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The Su-Schrieffer-Heeger model for polyacetylene (PA) is generalized to electron-electron (e-e)
contributions in Hubbard and Pariser-Parr-Pople (PPP) models. The equilibrium dimerization 5 is

found via the Hellmann-Feynman theorem. Exact results, computed by a valence-bond method, are
presented for N & 14 site systems. N =4n + 2 rings are lower bounds on the dimerization, due to a
finite-size gap at 5=0„while N =2n chains give upper bounds, thereby facilitating N~ (x) extrapo-
lations. Enhanced dimerization is demonstrated in the PA regime of 5-0.05-0.10, although the
enhancement is less than previous estimates. Dimerization is suppressed for 5~0.40 in Hubbard

models, as understood in terms of competing effects involving the band gap and bandwidth. Addi-

tional enhancement is found in PPP models due to the distance dependence of the potential V(R),
primarily through the gradient V'(Ro) at the spacing of the regular array. Molecular PPP parame-
ters are then consistent with the PA ground state, including the dimerization, optical gap, and back-
bone vibrational frequencies.

I. INTRODUCTION

Much recent attention has been given to electron-
electron (e-e ) contributions to the ground-state dimeriza-
tion of polyacetylene (PA}, to modeling the PA m-band,
and to the relation of PA to other conjugated molecules
and polymers. ' Several independent approaches
have established that e-e correlations initially increase
the dimerization of Hubbard models. The behavior of
the infinite system is inferred from extrapolations of exact
finite-size results and by perturbation or variational
methods. We extend exact results to an N =14-site sys-
tern using a previously described valence-bond method,
construct upper and lower bounds to the infinite system,
and provide an intuitive picture to explain trends in the
tendency to dimerize. Our results for the infinite system
are essentially quantitative for large dimerization and
semiquantitative for the PA dimerization, for any e-e in-
teraction in Hubbard or in Pariser-Parr-Pople (PPP)
models. The distance dependence of the e-e potential
V(R) leads to additional enhancement of the dimeriza-
tion through a V'(R o ) contribution, where R o is the
mean C—C bond length. The wide applicability of PPP
models' '" to conjugated molecules is thereby extended
to the PA dimerization' without changing microscopic
parameters.

A generic PA ground-state energy per site, eT(u), is
sketched in Fig. 1 for alternating bond lengths Ro+u.
The Su-Schrieffer-Heeger' (SSH) result for sT(u) serves
as a reference. The SSH model has noninteracting m elec-
trons, linear electron-phonon (e-ph) coupling a, and a
harmonic lattice with force constant E. Within the
Born-Oppenheimer approximation, the Peierls instability
of the half-filled band leads in Fig. 1 to dimerization duo.
The ground state is doubly degenerate, since partial dou-
ble and single bonds can be interchanged in the infinite
polymer. Thus u o and s T( u ) are completely specified by

a, E, and the bandwidth 4i t i. The logarithmic diver-
gence of s'T'(0) results in the Peierls instability for nonin-
teracting electrons. Exact results' for sT(u) near u =0
are also known for linear Heisenberg chains, the strong
coupling limit of half-filled Hubbard or PPP models. It is
more difficult in general to compute sT(u} near u =0.
Fortunately, the observed behavior of PA refiects the
equilibrium dimerization uo in Fig. 1.

The general sr-electron problem for a harmonic lattice
leads in the Born-Oppenheimer approximation to

sT(u) =s(u)+ —,'Eu

The m-electron ground-state energy per site, s(u), is of
central interest. All cr-electron effects are lumped in It. .
All recent studies invoke (l} and linear e-ph coupling a,
but differ in the choice of the m-electron Hamiltonian, H,
in the values of the microscopic parameters, and in the
approximations or extrapolations for s( u ). The equilibri-
um dimerization in Fig. 1 follows from the Hellmann-

FIG. 1. Schematic representation of the PA ground-state en-

ergy per site, cT(u), for alternating partial single and double
bonds Ro+u.
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Feynman theorem,
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where 1() is the exact ground state of H. We may consider
(2) to define the force constant K needed to maintain
equilibrium at dimerization uo. The SSH model then
fixes a value for Eo(uo) and any e-e potential V(R) lead-
ing to a larger K(uo) enhances the dimerization. Thus
(2) allows comparisons for arbitrary E in (1).

The simplest on-site e-e contributions U = V(0) are re-
tained in Hubbard models. Exact solutions' for e(O, U)
are known for regular bond lengths. Most discussions of
e-e effects on dimerization have been in terms of Hub-
bard models, as discussed by Dixit and Mazumdar and
by Baeriswyl and Maki. The dirnerization uo increases
strongly up to U-4

~

t
~

and decreases for larger U in
variational or finite-size calculations. We extend in Sec.
II exact Hubbard analysis to N = 14 sites using a
valence-bond technique and obtain both upper and lower
bounds on —s'( u ) /u for the infinite system. Finite
N = 14 rings converge to the infinite chain for 5 & 0.3,
while the physical regime, with bond alternation of
5=auo/t -0.07, is semiquantitative. We find that some
previous results overestimate the maximum dimerization
enhancement. We also discuss competing effects on the
dimerization which lead to the observed trends in the
data.

