
540-nm laser pulses) at different electric fields are plotted
in Fig. 2 (solid lines}. The decay of the signal consists of
an initial fast component and a subsequent slower one
which becomes shorter for increasing electric Seld. We
mention that at very high electric fields the duration of
the signal is ultimately limited by the bandwidth (500
MHz) of the measurement system. As the fast com-
ponent becomes more intensive with decreasing laser
wavelength (and almost vanishes at near-band-gap excita-
tion}, we assign it to the motion of carriers generated in
the contact and/or barrier regions.

The field-dependent slower component is well ex-
plained by our rate equation approach. We also plotted
computer simulations (dashed lines in Fig. 2) to illustrate
this. As the penetration depth at 540 nm is much smaller
than the MQW thickness, the physical picture is the fol-
lowing: The plateau region of the transient comes from
the motion of a sheet of photogenerated holes moving
with an effective drift velocity v. At the same time, the
sheet becomes spatially broadened due to the statistical
nature of the thermionic emission process which can be
cast into an efFective diffusion constant D. Therefore,
when the carriers are reaching the contact, the current
vanishes gradually, not abruptly.

We mention that for frontside illumination (540-nm
wavelength) the current transients are much shorter than
for the former case and show a nearly exponential time
dependence. This behavior is explained if we assume hole
transport (i.e., the carriers must be generated near the
contact they have to reach). As there is some temporal
overlap with the initial fast component of the photo-
current transients which complicates the interpretation
we will not present the data here.

Although, as will be shown later, the experimental drift
velocities are in good agreement with the model, the
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diffusion constant is too large by a factor of about 7.
Note in this context that for 7„«rl the quantity D/U
does not contain any time constants. One possibility to
change the value of D/v is to assume that there is a finite
probability that an emitted carrier is not captured in the
neighboring wells. Such a model is given in Appendix B.
Alternatively one could look for additional diffusion pro-
cesses or relate the discrepancy to a slightly inhomogene-
ous electric field.

The large dependence of the photocurrent dynamics on
the temperature is shown in Fig. 3 for an exciting wave-
length of 780 nm (frontside illumination). Note that for
the case of Fig. 3 the motion of the holes is opposite to
the direction of the illumination. We estimate an absorp-
tion coeScient a of about 7000 cm ' from computer
simulations using our rate equation model. This value is
in good agreement with ellipsometric data. "

We obtain an effective response time ~,& by plotting the
transient in a doubly logarithmic scale where the slope of
the curve is minus one at the time ~,z by definition. We
mention that this procedure is exact for exponentials and
coincides well with our computer simulations. For this
purpose we use data obtained with 780-nm radiation in
order to eliminate the inhuence of the initial fast com-
ponent.

The result is given in Fig. 4. We point out that the
temperature dependence of the response time v;z actually
shows a thermally activated behavior. From a least-
squares fit we obtain activation energies between 157
meV (at 20.8 kV/cm} and 135 meV (at 59.2 kV/cm}. The
electric field is obtained by dividing the sum of the built-
in (about 1.4 V) and the applied voltage by the width L of
the intrinsic region ( L =2.6 pm).

We use an estimated drift length of L/2 and the drift
velocity from Eqs. (6) and (11) to define a theoretical time
constant r =L /2U which can be compared with r,s; Note
that this time constant v only depends very weakly on the
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effective mass m'. Weighting the heavy-hole (hh) and
light-hole (lh} emission currents with the densities of
states we get

m 3/2+ 3/2 2
mi +my,

mI +mg

For our calculation we take mi ——0.094 and mz ——0.34 for
the lh and hh masses (in units of free-electron masses), re-
spectively. '

Inserting the activation energies obtained from the
temperature dependence for the effective barrier height
E, we find a good agreement between theory and experi-
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FIG. 4. Temperature dependence of the response time ~,ff
(see text) at 780 nm front illumination and different electric
fields, as indicated in the inset.
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FIG. 3. Photocurrent transients at 43.8 kV/cm, 780 nm front
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temperatures given in the inset. The solid line is a theoretical
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ment. Thus we can use our model to obtain the barrier
height E directly from the experimental response time.
To illustrate this we insert Eqs. (6) and (11) into the ex-
pression for ~ and solve for E:

k T2d'P B

Lm 2am
deF

1 —exp
kBT

(18)

Now we use this equation to calculate the effective bar-
rier height from the experimental time constant ~,z. The
result is plotted in Fig. 5, together with the measured ac-
tivation energies. From these data we conclude that,
once the activation energy is known, our model predicts
the correct value of the transport time within a factor of
about 2. [This corresponds to a difference of k~ T ln2 be-
tween the energy from Eq. (18) and the measured activa-
tion energy. ]

It is interesting to compare these energies with the
quantum-mechanically expected effective barrier heights.
We mention the two important effects: One is the field
dependence of the lowest hole subbands with respect to
the valence-band edge, the other is the lowering of the
effective barrier height due to Fowler-Nordheim tunnel-
ing. For the carrier confinement we take the low-field
limit' which is a better approximation for the range of
electric fields applied in our measurements than an F
law. The Fowler-Nordheim reduction of the barrier
height E(F) (in the WKB approximation) is proportional
to F . From this we obtain

IV. CONCLUSIONS

We presented a modified thermionic emission model
for time-resolved carrier transport in MQW structures.
From this model we made detailed predictions on the
field and temperature dependence of the mobility in the
thermionic emission case and on the shape of photo-
current transients (Gaussian transport).

