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A new compact algorithm has been developed for the calculation of the band structure of III-V or
II-VI compound semiconductor superlattices. Within the envelope-function approximation, the
procedure yields a transfer matrix of dimension 2n )&2n for an n-band k p model. The boundary
conditions for the wave functions at the interfaces between layers are built into the calculation in a
natural manner. The method readily adapts itself to the case where an external magnetic field is

present along the superlattice axis. The e8'ects of strain, due to lattice mismatch or an applied exter-
nal stress, can also be taken into account. This extended transfer-matrix method enjoys the advan-

tages of the usual one-band transfer-matrix method which is employed in solving the Kronig-
Penney model. The standard eight-band k p description of the band structures of the individual

layers is used in obtaining results for specific superlattices. Our results are in excellent agreement
with earlier calculations which have used the k p and the tight-binding approximations.

I. INTRODUCTION

Semiconductor superlattices and submicrometer het-
erostructures are of interest not only for their device ap-
plications but also for the fundamental physical phenom-
ena they exhibit due to their material properties and their
submicrometer dimensions. In order to understand the
features exhibited in the optical and magnetooptical spec-
tra of superlattices, it is essential to calculate their elec-
tronic band structure. Two methods have been common-
ly used for such calculations. One is the tight-binding ap-
proximation, ' which is able to include the contribu-
tions from the entire Brillouin zone of the bulk materials
in calculating the zone-folded bands in superlattices. The
second method for the band structure is the envelope-
function approximation (EFA), ' which is an adapta-
tion of the k.p approximation' used in the theory of
band structure of bulk semiconductors. The EFA is
essentially the effective-mass approximation in the con-
text of superlattices. This approximation has the advan-
tage of being adaptable to the case ~here an external
magnetic field is imposed.

The problem of solving for the band structure within
EFA reduces to the solution of a set of simultaneous
second-order differential equations for the envelope func-
tions. The number of simultaneous equations depends on
the number of energy bands of the bulk material which is
taken into consideration. In this paper we present the
theory for a compact numerical algorithm for the evalua-
tion of the band structure and wave functions for semi-
conductor superlattices within a multiple-band EFA.

The EFA is elaborated on in Sec. II. We present our
algorithm and show how the boundary conditions ' are
built into the procedure in a natural manner. The pro-

cedure implemented for the multiple-band situation has
the advantages associated with the usual transfer-matrix
approach, which has been used so extensively in the con-
text of the one-dimensional Kronig-Penney model. '

Thus our extension of the transfer-matrix method per-
mits the calculation of the energy spectrum and the wave
functions for superlattices of arbitrary dimensions and
layer interleaving. Essential features of the earlier work
by Bastard ' and by Altarelli' ' are discussed, and
contrasted with the present computational procedure.
The advantage of the proposed transfer-matrix approach
is its conceptual simplicity together with compactness as
an algorithm. At the same time it retains the usual ad-
vantages, associated with the EFA, of incorporating (a)
the effect of an applied magnetic field, and (b) the effect of
strain, which may be present in superlattice layers due to
lattice mismatch across interfaces or due to applied
stress. Results from sample calculations are discussed in
Sec. III for GaAs/Ga, „Al„As and HgTe/CdTe super-
lattices and are compared with those published previous-
ly using a variational procedure' within the EFA and
the tight-binding approximation.

II. THE TRANSFER-MATRIX METHOD

A. The envelope functions for superlattices

Let us consider the case of a semiconductor superlat-
tice made up of alternating planar layers of materials A
and B of thicknesses d

&
and d2, respectively. Both A and

B are taken to be from either the III-V compound semi-
conductors, such as GaAs and Ga, „Al„As, or the II-VI
compound semiconductors, such as Hg Te and
Hg& „Cd„Te. In these materials the conduction- and
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y( ),') (r)= g F i,
' . (r)u ), ()(r)

J
(2)

where we have assumed that u =u . In the EFA,
which is analogous to the effective-mass approximation in
bulk materials, we consider the envelope functionsF'"' '(r) to be slowly varying over the unit cells of the
lattice. For convenience we have omitted the subscripts
v, k on F(r).