The Hubbard model has limited applicability to PA
and at least a nearest-neighbor e-e term V(RO+uo) is
needed. The Coulomb potential has been used in mole-
cules and is incorporated into the PPP model for conju-
gated systems, where V(R) is interpolated between U at
R =0 and e /R at large R. As shown in Sec. III, the dis-
tance dependence leads to a V'(Ro) contribution in (2)
that enhances dimerization in a way not possible for
Hubbard models. Both e-e and V'(Ro) contributions are
instrumental in reconciling' molecular values for t, a,
and E with the observed PA dimerization, optical gap,
and C-C stretching frequencies.

The PPP model then approximates the m-electronic
states of both conjugated molecules and polymers. '

Many potential improvements, all requiring greater com-
putational effort, can be cited: a-n. separability in (1) is
certainly approximate, as is the choice of a harmonic lat-
tice with a single degree of freedom, linear e-ph coupling,
and a Born-Oppenheimer description. Even within m.-
electron theory, the zero-differential overlap (ZDO) ap-
proxirnation of the PPP model has been extensively dis-
cussed. ' ' ' Like the Hubbard model in other contexts,
the PPP model represents a useful compromise between
physical realism and computational ease. With these
ideas in mind, we consider the equilibrium dimerization
of finite Hubbard and PPP chains and rings.

II. DIMERIZATION IN HALF-FILLED
HUBBARD MODELS

We consider N electrons in N orbitals P„and on-site
e-e interactions U in the Hubbard model:

(3)

The transfer integrals t(1+5) alternate in the electronic
ground state. We take t =t(RO) ——2.4 eV and retain
the linear term in u =R —Ro for the e-ph coupling con-
stant a,

t(RO+u)=t(1+au/t) . (4)

We take 5 & 0 and 5 & 0, respectively, for partial double
bonds t(1+5) and single bonds t(1 —5) in the exact
ground state 1()(5, U). We change variables to 5=au/t
and rearrange (2), to obtain the dimensionless ratio

~

t
~
K/a2=[p(5, U) —p( —5, U)]/5=—hp(5, U)/5 (6)

which is 2/olin solid, -state approaches for the dimen-
sionless e-ph parameter X. Dirnerization effects in Hub-
bard models reflect kinetic energy, or bond order,
changes through g(5, U). The exact result (6) is not im-
mediately applicable, however, since p (5, U) for U&0 is
known only at 5=0 and l.

The Hiickel ( U =0) result in (6) is'

bp(5, 0) 4II(: [(1—5')' ]—E[(1—5')'~']
I

5 m(1 —5 )

(7)

where K and E are complete elliptic integrals of the first
and second kind, respectively. The logarithmic diver-
gence of (7} as 5~0 is the Peierls instability. For 5 & 0,
bp(5, 0)/5 defines the reference force constant
Kp(ap = t5/a ) in (2) for dimerization u in the SSH mod-
el. The dimerization problem for Hubbard models thus
reduces to the U dependence of bp(5, U).

We begin with exact results for finite Hiickel models,
where the N~oo limit is known to be (7). Alternating
Huckel rings lead to the

~

t
~

K/a curves in Fig. 2 and
illustrate the problems encountered in finite systems. The
N =4n and 4n+2 rings form separate series that con-
verge to (7) from above and below, respectively, forming
a funnel, and neither series has the proper 5 dependence.
The 5=1 limit of decoupled dimers is independent of N
for even rings. In Fig. 2 convergence is indeed more rap-
id at large 5. Dimerization opens a gap of order 5. The
ground-state energy of rings with N & 5 ' converges very
rapidly, as can be verified in alternating Hiickel or
Heisenberg rings in which large N is accessible. The

Dimerization u in (1) then requires alternation 5=au/t
in (3}. The half-filled ground state P has by far the sim-
plest geometry. The SSH model corresponds to U =0 in
(3) and its solution was originally discussed by Longuet-
Higgins and Salem. '

The U term in (3) is independent of the dimerization.
The equilibrium result (2) consequently involves only the
kinetic energy and ( BH/35) reduces to Coulson's mobile
~-bond order, '

1
p(B, U)= —g z(a„,a„~„+a„~„a„,) p) .
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FIG. 2. Force constant K for equilibrium dimerization
6=au/t in Hiickel rings. The 4n and 4n +2 rings converge to
the infinite system, Eq. (7), from above and below, respectively.

implication is that N =14 is essentially quantitative for
5)0.3.

