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An effective-mass theory of the properties of excitons in isolated GaAs/Al, Ga& „As quantum

wells is presented. The phenomenon of exciton mixing induced by the complicated valence-band

structure is emphasized. The effects of external perturbations such as electric and magnetic fields

and uniaxial pressure normal to quantum wells grown in different crystal directions are calculated.
Exciton mixing is found to cause many observable effects on transition energies and oscillator
strengths.

I. INTRODUCTION

Since the pioneering work of Dingle, excitons in semi-
conductor quantum wells have been subject to numerous
studies motivated by the pronounced effects of quasi-
two-dimensionality in the excitonic features of optical
spectra. The quantities of interest are energies and oscil-
lator strengths of the optical transitions associated with
the creation or annihilation of an exciton state.

Experimentally, excitons at the direct band gap of in-
trinsic GaAs/Al„Gat „As quantum wells have been
studied extensively by absorption, excitation, photo-
luminescence, photoconductivity, and reflectance spec-
troscopy, ' where the list of references is by no means
exhaustive. Of special interest are the exciton properties
in the presence of external perturbations. Characteristic
effects of magnetic ' and electric fields, ' ' or both,
and externally applied pressure' ' ' have been reported.
The effect of crystal orientation of the quantum well on
the properties of excitons has been examined in Ref. 25.
Many experimental results show clear effects of exciton
mixing like exciton transitions which are forbidden in a
simple two-band model ' or anticrossing behavior of ex-
cited exciton states. ' ' ' Two-photon magneto-
optical spectroscopy on quantum wells provides infor-
mation on exciton states which are parity forbidden in
conventional optical experiments.

A large number of theoretical studies of the problem
have been published as well. The simplest model of a
(type-I) quantum-well exciton is an electron and a hole
moving in a common plane exhibiting a binding energy
enhanced by a factor of 4 compared with the bulk sys-
tem. ' The effect of the finite well width has been in-
vestigated by Miller et al. and others ' ' using a mod-
el in which an electron-hole pair is confined between two
parallel, infinitely high potential barriers. The additional
spatial degree of freedom decreases the exciton binding
energy. Tunneling of the exciton into finite potential bar-
riers leads to a further reduction of the binding ener-
gy. Effects of external electric and magnetic fields
have also been extensively investigated' ' ' using

the above-mentioned simple models. All these early stud-
ies disregarded the complications introduced by the
valence-band degeneracy of GaAs. But, as illustrated by
numerous band-structure calculations for valence-band
holes in quantum wells, see e.g., Refs. 44 and 45 and Fig.
3, the light and heavy holes couple rather strongly, and
significant effects on the excitons may be expected.

Considerable experience has been accumulated with re-
gard to the treatment of valence-band mixing effects on
magnetoexcitons in bulk semiconductors by effective-
mass theory. Methods which are valid for very
weak and very strong magnetic fields have been su-
perseded by the work of Lipari and Altarelli ' in which
the exciton envelope function is expanded into spherical
tensors, which allows an analytical evaluation of the an-
gular integrals in the Hamiltonian matrix elements. With
use of a nonorthogonal basis for the radial functions, high
numerical accuracy has been achieved for the ground-
state excitons. ' The spirit of the present study is simi-
lar to that of Ref. 49, but the presence of a quantum-well
potential increases the complexity of the problem consid-
erably.

Recently, a number of calculations of the effects of
valence-band mixing on excitons in quantum wells have
been reported. ' Sanders and Chang ' tackled the
problem by expanding the exciton envelope function into
products of the wave-vector-dependent electron and hole
quantum-well envelope functions, where the latter are al-
ready mixed. The secular equation is then solved in
momentum space. A similar approach has been chosen
by Broido and Sham, who also estimate the effect of the
resonance coupling of the light-hole exciton ground state
with the heavy-hole exciton continuum. Chan on the
other hand has calculated binding energies by a real-
space approach which is similar to ours, though he used a
limited basis set. Ekenberg and Altarelli present a
perturbation-theoretical study on exciton binding ener-
gies and a critical comparison with other work. The cal-
culations in Refs. 51 and 52 have been recently criti-
cized to neglect the proper angular momentum char-
acter of the exciton envelope functions. The discrepan-
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cies between results from different theories noted in Ref.
54 can apparently be explained by the corresponding
overestimation of exciton binding energies.