In the superlattice we have the additional potentials
VB(z) and VB(z), with period d =d, +dz, which arise
from the band offsets for the conduction- and valence-
band edges across an interface due to the mismatch of the
band gaps as one goes across the interface.

In order to understand the implications of the EFA it
is instructive to follow the calculation of Luttinger and
Kohn, ' who obtained the effective-mass approximation
for the impurity potential in bulk semiconductors, and to
repeat it for the potentials VB p(z} for the superlattice.
We assume that VBB(z) are constants in each layer, so
that the smoothness of the potentials needed for the va-
lidity of the effective-mass approximation is guaranteed.
The boundary conditions at the interfaces then ensure
that the wave function and the particle probability
current are continuous. We might mention that the
Luttinger-Kohn treatment of the impurity problem pro-
vides a procedure for systematically accounting for
corrections to the effective-mass approximation; the same
procedure may be employed in the context of superlat-
tices in order to go beyond the EFA.

With the original symmetry surviving in the x and y
directions we use the form

F (r)=e " e ' fj(z). (3)

for the envelope functions. In the following, we shall
work in this representation and the envelope function will
refer to the functions f (z). In the presence .of a magnet-
ic field along the z direction the in-plane component of

ik„x i y.the envelope function e " e " is replaced by a harmonic

valence-band edges relevant to optical and transport
properties have I 6, I 7, or I 8 symmetry. The periodic
parts of the Bloch functions u ), 0(r) at the band edges,
where j is the band index, do not differ very much as we
go from layer to layer. Also, the original crystal symme-
try is maintained in the planes parallel to the the layers.
Let the z axis of the Cartesian coordinate system be per-
pendicular to the layers, with the x-y plane being parallel
with the layers.

We shall assume that the band structures of the bulk
materials are well described by a k p Hamiltonian at the
center of the Brillouin zone. We include the J =—,

'
heavy-hole (hh) and light-hole (lh) bands, and the J = —,

'

spin-orbit split-off (s.o.) valence bands together with the
I 6 conduction bands, in an eight-band description of the
band structure of bulk materials. Within the context of
this eight-band Kane model we assume that the wave
functions y((„"i,))(r) in each layer satisfying the relation

I(A, B)y( A, B)(r) ( ,A)By( A, B)(r)(vk) r ~vk (vk)

can be written in the form

oscillator wave function to account for the Landau
quantization as will be discussed in Sec. III.

The differential equation satisfied by the envelope func-
tions in each layer is then given by

xf ( A B) (z}= e( A'B)f ( A B)('z
J J (4)

where V'"' ' is a matrix with diagonal matrix elements
VB(z) for the conduction-band components and VB(z) for
the valence-band components offj. The variables k„and
k in the Hamiltonian H are the usual wave-vector eigen-
values, and the k, dependence has been written as a
derivative in the coordinate representation. The matrix
elements of H"' are expressed in terms of the band-edge
energies E and 5 relative to the valence-band edge, the
interband momentum matrix element p, the conduction-
band Kane parameter F, and the Luttinger-type' '

valence-band parameters y&, y2, y3, and ~. The Luttinger
parameter q is found to be negligibly small and therefore
is neglected in our calculations. In addition, we have
neglected all inversion asymmetry parameters in the
Harniltonian, associated with lack of inversion symmetry
in III-V and II-VI compounds. The neglect of these
small terms leads to a Kramers degeneracy for the bands,
which is not lifted in a superlattice even for k„&0. In
principle, this can be rectified by including these terms in
our Hamiltonian. We employ the phase conventions and
notation defined by Weiler ' for the Bloch functions
u ), 0(r). Thus the matrix elements of the Hamiltonian
H are identical with the ones given in Table II of Ref. 21.
We reproduce the matrix. elements of H, with only the
parameters relevant to our work, in the Appendix.