The 5=0 behavior reflects the nondegenerate ground
state and finite gap of order N ' in 4n +2 rings, which
consequently require smaller K to maintain some dimeri-
zation than the infinite chain. The electronic degeneracy
and Jahn-Teller instability of 4n Huckel rings, on the
contrary, requires a sti6'er lattice than in the infinite case.
The ground-state energy per site (sO, O, N) of regular
Huckel rings is

s(O, O, N)/4
i
t

i
=N 'cot(m/N)- —n '+tr/3N

= —N 'csc( ~/N) — tr '
m /6N— (8—)

for N =4n and 4n +2, respectively. Since
s(1,0)= —2

~

t
~

is independent of N, the convergence of
4n rings from above in (8) implies that —s'(5, 0,N)/5
also converges from above. Conversely, 4n +2 rings con-
verge from below. We similarly expect even chains to
converge from above. Removal of the bond between sites
1 and N =2n leads to a higher energy than in rings. At
5=0, the energy per site converges from above with in-
creasing N, while 5—+1 again reduces to N/2 decoupled
dimers whose energy s(1,0) is independent of N.

The 4n +2 series in Fig. 2 thus provides lower bounds
for bp(5, 0)/5. The result holds for arbitrary U &0 in
(3). Hashimoto ' has solved the Lieb-Wu equations up to
N=4n+2=50 and finds e(O, U, N) to converge from
below to the known value of e(O, U). The dimer limit
5= 1 is again trivial and independent of ¹ Thus
—s'(0, U, N)l5=bp(0, U, N)/5 converges from below.
The large U limit of (3) leads to Heisenberg antiferromag-
netic chains with J =2t /U at 5=0. Regular even rings
again converge from below to Hulthen's exact result
and alternating even rings converge from below for arbi-
trary 5 for the numerically accessible N (26 systems.
Direct solutions of N =4n+2(14 Hubbard and PPP
rings with arbitrary 5 also show

~

t
~
K/a to converge

from below. The finite-size gap at 5= U =0 makes
4n+2 rings less susceptible to dimerization even when

&0
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FIG. 3. Force constant It for equilibrium dimerization
5=att It in finite Hubbard rings at (a) U =2

~

t ~, (b) U =4
~

t ~,
and (c) U =8

~

t ).

e-e interactions are strong.
The 4n series are not upper bounds, however, for

U g0. Finite U opens a gap at 5=0, suppressing the
Jahn-Teller instability, and produces a nondegenerate
singlet ground state. In the Heisenberg (large U) limit,
the energy per site of the 4n series merges with the 4n +2
series and converges from below. The crossover with
s(0, U) occurs at larger N for smaller U and reflects com-
petition between finite-size energy splittings and the
correlation gap. These expectations are confirmed by
Fig. 3. The U=2

~

t
~

curves of bp(5, U, N)/5 in Fig.
3(a) have no crossings between 4n and 4n +2 & 14. The
correlation gap is so small that 4n rings are still more sus-
ceptibile to dimerization. But the U =4

~

t
~

and 8
~

t
~

curves in Figs. 3(b) and 3(c) show crossovers at N & 14, as
expected from the behavior of Heisenberg rings.

The rapid convergence with N persists in Fig. 3 for
U &0. Indeed, the variations from the infinite curve in
Fig. 2 are suppressed with increasing U, which tends to
localize charges and opens a correlation gap in any half-
filled system. The PA values of 1& U/~ t

~

&2 and
5=0.07 are closest to Fig. 3(a), where reasonable esti-
mates can be made down to 5-0.1. The U =4

~

t
~

fun-
nel in Fig. 3(b) disappears below 5-0.20 and another ex-
trapolation method is then needed. The Peierls instabili-
ty at 5~0 cannot be extracted from such small systems.

It is advantageous to replot the bp(5, U)/5 curves as a
function of Ul

~

t
~

for fixed 5, as shown in Fig. 4 for
5=0.05, 0.10, 0.20, and 0.40. The N ~ ae, U =0 result
(7) is marked on each panel. Any dimerization enhance-
ment can readily be compared for either the finite or
infinite Hiickel ring. The lower bounds provided by the
4n +2 series, in particular, clearly demonstrate enhanced
dimerization at 5=0.05 or 0.10, where N =14 curves
with Ul

~

t
~

&0 are above the N~~ Hiickel point.
N =14 rings involve some 11)&10 Slater determinants
with S,=0 or almost 2.8X10 VB diagrams with S =0;
spatial and electron-hole symmetry leads to sparse ma-
trices of 105 X 10' that are about 100 times larger than the
N = 10 rings solved by Dixit and Mazumdar. The
5=0.20 panel shows that the infinite curve can be es-
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FIG. 4. Force constant K vs U/
~

t
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for equilibrium dimeri-
zation (a) 5=0.05, (b) 5=0.10, (c) 5=0.20, and (d) 5=0.40 in
finite Hubbard rings. The arrow marks the N ~~, U =0 value.
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timated fairly well for any U/
~

t
~

. Convergence is even
better at larger 5. There is hardly any enhancement at
5=0.20 and dimerization is suppressed for 5 ~ 0.4.