A few studies aim at a simultaneous treatment of
valence-band mixing and external perturbations. Using
the method of Ref. 51 mentioned above, Sanders and
Chang calculated the effects of uniaxial pressure along
the growth direction and Sanders and Bajaj the effects
of electric fields and band-gap grading normal to the
quantum well. In the latter work exciton spin splittings
are found which are unphysical because Kramer's degen-
eracy is not broken by electric fields. Pressure effects
have been discussed by Hiroshima but under provision
of simplifications like a spherically symmetric kinetic en-
ergy operator for the holes. Excitons in quantum wells
subject to high magnetic fields have been studied by Yang
and Sham. ' Their theory is quoted to be valid for mag-
netic fields stronger than 6 tesla, and is in this sense com-
plementary to ours, which is designed for weak and inter-
mediate fields up to 10 tesla. They carry out calculations
for a few magnetic fields only and claim a numerical ac-
curacy of about 10%. At high magnetic fields and/or at
high energies the mixings due to the Coulomb interaction
should be less important and magnetooptical spectra ap-
pear to also be well explained by calculations of the
Landau-level transitions which are a posteriori corrected
for excitonic effects. ' Finally the work of Masselink
et al. on the related problem of shallow acceptor states
in quantum wells should be referred to.

Here we consider direct-gap quantum wells grown in
the main crystal directions [001], [110], and [111]. We
present numerical results of the properties of excitons ob-
tained in an effective-mass type of approximation. The
Luttinger Harniltonian is used to describe the hybridi-
zation of light- and heavy-hole bands. Electric and mag-
netic fields and stress normal to the interfaces are treated
simultaneously. In intermediate magnetic fields we may
not resort to perturbation theory or to the neglect of
Coulomb matrix elements which are small only at high
magnetic fields ("adiabatic approximation"). It is well
known that the valence-band structure in the plane of the
well is quite anisotropic. We thus do not assume a priori
that the quantum well is cylindrically symmetric ("axial
approximation"), as is commonly done. '

Within these ramifications we solve the exciton eigenval-
ue problem and discuss the reliability of the results. Our
theory was first presented in Ref. 66 and several applica-
tions have already been published on different oc-
CaSiOnS 22& 25& 67 70

The paper is organized as follows. The theoretical
framework is detailed in Sec. II, including a discussion of
the symmetry of the problem and the computational
method. In Sec. III the convergence properties of the
basis set and the numerical accuracy of our calculations
are discussed. Selected results are presented and dis-
cussed in Sec. IV, followed by the conclusions in Sec. V.

II. THEORETICAL FRAMEWORK

A. Eft'ective-mass approximation

We are interested in the problem of Wannier excitons
in quantum wells made from direct-gap cubic semicon-

ductors in the effective-mass approximation. ' We con-
sider the situation of an s-type spin-degenerate state at
the conduction-band edge and a sixfold degenerate state
with p-type symmetry at the valence-band edge. The
valence band is split by spin-orbit interaction into a four-
fold degenerate (J=—,') and a twofold degenerate (J=—,

"
)

state, where J indicates the total angular momentum.
The splitting is assumed to be so large that the interac-
tion with the low-energy (J= —,

'
) state does not have to be

calculated explicitly. Interactions between conduction
and valence bands and couplings to more distant bands
are also not explicitly included. An approximate treat-
ment of the neglected nonparabolicities will be discussed
in Sec. IV. If, additionally, the small departures from in-
version symmetry are disregarded, the valence band is de-
scribed by the so-called Luttinger Harniltonian. The
band edges of the well are assumed to lie within the band
gap of the barrier (type-I quantum well). The quantum-
well potential is approximated by a square well at the in-
terfaces. For the conduction band the boundary condi-
tions at the interface are well described by the require-
ment of current continuity. Although the boundary
conditions for the valence band are less well established,
we will employ those proposed in Refs. 74-76 which give
results which agree well with those from tight-binding
models. We restrict attention to the situation where
stress and electric and magnetic fields are oriented paral-
lel to the quantum-well growth direction. Calculations
will be carried out for (Ga,AI)As quantum wells only, but
the theory is applicable to several other III-V systems as
well.