Equation (4) is a set of eight coupled second-order
difFerential equations in the variable z. We reexpress it as

(5)

where A, 9, and C are matrices with coefficients ob-
tained from Eq. (4).

The first boundary condition on f is that they be con-
tinuous across any interface. By integrating Eq. (5) from
one side of an interface to the other, assuming that the
discontinuities of the potential functions are finite, we ob-
tain the condition ' that Af' —i%f has to be—con-
tinuous across any interface.

It is convenient to rewrite Eq. (5} as a set of 16 simul-
taneous first-order differential equations for the 16-
component function 4(z) defined by

fj(z)
@(z)= AfJ'(z) iaafI (z—)— (6)

The continuity conditions on f and their derivatives are
assured by requiring that @(z) be continuous across any
interface. This is easily done since 4 satisfies a first-order
differential equation in each layer and we set 4(z —0+)
=C)(z+0+) at any interface. Equation (5) can be rewrit-
ten as
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4'(z) =
—iA 'S —A
s —C 0 4(z):—A4(z) .

A unique solution to Eq. (7) is given by

4(z) =exp(Az}4(0) = 'T(z)@(0) . (8)

Here 4(z) is obtained, in terms of an initial value at z=O,
by the 16X 16 "transfer matrix" 'T(z). We discuss the de-
tails of the evaluation of the exponential matrix T below.
It depends on the band parameters in the layer over
which it is evaluated, and on the energy eigenvalue s.

The Bloch periodicity of the envelope functions and
their derivatives over the period (d, +dz) requires that
the function 4 satisfy the condition

C (d, +d, ) =exp[~q (d, +d, )]4(0), (9)

B. Numerical procedure

The evaluation of exp(Az), of Eq. (8), is central to the
transfer-matrix method. Let the diagonalized form of A
be labeled by A, . Let the matrix P be the transformation
matrix which diagonalizes A such that

P 'AP=A, . (12)

We can then construct the exponential matrix using the
relation

"T(z)=exp(Az) =P exp(Az)P (13)

Within the k p approximation the presence of large
values for A, - in Eq. (13) is inappropriate and has to be
modified. They can lead to numerical overflow on ex-
ponentiation or to spurious superlattice bands even
though they do not contribute to a real superlattice band.
We introduce a cutoff wave vector A., so that if

~ AJ ~

)A,„then AJ. is replaced by (sgnAJ. )A, Real and
spurious bands can be distinguished easily since a real
band remains the same when we change A,, whereas a
spurious band is very sensitive to A, Typically, we use
0.1 —0.3 A ' for A,

The typical matrix under consideration is of dimension
16, so that the computer memory requirements are mod-
est for this calculation. We employ standard subroutines

where q is the superlattice wave vector parallel to the z
axis. On the other hand, the use of transfer matrices
leads to the expression

4(d, +d2)= T(d2}'T(d, )4(0}='T„,(d„dz)4(0) . (10)

Comparing Eqs. (9) and (10) we obtain an eigenvalue
equation

V;Ot(d&, d2)4(0) =exp(iqd)4(0) .

This condition is satisfied with real q only for physically
allowed values of c. The allowed values of c are obtained
by scanning in energy and performing a diagonalization
of the total transfer matrix on the left-hand side of Eq.
(11) to see if any eigenvalue equals exp(iqd) for a given
fixed value of q. This allows us to solve for the c versus q
relation for all the superlattice bands.

available in the EISPACK and LINPACK mathematical sub-
routine libraries, ' in order to first diagonalize A and
obtain the matrix P of eigenfunctions of A, and then to
calculate the inverse of P. It is well known that consider-
able care is necessary in order to obtain the exponential
of an arbitrary matrix. We account for possible degen-
eracies in A. by employing a Gram-Schmidt orthogonali-
zation procedure while constructing P. The accuracy of
the matrix diagonalization and of the matrix inversion
procedures are monitored through a convergence cri-
terion for the eigenvalues and through a parameter for
determining the condition of the matrix. With the use of
extended numerical precision in the analysis, we conser-
vatively estimate the accuracy of the final energy eigen-
values to be about 1 part in 10 .