Even chains with N/2 double bonds t(1+5) and
N/2 1 single bond—s t(l —5) in (3) always have higher
energy than that of the corresponding ring, which has an
extra single bond between sites 1 and N. The boundary
condition becomes irrelevant as N~ ~. As mentioned
above, c' for even chains also converges to the infinite
chain result from above, implying that the bp(5, U)/5
curves for finite chains provide upper bounds to

~

t
~

K/u in (6). The infinite curve is consequently
bracketed by even chains and 4n +2 rings. The physical-
ly important regime of 5=0.05 and 5=0.10 is shown in
Fig. 5.

Using Figs. 3—5 we could obtain a fairly good estimate
of the position of the infinite curves. To improve the esti-
mate we have carried out extrapolations of the chain and
ring results as a function of 1/N, as in Fig. 6. The miss-
ing bond in chains largely cancels in s'(5) and results in
comparable convergence for chains and rings, albeit from
opposite sides. The curves intersect in a region of finite N
for which the values have essentially converged to the
infinite result. We have indicated our best estimates for
the infinite curves in Fig. 5 based on 1/N and 1/N ex-
trapolations, and the averages of chain and ring curves.
For larger 5, the error bars would be quite sinall, while
for smaller 5, estimation of the infinite curve is difficult
given data for N & 14.

We would now like to understand some of the effects
on the diinerization tliat lead to enhancement and subse-
quent reduction, as well as to shifts in the peaks seen in
our data and in previous work. ' As U goes from the
Hiickel (U=O) to Heisenberg (U —+cc) limits in (3),
there is a competition between the increasing Peierls in-
stability, as given by e'z'(5} for 5~0, and decreasing elec-
tronic energy scale. At U =0, the kinetic energy is of or-
der t per electron, while at large U we have localized
spins with energy J-t /U per electron. Increasing U
thus decreases the available electronic energy in (1) and,
as already noted, decreases the dimerization for fixed t, a,
and K. On the other hand, near 5=0, the Hiickel energy
goes as t5 ln5, while the Heisenberg result' has a
stronger divergence of J5 / ln5. Bosonization of the
Heisenberg antiferromagnet leads to 5 / behavior,
without the logarithmic factor, and already produces a
stronger divergence than in Huckel theory. The ex-
ponent in Hubbard models presumably goes from 5 at
U=0 to 5 / as U~cc. Although the instability is
greater in the Heisenberg liinit, the reduced (J-t /U)
electronic energy leads to small dimerization. Spin-
Peierls systems are rare because a typical J-0.01 eV
requires an extremely soft mode. The distinction between
correlation contributions to the Peierls instability and to
the equilibrium dimerization has not previously been em-
phasized.

We can further examine the competing e8'ects of U on
dimerization by looking at the bond orders p(5, U}
defined by (5). For U =0 the bond orders' are shown in

Fig. 7. They range from p(0, 0)=2/n. to p(1,0}=1and

p( —1,0)=0. The bond-order difFerence bp(5, U) in (6)
fixes any change in the dimerization. Although p (5, U) is

0 2
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6
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Q(
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U = 2ltl

g =0.10

FIG. 5. Force constant K vs U/
l
t

l
for Hubbard rings with

N =4n +2 and chains with N =2n for equilibrium dimerization
(a) 5=0.05 and (b) 5=0.10. Rings and chains provide upper
and lower bounds for the infinite system (dashed line) based on
results at U/l t

l
=2, 3, 4, 5, and 8. The error bars reflect

different extrapolations.

2
0.0 0.10 0.18

FIG. 6. Force constant K vs N ' at U=2
l
t

l
and 5=0.10

for chains (, top) and rings (O, bottom). The solid (dashed)
lines are linear (quadratic) extrapolation for the last 2 (3) points.
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FIG. 7. Alternation dependence of the bond orders p {25, U)
in Eq. (5). The U=0 results are given by the solid line; the
5=0,1 values are exact for in6nite Hubbard rings; dp(5, U)/5
in Eq. (7) gives the tendency for dimerization.

not known exactly in general, the exact 5=0 and 5=1
values for U =n

~

t
~

in Fig. 7 are readily found. Quite
generally, we have p ( —1, U) =0 for any U and

p(1, U)=[1+(U/8t) ] (9)

At large 5, p( —5, U} is almost zero, so that the decrease
in p (5, U) leads to a decrease in bp (5, U) and to reduced
alternation, as shown for 5=0.4 in Fig. 4(c). At 5=0,
where the Peierls instability is most important, the initial
decrease of p (0, U) in Fig. 6 is faster than that ofp (1,U).
It is plausible that most of the difference in the rate of
change with U is taken up near 5=0, and since
U/t(1+5} for the double bonds is less than U/t(1 —5)
for the single bonds, p (5, U) decreases less than
p( —5, U). This leads to an initial increase in hp(5, U),
rationalizing the enhancement at small 5 and U & 4

~

t
~
.