In the effective-mass approximation ' the pth eigen-
state of an exciton at rest in a quantum well can be writ-
ten as

ql",„(r„rz)= —g FQ ~ (p, z„zl, )g~(r, )kg~(rl, ),
A M, M'

where 0 is the total volume of the system and A the area
of the quantum well. The arguments in Eq. (1) are the
coordinates of electron and hole r, =(x„y„z,) and
r„=(x„,y„,zl, ) and the difference coordinates in the
plane of the well p =(x„y„O)—(x„,y„,O).
denote the Bloch functions of conduction- and valence-
band electrons at the direct band gap, where M and M'
are magnetic quantum numbers, i.e., M =(——,', —,

'
) for the

conduction band and M'=( ——'„——,', —,', —,
' ) for the valence

band. K denotes the time inversion operator which trans-
forrns the Bloch function of the valence-band electron
into that of a hole. Fg~. are the components of the p, th
exciton envelope function which diagonalizes the
effective-mass-type Hamiltonian &,„:

X (~ex)MM', LL' fL' +exFtfM'
L,L'

We shall neglect the electron-hole exchange interaction
which is very small in GaAs ( &0. 1 meV). The eight-
dimensional matrix equation (2) then reduces to two
four-dimensional equations for spin-up and spin-down
conduction-band electrons, respectively. &,„consists of
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the effective-mass kinetic and magnetic energies of
conduction-band electron and valence-band hole, the
screened Coulomb interaction between electron and hole,
square-well potentials for conduction and valence bands,
and the potentials due to strains and electric fields.

The oscillator strength for an optical transition involv-
ing an exciton state described by Eq. (1) is given by

2 A

mp E~ex +E

X y (1('
~

g.~
~

y„".& f dz rg,„,(o,z, z)
M, M'

where A denotes the area of the quantum-well interface,
Es the band gap of the bulk crystal of the well material, g
the photon polarization, m. the electron momentum
operator, and mo the bare electron mass.

L-0

no spin

(6u

Isg

)k-
='

kg

lj ——
g

7U

ling=.

= t~g

~ U

D4b

7 = I6
I7—

C4v

TABLE I. Symmetry point groups of [001]quantum wells.

Bulk crystal
Quantum well
Quantum well

[001] Electric field

Quantum well +.
[100] Stress

Microscopic

Td

D2d

C2,

Luttinger

0
D4
C4„

D2]

B. Symmetry

Before discussing the detailed structure of the exciton
Hamiltonian we will have a look at its symmetry
which is useful for the classification of eigenstates as well
as a means of reducing the computational effort when
solving the eigenvalue problem. The latter aspect will be
discussed at the end of Sec. II C. Complications due to
the exchange interaction will not be treated here.

In Table I the symtnetry point groups of a [001] quan-
tum well are compiled. The group of the effective-mass
Luttinger Hamiltonian is equal to that of the diamond
crystal for the bulk, ignoring the microscopic lack of in-
version symmetry in GaAs which causes only small
effects. The approximation of the quantum well by a
square-well potential also leads to a symmetry which is
higher than that of a quantum-well crystal, where the S4
symmetry element is broken microscopically at the inter-
faces. Unlike a uniaxial stress in the same direction this
in principle leads to, e.g. , a very small mixing of heavy
and light holes even at the center of the Brillouin zone as
evidenced by, e.g., tight-binding calculations. The sym-
metry is broken on a length scale of the order of the lat-
tice constant which may be safely neglected in an
effective-mass theory, however. Applied electric fields
can significantly modify the potentials on the length scale
of the envelope functions and the corresponding reduc-
tion of the symmetry must be taken into account. If
directed along the crystal growth direction magnetic
fields and applied stresses do not modify the spatial sym-