The wave function is obtained, for a physically accept-
able energy value, by diagonalizing a total transfer matrix
[see Eq. (11}].The initial value at z=O of the wave func-
tion is the eigenfunction corresponding to that eigenvalue
which equals exp(iqd). The wave functions at specified
values of z in the region of interest are given by con-
structing the corresponding transfer matrices which will
transform the wave function at the initial value to the one
at z.

A comparison of the transfer-matrix method with nu-
merical procedures employed earlier is in order. Bas-
tard ' has reduced the eight simultaneous differential
equations (5) for f into a single differential equation for a
given band by eliminating other component functions by
repeated substitution. For a successful elimination of
other components the k p Hamiltonian is restricted to
first-order terms in k. This elimination may be viewed as
a procedure which employs a "condensation" of equa-
tions to just one equation. This single equation is then
solved as a standard Kronig-Penney' problem. It should
be noted that the original method used by Bastard ' is
mathematically inconsistent because terms of second-
order in k are neglected in the k.p Hamiltonian but are
retained after applying the condensation method. The
usual boundary conditions on the continuity off1 and its
derivative are then applied to this new second-order
differential equation. This approximation is numerically
inaccurate, giving band gaps which deviate from the
correct values; for example, for a HgTe/CdTe super-
lattice of layer thicknesses (61 A)/(25 A) with an as-
sumed valence-band offset of 40 meV, the Bastard model
yields a band gap in excess of 86 meV which may be com-
pared with a more precise value of 51 meV obtained from
the transfer-matrix method. An additional limitation in-
herent in the Bastard approach of condensation of equa-
tions is that it is incapable of including the spin splitting
of levels due to an external magnetic field. Thus the Bas-
tard approach will provide inaccurate results for super-
lattices made up of narrow gap materials with electrons
and holes having large g factors. On the other hand, in
our method the inclusion of the spin splitting terms does
not alter the basic structure of the simultaneous second-
order differential equations [Eq. (5}]. The only change
needed is that the matrices S and 8 are now rewritten in
terms of the creation and annihilation operators of the
Landau harmonic oscillator states; thus the transfer-
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matrix carries over intact even with magnetic field being
present.

Altarelli' ' uses a variational procedure by defining
an action integral having a 2j )&2j Hamiltonian in which
the k-p Hamiltonians of the two layers A and B are en-
tered in block-diagonal form. The boundary conditions
are included by having an additional term called the "in-
terface functional" in the action integral. The solutions
for the energy bands and wave functions are then ob-
tained by requiring that the action integral be an ex-
tremum under small variations in f'"' '. The numerical
procedure requires (a) the calculation of (2XjX rn) ma-
trix elements, where j is the number of bands and m is
the number of interpolation functions used to represent
the fj"' ', (b) the diagonalization of a matrix of dimen-
sion 2 XjXm, and (c) an iterative procedure involving di-
agonalization in order to arrive at the minimum in energy
with acceptable accuracy. A typical number of interpola-
tion functions used is 6-10, leading to matrices of dimen-
sions 72-120, so that this algorithm requires larger com-
puter memory than our method.

III. APPLICATIONS

In this section, we compare the results of our calcula-
tions with the transfer-matrix method for
GaAs/Ga, „Al„As and HgTe/CdTe superlattices with
those of Altarelli' for GaAs/Ga1 „Al,As and those of
Schulman and Chang for HgTe/CdTe.

A. The GaAs/Ga& Al As suyerlattice
at zero ml~etic Iield

-= 2y2+3r3
y= (15)

The results shown in Fig. I are in overall agreement with
those of Altarelli. There are several small differences. In
Ref. 14, (i) the valence subbands hhl, lhl, and hh2 show
higher dispersion, (ii) the band-edge energies vary by
small amounts from our values, and (iii) the light-hole
band labeled 111 has a maximum away from k, =0, but
this feature is more pronounced in Ref. 14. This can be
understood in terms of the proximity of 111 to hh2 —the
repulsion is larger when the bands are closer as in Ref.
14.