These predictions coincide with our experiments obser-
vations on a 12.1-nm-GaAs/13. 5-nm-Alo 33Gao 67As
MQW structure embedded in a p + i n+-—-diode
configuration. The data were used to determine the
field-dependent height of the MQW barriers. We found
the same behavior as expected from a quantum-
mechanical reduction of the barrier height. We point out
that our method can be used for a high-precision deter-
mination of band offsets as one only needs to study
dynamical effects (response times) inside a depleted re-
gion. Such a situation requires fewer assumptions than in
the conventional thermionic emission measurement
where at least at one side of the barrier the carrier con-
centration is high and a dc current (stationary equilibri-
um} is measured.
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APPENDIX A

m'e FE(F)=E(0)— +C

CFN

' 1/3f2e 2F2

m
(19)

The prefactors read C~„=(15/m —1)/(24m ) (Ref. 13)
and C~ ——( —,', )'~ (WKB exponent set to —1) (Ref. 7},re-
spectively As E (F.) depends only weakly on m ' we take
again the value from Eq. (17). (Alternatively we would
have to reformulate our thermionic emission model for
superposed lh and hh emission currents with slightly
different activation energies). From the choice
E (0)= 177 meV we get the solid curve plotted in Fig. 5.

The valence-band offset is estimated from a 43
rule'

for the conduction- and/or valence-band discontinuities
to the value of 177 meV. This magnitude should differ
from E(0) by the confinement energy of the lowest sub-
band for F =0 which is about 6 meV for the hh case, so
the agreement is very reasonable.

Concerning the data of Fig. 4 we point out that the ac-
tivation energy is a differential property of the dynamic
behavior, so most of the idealizations of our models con-
cerning the absolute behavior of the transport time are el-
iminated.

dF(x, t) e=—n x, t
Bx

the continuity equation for the conduction current j,
~J (» t} dn(», t}= —e

Bx Bt

and the boundary condition

f F(x, t)dx =Co
0

(A 1)

(A2)

(A3)

which defines the total electrostatic potential 40. From
(A3) we get, the integration by parts,

40=LF(L, t)= f x ' dx .
I dF(x, t)

0 Bx
(A4)

Now we calculate F(x, t) from (Al):

In the following we will determine the total current
density j (t) for a given carrier density n (x, t) and apply
the result to some cases of interest. The main point in
our derivation will be that, in contrast to the usual text-
book presentation, we calculate j (t) from the displace
ment current and not from the conduction current. In this
way we avoid an a priori relation between the conduction
current and the electric field.

We start with the Poisson equation (SI units)
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L e
eF(x, t) = —e f n (x, t)dx +—f xn (x, t)dx +—@o .

X L 0

(A5)

e 1 1j(t)=— ——g q„(t) (A10)

j(t)=j,(x, t)+e aS(x, t)
Bt

(A6}

is not x dependent.
In order to determine j (t) we assume that both n (x, t)

and j,(x, t) vanish at x =L. This means that for x =L
the displacement current et}F/dt equals the total current,
and we get from (A5) and (A6)

From (A 1) and (A2) it is clear that the total current den-
sity

j (t)=—e f n(x, t)dx .
L o

(A 1 1)

We note that (A10} and (All) give the same physical
drift velocity. From the explicit solution (9) of the
discrete system, one can easily show via Eq. (14) that Eqs.
(7) and (10) also lead to identical diffusion constants, at
least for the case 1 let ——0.

modulo boundary terms, and for the case of Eq. (10), we
get, after an integration by parts,

j(t)=—f x ' dx .
o at

For vanishing n and j, at x =0 we have

j(t)=—f (x L) — ' dx .
e L Bn(x t)
L o t)t

(A7)

(A8)

APPENDIX 8

In generalization of Eq. (7), we will consider a system
of rate equations describing carriers which, once emitted
from a well, have 6nite probabilities p„pI not to be ab-
sorbed in the right and left neighboring wells, respective-
ly. Such a system reads

If both (A7) and (A8) are valid, the charge

Qo
—e f n (x, t)dx (A9)

0

is constant in time.
In the case of low excitation it is certainly a good ap-

proximation to neglect the effects of the boundary (e.g.,
by assuming a background density of immobile carriers
of opposite charge). Then we can evaluate (A7) or (A8)
for some special cases.

For the case of Eq. (7), (A7) leads to a summation,

dqk 1 —pI
pt qk —m

m(»)

1 —P+ g peak+ — +
Pr+r m( & J) +1

qk . (B1)

Of course, (Bl) approaches (7) if pt,p„~0. If pi and p„
are small enough, we can proceed in the same way as ear-
lier, so that Eqs. (10)—(12) are replaced by

1—pr-
Pr r ~(&

r

+
Pr&r

t}n
(x, t)=d t)nmp„— g mpt (x, t)

)1 PI I m(&)& x

82n
mp, + g mpi 2(x, t).

p „„'a ' (B2)

Assuming the number of wells large enough, we neglect
boundary effects. Working out the sums analytically, we
arrive again at Eq. (7},but with the more general expres-
sions

and
d' 1+p. d' I+piD=

2(1—p ) &t (1—pi)
(B4)

d 1 d 1
V

&r 1 —Pr 'rI 1 —P
(B3)

for the drift velocity and the difFusion constant, respec-
tively. Note that D depends more sensitively on p„pl
than U.
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