FIG. 1. Splitting of the band edges of a tetrahedral semicon-
ductor by a quantum-we11 potential and an electric field in the
[001]direction (cf. Table I).

metry of the quantum well. A magnetic field then only
splits the twofold (Kramer) degenerate exciton states.
The point groups of the effective-mass Hamiltonian for
[110]and [111]quantum wells are D2I, and D3d. The mi-
croscopic crystal symmetry is also lower in these cases.

In Fig. 1 degeneracies and energy-level splittings of the
states at the band edges are depicted for a [001]quantum
well, using the irreducible representation labels of the
relevant double groups. The states labeled I 6 and I"7 are
the light- and heavy-hole subband states at the zone
center. In the presence of inversion symmetry the indices
are augmented by g or u to indicate the parity of the state
in question. Exciton states described by Eq. (1) transform
according to the direct product of electron and hole
Bloch functions and the exciton envelope function. Exci-
tons are in the following labeled by the direct product of
hole Bloch and exciton envelope function, which is possi-
ble because we neglect the electron-hole exchange in-
teraction. By this convention (which is slightly different
from that used in Ref. 68) exciton states also transform
like I & and I 7, though they cannot unambiguously be
classified as light or heavy anymore.

Exciton selection rules can be derived easily by the re-
quirement that the direct product of exciton and photon
representation contains the identity. Using the conven-
tion explained above only gerade states can have oscilla-
tor strengths in one-photon processes when the system
possesses inversion symmetry. I 7-type excitons can be
created only by light polarized in the plane of the well (o.
polarization), while I 6-type excitons are observable also
for polarization parallel to the growth axis (n polariza-
tion).

C. Matrix representation of exciton Hamiltonian

The exciton Hamiltonian is readily written down for
quantum wells grown in the [001], [110],and [111]direc-
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tions using the results of Ref. 77. Energies, measured rel-
ative to the band gap of the bulk material, will be ex-
pressed in units of rydbergs (Ro), lengths in hydrogen
Bohr radii (ao), and magnetic fields in terms of the di-
mensionless quantity y:

C 0

0 C

A &y2

8* A 3y2

Ro ——

4
mac A eA

ao —— , y=
2mocRO

(4) 2 ge+ — +

where all symbols have the usual meaning. For a [001]
quantum well the exciton Hamiltonian reads where

A+3n ———mo a2

2 + V, (z, ) —(y &

—2y2) 2 + VU(zl, ) —(z, —zl, )4+ 3 (Sl
&

—S&2)D„T
m Bzh

mo
+ g)+&2+

me

2 TP mo—V'+ + r l
—r2—+ yL, +(3&+ ".q)r-

me
(6)

A+&y2 =—mp a2 a2

2 + V, (z, ) —(y l+2y2) 2 + V„(zl, ) —(z, —zl, )4——', (Sl l
—Sl2 )D„T

m, az,2 azl

mp
+ P] f2+

me

2 XP mo—Vl, + + —y&+y2+ yL, +(lr+ ,'q)y, —
me

B = 2i&—6y3k
az/g

C=&3(y2+y, )(k )'+&3(y2 —y, )(k+)' .

Here y&, y2, y3, ~, and q are the Luttinger valence-band
parameters, m, and g, are the effective-mass and g factor
of the conduction-band electron, and I 4 denotes the 4)&4
unit matrix. If the difference coordinates of electron and
hole r=r, —rh are expressed in cylindrical coordinates
(p, z, —zl, ) =(p, p, z, —z„) the raising and lowering opera-
tors k+ and k introduced above read

l +ly a + la + yp
v'2 ap pa&

L, is the operator for the orbital angular momentum in
the z direction

a
iaQ

and V is the two-dimensional Laplacian in the plane of
the quantum well

1 0 1V=
ap p ap p

(12)

Neglecting effects due to the small difference in the
dielectric constants of well and barrier materials, the
electron-hole Coulomb interaction is assumed to be
screened by the static dielectric constant e. 4 denotes a
constant electric field normal to the interfaces. The elas-
tic compliance constants S» and S,2 and the deforma-
tion potential D„parametrize the energy splittings of
light- and heavy-hole bands at the zone center as a func-

at the interfaces.