For completeness, we present in Fig. 1 the band struc-
ture (solid lines) for the same superlattice without the
spherical approximation. The valence subband energies
are appreciably difFerent. This is because the band-edge

with V, having a value of 85% of b,Es. We explicitly
include the s.o. band in our calculation, while in Ref. 14
it is accounted for only indirectly by using a modified
conduction-band mass.

We have calculated the band structure for a
GaAs/Gap 79Alp 2 iAs suqerlattice with layer thick-
nesses of (125 A )/(80 A ) using our transfer-matrix
method. In Fig. 1 we show the band structure (dashed
lines) obtained with the spherical approximation in order
to facilitate comparison with the results of Altarelli. '

The spherical approximation, which neglects the warping
of the bulk valence bands, replaces y2 and y3 by the value

The band parameters used in our numerical work are
determined as follows. The energy gap for Ga, „Al„As
is calculated from the band gap for GaAs using the rela-
tion

I.56

Es(x) =Eg(0)+1.04x +0.47x for x (0.4 . (14)
I.55—

The other parameters for Ga, „Al,As for a given x are
obtained by a linear interpolation of the values for
GaAs (x=0) and A1As (x=1) shown in Table I. The
currently accepted value of the conduction-band offset,
V„ for GaAs/Ga1 „Al As heterostructures is 60% of
the difFerence b,Eg in band gaps in two adjacent layers.
However, in order to compare numerical results with the
earlier work of Altarelli' we have deliberately worked

1.54—

TABLE I. The band parameters of GaAs and AlAs (after
Ref. 26).

AlAs

- O.O I

—0.02

hh2

E, (eV)

E, (eV)

5 (ev)
yL

y2
yL

1.521
25.7
0.34

6.85

2.90
1.20

21 ~ 1

0.275

3.45

0.68

1.29
0.12

hh3

2 7r/d 7r/d
kx

FIG. 1. The band structure of a GaAs/Gao 79Alo 2iAS super-
lattice with growth axis along [001] and layer thicknesses (125
A)/(80 A). Band dispersion in the [001] (q) and [100] (k„)
directions is shown with the spherical approximation (dashed
lines), and without the spherical approximation (solid lines).
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values are sensitive to the input values of y &
and y2, with

the higher subband edges being more so. ' This fact can
be verified easily at least for the hh band since, at q=O, it
is determined by a Kronig-Penney-type equation with
m

~~

——1/(y, —2yz). The k„dependence is less pro-
nounced here, with the band edges for the light and
heavy holes being further apart. Also, the band crossing
between the hh2 and lh1 bands along the q direction,
present in the spherical approximation, does not manifest
itself here.

B. The Landau-level structure
in a GaAs/Ga& „Al As suyerlattice

We now use the transfer-matrix method to evaluate the
effects of an external magnetic field 8, parallel to the su-
perlattice growth axis. This problem has been discussed
at length by Altarelli and co-workers. ' ' In the k p
approximation haik is replaced by the minimal gauge sub-
stitution [Ak+ (e /c) A], and the electron's spin energy in

I

e8
2Ac

(a —a ). (17)

As before, the component k, which is along the direction
of the applied magnetic field is replaced by i 8/—dz Th.e
envelope functions F are now products of harmonic os-
cillator wave functions»1)„multiplied by the envelope
functions f . The complete eight-component wave func-
tion for a given Landau level n with a band index v is
written as

the external field is included explicitly in the Hamiltoni-
an. Here A is the vector potential of the applied magnet-
ic field, fi is Planck's constant, e is the electronic charge,
and c is the velocity of light. The wave-vector corn-
ponents k„and k are now expressed in terms of harmon-
ic oscillator creation and annihilation operators

' 1/2

k„= (a+a ),e8
2'

' 1/2

%(v, q, n)=(f„&(z)g„u„ f„2(z)P„&u2, f„s(z)»I„)+& us, f„4( zP)„+& u4,

fv, s(z)0n+ius» fv6(z)knu6» fv, 7(z)kn+2u7» fvs(z)f. us) . (18)

Here the index n runs over the values n = —2,
—1,0, 1, . . . , and the component functions fJ are au-
tomatically zero for those components which have har-
monic oscillator function P„with n negative.