Increasing 5 at small U/
~

r
~

then leads to less of an
increase in kinetic energy due to U, with the difference
showing up primarily on the double bonds. The enhance-
ment of the double bonds is associated with an increased
antiferr orna gnetic nearest-neighbor spin correlation
4( S,„.S,„+,) across the double bonds, as shown in Fig. 4
of Ref. 5. This type of coupling favors hopping due to
the exclusion principle and is known to increase with U,
from —2/m at U=5=0 to —(4ln2 —1)/3 at large U.
At smaller U, we believe that the increased spin coupling
occurs because whenever two electrons occupy the same
site, U more quickly causes one of the spin-paired elec-
trons to leave the site. The electron preferentially hops
across the double bond. This effect is the likely source of
the increasing Peierls instability at 5=0.

What emerges in our understanding of dimerization
enhancement is a competition between the size of the
U =0 gap and the valence bandwidth. U separates
charges and increases the negative spin correlation by
mixing in excitations across the gap, enhancing the ten-
dency to dimerize, while charge localization reduces the
valence bandwidth, reducing dimerization by reducing
the available electronic energy. As 5 decreases from 0.10
to 0.05 in Fig. 5 the curve tails off less rapidly towards

zero at high U reflecting the diminishing importance of
the bandwidth. At 5=0, only the increasing Peierls in-
stability is important. The peaks get smaller with 5 as
the gap a consequence of opening a gap and reducing the
mixing of excitations across the gap. The peaks also shift
to smaller U with increasing 5, since the valence band-
width is smaller, even at U=O, so that it takes a smaller
U to flatten the valence band. We would expect the peak
to disappear roughly when the gap equals the valence
bandwidth at 5- —,', and at U-4

~

r
~
/3. The peaks are

shifted to higher U for smaller size rings, since it takes
larger U to mix in configurations across the gap and the
4n +2 rings converge more rapidly to the infinite system
at higher U.

With this picture and our results in mind, we turn to
previous work on dimerization enhancement. Dixit and
Mazumdar examined the effects of Coulomb interactions
on the barrier between the two equivalent ground states
in Fig. 1. Their approach is particularly useful for antici-
pating which symmetry breaking occurs in a given model
and for rationalizing the enhanced dimerization for
U & 4

~

r
~
. They consider b, e =s(5, U) —a(0, U), the en-

ergy change due to 5, and suppose N =10 rings to be
suf5ciently converged. As shown in Fig. 5, however, the
s' curves have not converged by N =10 for the relevant
range, 0.05 & 5 & 0. 10. The shift of the maximum
enhancement to smaller U at larger 5 also requires going
beyond their analysis.

With fairly good constraints on the curve for the
infinite system in the region of 5 relevant to PA, we next
compare our results with the variational calculation of
Baeriswyl and Maki based on the Gutzwiller ansatz.
Their results are exact at U=0 and breakdown for
U &4

~

t ~. The solid lines in Fig. 8 reproduce the data
from Fig. 1 of their paper. Their 50 and U/to are the
same as our 5 and U/t and A, is defined below (6). We
can translate estimates of the infinite curves from our re-
sults into their notation by, for example, picking I, and
finding U or 5 in Fig. 3 or 5 where the corresponding
e'/5 crosses the infinite curve. We find the dashed curves
in Fig. 8 sketched through our estimated points for
X=O. 1, 0.2, and 0.29. The horizontal error bars indicate
the U/

~
t

~
values consistent with 5=0.05 or 0.10 in Fig.

5. The Gutzwiller ansatz is satisfactory to U =
~
t

~

and
predicts the shift of the maximum with increasing A, . The
dimerization enhancement is exaggerated well before the
obvious breakdown above U =4

~
t

~

.
In another study of dimerization enhancement, Hay-

den and Mele present data for a 16-site chain in Fig. 3 of
Ref. 5. Their 5 is half of ours and A, is twice Baeriswyl
and Maki's . If we place their data in the context of Fig.
5 we can understand their unexpectedly small dimeriza-
tion enhancement in the physical regime. We can imag-
ine that a 16-site chain in Fig. 5 would be fairly flat at
small U, show a slight enhancement, and then decrease.
Similar behavior is expected on plotting 5(U/t) rather
than s'(5, U)/5.

We can place the intuitive picture of dimerization
enhancement in the more general context of the effect of
U and 5 on the electronic orbitals. At U=0, the elec-
trons doubly occupy valence-band orbitals, while at large
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0.2

0.1

0

0.29

U /(4 Itl)

electron skeleton. The ZDO approximation' provides a
consistent and convenient elimination of three-and four-
center integrals, but its absolute accuracy remains open
and any improvements may be illusory in view of the as-
sumed o -m separation. The PPP model has long been the
choice for molecular systems at the m.-electron level. Its
extension to conjugated polymers' is consequently natu-
ral.