D. Expansion of the exciton envelope function

The eigenvalue problem can be solved by expanding
the exciton envelope function into a suSciently large
basis and diagonalizing the corresponding Hamiltonian
matrix. The envelope functions in Eq. (2) can be expand-
ed as follows:

Fg ( ) g p~MiiM' gM( g M

n, m, r, g
(14)

[R„ I is a set of basis functions in the (p, g) plane and
the g's denote the subband envelope functions of the
quantum well in the absence of electric fields. For the
conduction band we have

mo Q2

2+V, (z, ) g; (z, )=e; g; (z, ),
m, Qz2

while the g (z&) are the heavy- and light-hole subband
envelope functions:

(15)

tion of a uniaxial stress T normal to the well.
To ensure hermiticity, the operators which contain

derivatives should be interpreted as

a2 a a
A(z) —+ A(z)

az2 az az

B(z) ~—B(z) + B(z)
a 1 a a
az 2 az az
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2

+V„(zi, ) gj~(zi, )=ej gj (zi, ) . (16)
mi, Bzi,

For a [001] quantum well mo/mi, =(yi 2y2) and
mo/mi+—,

' ——(y, +2yz). A realistic quantum well does
not support more than a few bound states which in gen-
eral do not provide sufhcient variational flexibility in the
expansion Eq. (14), and continuum states are computa-
tionally inconvenient. We therefore introduce infinite po-
tential wells at both sides of the quantum well which are
suSciently far away to not disturb the bound subband
states. Assuming current continuity at the (inner) inter-
faces Eqs. (15) and (16) are easily solved analytically for
this double square-well system with a convenient discrete
eigenvalue spectrum.

We propose to use the eigenfunctions of a two-
dimensional system as the basis for the radial functions in
the plane of the well. The bound-state wave functions of
a two-dimensional hydrogen atom read

2 (n —/m /)!
[(n+

/

m
/
)!](2n+1)R„p =—

' 1/2

X (~/a)/(2m+ 1)Xe 2p
(2n +1)a

'/m/

J

&mP

XL „"!
~

~ I
(2p/[(2n + 1)a]) (17)

where L„' ' denotes an associated Laguerre polynomial
and a is a length parameter. An expansion of the
quantum-well excitons in terms of the orthogonal func-
tions defined by Eq. (17) does not work well because the
bound states of the Coulomb potential do not form a
complete set. But the unbound (scattering) excitonic
states can be dealt with variationally by a (nonorthogo-
nal) expansion into bound states with different length pa-
rameters a. For zero and intermediate magnetic fields
this basis performs satisfactorily, as borne out by the tests
to be described in Sec. III B. It should be kept in mind
that rapid convergence can be expected only when mag-
netic fields are not too strong (H & 10 T), i.e., as long as
the magnetic length (A'c/eH )'~ is not much smaller than
the exciton radius in the plane of the well.

It is diScult to cope with excitons which are associated
with a higher subband edge and which interact with an

exciton continuum associated with a lower subband edge
(Fano resonance} without introducing additional approxi-
mations. In the present variational approach the contin-

uum is replaced by a rather small number of discrete
states. The energy position of a resonance can be traced
easily, but the small energy shifts and broadenings dis-

cussed in Ref. 52 are neglected. Note that the problemat-
ic continuum states vanish upon application of a magnet-

ic field.
The next step is the calculation of the Hamiltonian ma-

trix for the chosen basis. With the exception of the
Coulomb interaction the matrix elements are readily ob-
tained analytically. Using the method explained in Ap-
pendix I we have been able to reduce the Coulomb in-
teraction matrix elements to a one-dimensional quadra-
ture, which is essential for keeping the computations

TABLE II. Representation labels of exciton basis in D4&.