The entire 8X8 Hamiltonian of Eq. (4) can be written
in terms of the creation and annihilation operators and
the matrix elements reexpressed in terms of harmonic os-
cillator matrix elements. ' ' In the Pidgeon-Brown
analysis it was natural to decouple the 8X 8 Hamiltonian
into two block diagonal 4)(4 matrices for k, =O. This
simplification is no longer applicable since the energy lev-
els in the superlattice, even at q=O, obtain contributions
from k, &0 regions of the bulk material Brillouin zones of
the individual layers.

The differential equations satisfied by f are again of
second order. The transfer-matrix method is again appl-
icable and we calculate the magnetic field dependence of
the Landau levels for q=O. The results of our calcula-
tions for a GaAs/Ga079AIP 2,As superlattice, with layer
thicknesses of (125 A)/(80A), are shown in Fig. 2, which
may be compared with Fig. 6 of Ref. 14. We have not
used the spherical approximation and we have included
the s.o. valence bands in the analysis, as before.

The general agreement between the two computational
schemes is good. The differences in the valence-band lev-
els are attributable mainly to the use of the spherical ap-
proximation and also to the indirect inclusion of the s.o.
band in Ref. 14.

l.6

l.5—
0.0—

IX
UJx
LU

-O.OI

-0.02

OI

IO

I 2

I

0

0
-I

-2
0

I

20

C. The HgTe/CdTe superlattice

Here we wish to compare the band structures obtained
from the transfer-matrix method in the EFA with those

MAGNETIC FIELD (T)
FIG. 2. The Landau-level diagram at q=0 for the same su-

perlattice as in Fig. 1.
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meV compared to that in Ref. 8. If we were to use
a = —3.8 eV, as in Wu and McGill, the above-
mentioned 8-meV disparity is found to disappear, and the
overall pattern of the band structure is in excellent agree-
ment with the tight-binding calculation of Ref. 8. Clear-
ly, the ambiguity regarding the sign of a for Hg Te has yet
to be resolved.

IV. CONCLUSIONS

TABLE III. The 8)&8 Kane Hamiltonian in the notation of
Weiler (Ref. 21). The upper triangle of matrix elements is given,
the lower triangle matrix elements being obtained by a complex
conjugation of these matrix elements.

H 1)——E +(F+ —')k + —'H,
1

H12 —— —Pk+
v'2

1
H lg

——— —Pk
v'6

Hi4= Pk
We have demonstrated the use of our new transfer-

matrix method for the calculation of the band structure
of superlattices in the framework of the EFA. We have
shown that the results are in excellent agreement with
those from the variational procedure employed by Al-
tarelli' for GaAslGa, „Al„As and with the tight-
binding calculations of Schulman and Chang for
Hg Te/CdTe.

Since the transfer-matrix method is based on the EFA,
it has the corresponding advantage that the input param-
eters are those directly determined by experimentally
measured optical and magnetooptical spectra of bulk ma-
terials. The effect of additional perturbations, such as an
externally applied magnetic field or the built-in strain in
superlattices, are easily incorporated into the k p Hamil-
tonian and this involves no additional analysis in the
transfer-matrix method. Furthermore, we are concerned
with matrix analysis of matrices with much smaller
dimensionality in the transfer-matrix scheme.

Applications of the method to superlattices grown in
the [111]direction requires the rotation of the original
Hamiltonian from the crystal axes to the "superlattice
axes." After such a rotation is performed we can once
again separate the new second-order differential equation
into terms with corresponding coefficients for the deriva-
tive and the constant terms.