The on-site e-e term in (3) is augmented by Coulomb
interactions in the ZDO approximation

H'= —g' Vzz(1 nz—)(l —nz ) .
pp

FIG. 8. Equilibrium dimerization 5O vs Ulr
~

t
~

for A, =0.1,
0.2, and 0.29 [A, =2a'/(n

~
t

~
K)] from Baeriswyl and Maki's

variational calculation (Ref. 6, solid curves), Hirsch's Monte
Carlo calculation (open circles, Ref. 4), and our estimates
(dashed lines, error bars).

An empty or doubly-filled 2p, orbital for carbons corre-
sponds to a C+ or C site, respectively. The potential
V(R .} is interpolated froin U = V(0)=11.26 eV, as sug-
gested by the ionization potential and electron amenity of
carbon atoms, to e /R ~ for distant sites according to
the Ohno formula

V(R)= U(1+R U /e ) (12)
U, electrons are localized on individual sites. To interpo-
late between the two limits, we start with the bands at
U=0:

ak(5, 0)/2
~

t
~

=+(cos k+5 sin k}'~2 .

The dispersion is almost flat for k within 5 of kF ——km/2.
The flat regions increase with 5 and allow construction of
partially localized states with extension of order 5 ' at
little cost in energy. U presumably changes the partially
localized to truly localized states, in the sense that they
no longer extend to x =+00. Furthermore, U mixes in
singly occupied configurations involving localized states
above the gap. Spins of electrons in the singly-occupied
configurations above and below the gap are correlated as
they are between neighboring sites. The connection be-
tween correlation of orbitals and sites is that linear com-
binations of localized states above and below the gap tend
to produce interleaving orbitals sitting on alternate sites,
since at U =0 such orbitals are related by a minus sign on
alternate sites. Hopping between neighboring sites is
converted to hopping between interleaving orbitals. As
U increases, more doubly occupied band states are con-
verted to increasingly localized states with more singly
occupied configurations and increasing total spin correla-
tion. Increasing dimerization makes it less expensive to
localize but more expensive to mix in excitations across
the gap. At small 5 (and moderate U) the gains out-
weight the additional costs and dimerization increases.
At large 5 the reverse is true, and at large U states are al-
ready localized, so there is little gained by dimerizing.

III. PPP MODEL
AND MICROSCOPIC PARAMETERS

Hubbard models describe the evolution of band states
to localized moments with increasing U. The motivation
is conceptual and mathematical rather than physical real-
ism for a particular system. The PPP model' for conju-
gated molecules, by contrast, attempts a unified and prac-
tical description for any m system with specified o.-

Adding (11) to (3) and using (12) for V~~ fixes the PPP
model. We retain linear e-ph coupling (4) and take an
idealized chain with bond angles rt The 2.m/3 bond an-
gles of PA result in slightly shorter second-neighbor sepa-
rations. In contrast to extended Hubbard models,
where one or more Vpp are treated as independent pa-
rameters, the PPP model has a single nonadjustable U in
(12) that completely fixes both the magnitude and dis-
tance dependence of V~~..

The equilibrium dimerization in (2) now acquires a
( 8V/i35) contribution. We again change variables to the
alternation 5=au /t and redefine p (5, U) in (5) in terms
of the PPP ground state. We regain the kinetic energy
contribution bp(5, U)/5 in (6), but the dimensionless ra-
tio

~

t
~

K/a now also has a potential contribution

~
t

~
K Sp(5, u)

5 2N~t~ ~. 85
(13)

The expectation values of the charge correlation func-
tions z =1—n simplify for a dimerized ground state.
Since Rpp for even neighbors does not depend on
u, BV, f/5vanishes for all even neighbors. In neutral
(half-filled) systems, charge correlations decrease rapidly
and (z ) =0 follows exactly from electron-hole symme-
try. Thus the nearest-neighbor terms dominate in (13).
Their coefficients are V'(Ro+5t/a} The V'(Ro) .term in
the Taylor expansion leads to'

~t ~K bp(5, u) V(RO}
+

5~ ~(z(i —i) (14)

where sites 1,2 and 2,3 have partial double and single
bonds, respectively.

The numerical results below are based on all odd
neighbors in (13). Their salient features are illustrated by
the dominant nearest-neighbor terms in (14). We first
note that V'(Ro) and (zz(z, —zi)) are both negative.
Adjacent electron-hole pairs are more favored across par-
tial double bonds than partial single bonds. Thus
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FIG. 9. Force constant K for equilibrium dimerization 5 in

N =10 Hiickel and PPP rings with potential V(R) or potential

V(RO) frozen at 5=0.