!m
/

s,g, 8, . . .

d, 6, 10, . . .

Parity g, g„

+3
2

+1
2

+3
2

+1

2
+3
+1

2

2
+ 3

+1

2
+ 3

2
+1
+ 3

2
+1

2

Exciton label

r7g
I 6g

I7„
r,„
r,„
I 7„

r„
r„
r„
I7g
I 6„
l7„

feasible. Since the basis is nonorthogonal, exciton wave
functions and energies are obtained by solving a general-
ized eigenvalue problem.

Although straightforward in principle, an accurate nu-
merical diagonalization of the Hamiltonian requires con-
sideration of the symmetry of the problem. In Table II
the basis functions are labeled according to their irreduc-
ible representations for a [001] quantum well. Trivially,
in an expansion of a given exciton state only basis func-
tions of one and the same symmetry have to be included,
which means that (in the absence of an electric field) the
dimension of the problem can be reduced by a factor of 4
by sole inspection of Table II. Next, it is helpful to
neglect the cubic anisotropy in the (p, P) plane, i.e., the
(k+) operator in Eq. (5), for the moment. In that case
the total angular momentum JR in the z direction is a
good quantum number (symmetry group D „„).JK is the
sum of the angular momenta of the envelope function m
and of the Bloch functions of electron M and hole —M'.
Each envelope function component FQM then has a
definite angular momentum m =JR —M+M'. Thus s en-
velope (m =0) excitons from the M'= —,

' valence band

only mix with p excitons (m = —1 } from M'= —,', d exci-
tons (m = —2) from M'= ——,', and f excitons (m = —3)
from M'= ——,'. By the warping the axial symmetry is

broken in favor of a fourfold symmetry axis which is easi-
ly seen to mix states with m, m+4, m+8, . . . , but still
the dimension of the eigenvalue problem is significantly
reduced. Quantum wells grown on (111)or (110) surfaces
contain a threefold and twofold symmetry axis, which
means that warping induces mixings between
m, m +3,m+6, . . . and m, m+2, m +4, . . . , respectively.
We thus see how the necessary computational effort in-
creases with decreasing symmetry. External perturba-
tions which break the crystal symmetry also render the
calculations more diScult. The problem of, e.g. , a uniax-
ial stress along [100] applied to a [001] quantum well,
which mixes s-type excitons derived from the heavy- and
light-hole bands, is in the present effective-mass approx-
imation formally equivalent to that of an unperturbed
[110]quantum well.

Turning again to the oscillator strength, we can ex-
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press the integral over the envelope function in Eq. (3) in

terms of the expansion in Eq. (14) as

f dzFg~ (O, z, z) = g cgp; R„p(0)f dzg, (z)g, .(z),

(18)

where use has been made of the fact that only the s-type
(m =0) radial functions are nonzero at the origin. It fol-
lows from the above discussion that for [001] quantum
wells the s component of the pth state can always be as-
signed to one of the four valence bands with index M„':

MM EP Eex+ g

AlAs

me

1

y2

y3
Eg
K

q

ge

3 (Sl )
—S12 )D

f i/2, 3/2 «npoi )

0.0665
6.790
1.924
2.681
1.519 eV
1.2
0.04

—0.44
12.5
2.55 meV/kbar

9.48

0.15
3.790
1.230
1.395
2.766 eV
1.2
0.04

—0.44
12.5
2.55 meV/kbar

9.48

TABLE III. Effective-mass parameters.

GaAs

2

X A Q c„p~ "R„p(0)f dzg, (z)g, "(z)

(19)

least for magnetic fields under 10 T. Illustrative results
are presented for a GaAs/Alp 3Gap 7As[001] quantum
well with a width of 100 A.

where fMM is the oscillator strength of a band-to-band
transition in the bulk crystal (see Fig. 2).