The transfer-matrix method provides a simple pro-
cedure to obtain the wave functions as a function of the
coordinates. The wave functions are particularly useful
in evaluating transition probabilities in magnetooptical
spectra. Our preliminary analysis of our experimental
spectra shows that half of the transitions allowed by the
usual hn =+1 selection rule are essentially forbidden be-
cause their transition probabilities are negligible. Fur-
ther analysis along these lines is in progress.

H)s ———H1

2

H]6 ( 3 ) Pkg

H)p ——0
1

Hi8 —— —Pk,v'3

H22 ————y)k +-y F' —-xH1 2 1 1 3

2 3
H2g ——-'y2F& —i y&F42 2

y&F +&(2) y&F
V2

H2s ——0

Hz6=
v3

yqF4 — aH

3 + 1
H~ —— —y qFq+ + (sc+ 1)H+

H47 (8) y3F4 (8) (++1)H
H48 ———(]c+ ~

)H+

Hss ——Eg+(F+ 2 )k —2H,

Pk+Hs6=

Hpg ——0
H28= —(8) y F +( —, ) «+1)H
Hqq

————y )k ——y2Fg + 2 aH,2 1 1 1

1 ) 1
H~4 —— y2F~ — (a+ 1)H,

Hps ( ) Pk

H)6 ———~H+
v 3 v'3

Hq7 ——— y)F4 — KH
2 2

3 + 1
Hp8 —— —yqF4+ — —(K+ 1)H+

&8 &8
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APPENDIX

The complete 8)&8 k.p Hamiltonian matrix is shown
in Table III. We follow the notation and phase conven-
tions used by Weiler. '

1
Hss= Pk+

v'3

H = ——y, k —
2
y2F' ——']cH,1 2 1

2

H67 =—,y2F& —
& y &F4

2

H68 —— —y2F q
— (a+ 1)H,

1

&2 2

H77 ————y)k +—y2F + —aH,1 2 1 1 3

H78 = y,F', + i (-2)'"y,F
&2

ass= —~—21ylk2 (K+21)H,
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The cell-periodic wave functions
i j)=uj 1, 0 are de-

fined, in terms of the Kane basis functions, to be
and

E
K=K

6E
(A3)

i
2) = (—i/&2)

i
(X+iY)l ),

i
3)=(i/&6)

i
[(X i—Y)l'+2Z$]),

i
4) = —(i/&3)

i
[(X—iY)t —Zl]),

(A l)

where

Ep=2mop /A (A4)

is)= [sl),
i
6) = —(i/~6)

i
[(X+iY)l —2Z f ]),

i
7) =(i/&2)

i
(X —iY) 4),

i
8) = —&&'/&3)

i [(X+iY)l+Zl]) .

The parameter F appearing in the conduction-band ki-
netic energy term represents the contribution of higher
conduction bands to the effective mass of the y6
conduction-band electron. In Table III we have set %=1,
c=1, e=1, and m0=1. Further abbreviations appearing
in Table III are

The parameters appearing in Table III are the band-
edge energies Eg and 5, relative to the I 8 valence band.
The explicit inclusion of the interaction between the
valence and conduction bands in the k p approximation
leads to modified Luttinger parameters discussed by
Pidgeon and Brown. The modified Luttinger parame-
ters are given in terms of the usual Luttinger parameters
y;, andK by

k =k„+k +k, ,

k*=k„+ik

F3 =2k, —k„—k

F3 ——~3(k„—k ),
F4 =k, k*+k +k, ,

(A5)

E
y1 y1 3E

Ep
y2=y2- 6E

Ep
y3=y3- 6E

(A2)

F4=k„k +k k„,
H, =i (k„k —k k„),
H+=k(k*k, —k, k*) .

In the absence of a magnetic field the H terms given
above and the terms with the parameter K will be zero.
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