( z2 (z ] z3 ) ) vanishes at 5=0 and is negative for 5)0.
The potential contribution always enhances dimerization.
For weak e-e correlations, when the ground state is close
to the Huckel limit, we may explicitly evaluate (14). This
amounts to first-order perturbation theory and leads to

(z2(z] —z3)) = —bp(5, 0)[p(5,0)+p( —5,0)] . (15)

The logarithmic divergence of bp(5, 0)/5 in (7) also
occurs in the potential contribution (15). An arbitrarily
weak e-e potential thus alters the Peierls instability by a
factor of 1 —m V'(Ro)/2

i
t

i
on taking 5—+0 in (15) and

substituting into (14); any V'(Ro}(0 leads to enhance-
ment. Such a term cannot occur in Hubbard models.
The distance dependence of V(R) has not been appreciat-
ed in extended Hubbard models, where in principle it
could lead to a quite strong effect. Rather, the effects of
jinxed V, , Vz, etc., are considered on the dimerization,
the nature of the ground state, or the effective U. Such
contributions appear in the bp(5, U)/5 term of (14), but
not in V'(R).

The linear term in the Taylor expansion of
V'(Ro+5t /a), which was neglected in (14), remains finite
for small 5 even after dividing by 5. The relevant charge
correlations are now (zz(z]+z3)), which are also well

behaved as 5—+0. The V'(Ro} term in (14) consequently
dominates for small 5.

The kinetic and potential energy contribution to
E

i
t

i
/a = —e'(5)/5 are illustrated in Fig. 9 for N = 10

site PPP rings. In each case, we adopt cyclic boundary
conditions and measure R in (12) along the circumfer-
ence, always choosing the shorter length. Since changing
U in (12) changes the shape of the potential, we have fo-
cused on molecular, or standard, choices for U, t, and a.
The U =0 (Hiickel) curve in Fig. 9 is the same as in Fig.
2 and shows the effects of a finite gap at 5=0 in 4n +2
rings. The intermediate curve is based on the PPP poten-
tial (12) frozen at u =0; in the frozen potential V(RO ), all
intersite separations are therefore multiples of Ro. The
V' terms in (13) are suppressed and we have correlation
effects on bp(5, u)/5 that generally parallel Hubbard
model results. The correspondence can be made more
precise, but not exact, by defining an effective
U, = U —V(RO) as done in extended Hubbard models.
The possible distance dependence of V(R ) has not been
considered, however. The final curve in Fig. 9 contains
the full PPP Hamiltonian and shows the additional
enhancement due to V' in (13) or (14). This curve does
not have the same dimer limit as the others because of
the R dependence of the potential.

In order to compare N +00 resu—lts, we show 5=0.05
and 0.10 data in Fig. 10 for 4n +2 PPP rings and even
chains. As discussed for Hubbard models, the rings con-
verge from below, the chains from above. The extrapo-
lated values are estimated as before. There is strong
enhancement in PPP models, as already noted by Soos
and Ramasesha. The two- to threefold increase of
E

i
t

i
/5, or of —s'(5)/5, depends on both kinetic and

potential-energy contributions. Though a value for U, ff

in the Hubbard model is difficult to judge, the increased
dimerization in comparison with any U in Fig. 5 for
5=0.05 and 0.10 Hubbard models shows the importance
of V'(R) terms. Most of the shift on including V'(Ro) is

common to all systems, refiecting its origin in the local
nearest-neighbor part of V(R). As for the N =10 case,
the additional enhancement due to V'(Ro} for N~ ~ is

comparable to enhancement for the fixed potential case.
Dimerization in PA clearly depends on the microscop-

ic parameters t, a, and E in (1) plus any e-e potential
V(R). The SSH choices for noninteracting electrons in
Table I were chosen to fit the PA alternation u0-0. 04 A
and optical gap, E~ —1.4 eV. The Vanderbilt-Mele
choices retain the SSH model but also include observed
C—C stretching frequencies related to s'r'(uo) in Fig. l.
Three parameters (a, t, I]. ) are optimized for three PA ob-
servations, uo, Es =4

i
t

i
5, and E'z'(uo), none of which is

very precise. Limited crysta11inity leads to perhaps

TABLE I. Microscopic parameters for n.-electron models: transfer integral t at R =Ra, linear e-ph
coupling constant a, harmonic u-electron force constant K, and e-e potential V(R) fixed at U = V(0) in
PPP models.

SSH
PPP and/or molecular
Vanderbilt-Mele

t (Ro) (eV)

2.5
2.40
3.0

a (eV/A)

4.1

3.21
8.0

K (eV/A )

21.0
24.6
68.6

U= V(0) (eV)

11.26
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FIG. 10. Force constants K for 5=0.05 and 0.10 PPP chains
and rings with frozen potential V(RO) and full potential V(R)
in Eq. (12). The infinite Huckel value is marked by an arrow.
The extrapolated N~ 00 PPP values are indicated by closed cir-
cles and error bars.

+0.01 A accuracy for uo. The optical gap Eg —1.4 eV
was originally associated' with the band edge, but has
recently been assigned around 1.S eV as other models ac-
count for the red edge down to —1.2 eV. The curvature
s'T'( u 0 ) is for a one-dimensional model rather than
trans-(CH)„with coupled C-C and C-H vibrations. No
other conjugated molecule or polymer is invoked, al-
though the common features of all conjugated polymers
is an important justification for detailed analyses of
trans-PA. The PPP molecular choices in Table I have a
completely different origin, as consensus values for small
molecules that considerably predate current interest in
conjugate polymers. Their application to PA involves no
adjustable parameter.

Takahashi and Paldus" have examined 4n+2 PPP
rings from n =1 (benzene) to n —10-12 for various self-
consistent-field treatments. Their e-ph coupling a and
force constant K were fit to benzene data and represents a
regular hexagon with a single minimum at u =0 in Fig. 1.
Their values of a=4.04 eV/A and K =27.5 eV/A are
close to the PPP choices in Table I. They also used a
different interpolation, as U(1+UR/e )

' instead of
(12), with U =10.84 eV and an anharmonic lattice. Such
corrections are well documented in polyenes. The
4n +2 rings developed a double minimum with increas-
ing n and both uo and e'T'(uo) converged to values ap-
propriate for cis and trans PA. Various self-consistent-
field approximations for the ground-state energy
s(5, U, N) lead to similar results that seem to be in good
agreement with our exact N =14 results for a slightly
difFerent potential, geometry, and a. They also recog-
nized the importance of V'(Ro) terms in increasing the

effective value of u. Thus molecular PPP parameters are
consistent with the PA dimerization uo and C—C
stretching frequencies ET(uo). The proper inclusion of
e-e correlations, by exact solution of ground and excited
states of PPP models, overestimates E by —1.0 eV. A
red shift of -0.5 eV due to the solid-state environment is
not known precisely. While some small, —10% reduc-
tion of U in (12) would improve the PA fit, extensive
reparametrization is not needed on going from conjugat-
ed molecules to conjugated polymers.

IV. DISCUSSION

We have focused on dimerization enhancement in
Hubbard and PPP models. The lower bounds provided
by N =14 rings unequivocally demonstrate enhanced di-
merization in the alternation regime 5-0.05—0. 10
relevant to PA, since the finite systems in Figs. 5 and 10
require a larger restoring force than the infinite Huckel
chain. Our extrapolated results in Fig. 8 for Hubbard
models show the enhancement to be smaller than previ-
ously thought. The contribution V'(Ro) for the distance
dependent PPP potential provides an enhancement com-
parable to the kinetic energy or bond order changes
hp(5, u)/5 in (6).

The mathematical analysis of other models, including
more complicated choices for V(R ), for the electron-
phonon coupling a, for the 0-electron potential, or for
dynamic e-ph coupling, is unlikely to be simpler than for
Hubbard or PPP models. Thus, perturbative or varia-
tional arguments that are inadequate for the latter are
hardly promising for more realistic models. Such models
may nevertheless be required for conjugated polymers.

The SSH model and its continuum versions are
effective Hamiltonians. As in Fermi liquid theory, the
simplest parametrization is sought for the ground state
and lowest excitations. The resulting parameters then in-
clude important many-body contributions. The dimer-
ized PA ground state, sT(u) in Fig. 1, is sufficiently sim-

ple that the principal features may also be obtained for
PPP models. The Takahashi-Paldus analysis" for uo and
e'z(uo), plus correlated state results for the optical gap
and other excitations, indicate that molecular parameters
are substantially preserved' in PA. Some reduction of
correlations is possible although a distance dependent
V(R) must be kept. The reconciliation of molecular and
polymeric parameters is important from a chemical point
of view, where both are recognized to be conjugated sys-
teins. Such correspondences for excited states (solitons,
polarons, or bipolarons) are far more difficult, however,
and there models with noninteracting electrons offer
more insight.

We consequently emphasize that any m-electron model
based on (1) is sufficiently idealized to leave open ques-
tions about physical realism. More realistic treatments of
V(R), beyond the ZDO approximation in (11), have re-
cently been proposed and discussed. ' The bond-charge
contribution, for example, reduces to the Coulomb ex-
change term for the two-site case retained by Kivelson,
Su, Schrieffer, and Heeger. ' Such contributions must be
added to Hubbard models in order to describe ferromag-
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netic interactions. The systematic inclusion of correc-
tions terms to ZDO has been carried out by Wu, Sun, and
Nasu in terms of Jastrow-Feenberg variational theory.
The range of the potential is important for dimerization
enhancement or suppression. But previous experience
with Hubbard models virtually requires more rigorous
analysis of correlation contributions to dimerization. For
the present, the PPP model is a convenient and con-

sistent, if approximate, ~-electron model with wide appli-
cability.
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