Finally it is necessary to fill in the empirical parameters
of the theory. In Table III we list those used in the fol-
lowing calculations which consistently fit subband posi-
tions of differently oriented quantum wells. ' This choice
implies a band-offset rule which allocates 68% of the to-
tal band-gap difference to the conduction band. The
band gap and effective masses of the (Ga,A1)As alloy are
linearly interpolated as a function of the Al concentration
between the values for GaAs and A1As.

III. COMPUTATIONAL DETAILS

Even when full use is made of the symmetry as dis-
cussed above, a considerable computational effort is in-
volved in solving the exciton eigenvalue problem accu-
rately. In the following we will d&scuss the extent of the
expansion which is necessary to obtain (numerically) reli-
able results and point out the limits of the present
method. For the ground-state exciton energies a numeri-
cal accuracy of better than 0.1 meV can be achieved, at

1
2M

A. Hole subbands

Figure 3 gives the subband dispersion of the holes in
the plane of the well in the absence of any perturbations
as calculated using the Luttinger Hamiltonian. The band
structure is obtained simply by omitting the electron-hole
attraction in Eq. (5) and by replacing the radial functions
by plane waves in the basis. Using 30 subband envelope
functions for light and heavy holes the results are virtual-
ly exact. The importance of the nondiagonal terms is ob-
vious. The modification of the bands due to the warping
is observed to be rather small.

50

40

30
S

h2

h
C 20----

lg

4 Q.)3'

-- M-+—

2fe~ ~2fe 3fm 33 M'
2

10—

lr
M 2 0

M 2

M'- ~
H

FIG. 2. Spin splittings and allowed interband transitions in
bulk GaAs in a magnetic field (g, & 0,» & 0). f~ is the iuterband
oscillator strength in Table III: 2

~
( 4;/z

~

m.„~ %'3/z ) )
'/

Eg ma.

k(„o) (10 cm ')

FIG. 3. Energy dispersion of valence-band holes in a quan-
tum well as a function of the in-plane wave vector in the [110]
direction. The solid curves give the results for the full Luttinger
Hamiltonian while the dotted lines reflect the neglect of
valence-band mixing. The dashed lines correspond to the
neglect of the warping in the plane of the well.
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FIG. 4. Energy dispersion of valence-band holes in a quan-

tum well as a function of the in-plane wave vector in the [100]
direction. The solid curves give the results as obtained by di-

agonalizing the valence-band Luttinger Hamiltonian with a
basis of 30 subbands envelope functions for heavy and light
holes, while six bands have been employed to obtain the dashed
lines. The dotted lines give the results for the minimal basis set
of two heavy- and one light-hole subbands.

The quality of the subband basis can be easily tested by
calculations of the energy dispersion of the subbands in
the plane of the well. From Fig. 4 it is clear that the sub-
band envelope functions at the zone center are a rapidly
converging basis set. In the exciton calculations we have
to restrict the basis to about six bands for each hole type.
We can deduce from Fig. 4 that this basis should be
sufficient since excitons mainly sample band states with
wave vectors up to about the reciprocal exciton radius
(=10 crn '). The effects of electric fields on the sub-
bands is shown in Fig. 5. When the potential drop over
the quantum well is of the order of the barrier heights the
quality of the basis is deteriorated, but in this limit the
field ionization of the excitons is important and applica-
tion of the present approach becomes questionable any-
way.

B. Radial basis

As explained in Sec. II A we choose to expand the exci-
ton envelope function in the plane of the well by hydro-
genic wave functions. While this is the basis of choice for

FIG. 5. Valence-band hole energy dispersion in a quantum
well as a function of the in-plane wave vector in the [110]direc-
tion and in the presence of an electric field of 60 kV/cm normal
to the well. Dashed and solid curves correspond to a basis set of
6 and 30 subbands, respectively.

zero magnetic field problems, it is necessary to check its
performance in the presence of magnetic fields. We shall
work with two radial basis sets with length parameters
listed in Table IV.

A severe test of the flexibility of the basis is a calcula-
tion of the Landau-level transitions, which are obtained
when the Coulomb interaction between electrons and
holes is switched oK In Fig. 6 we plot results for a model
of parabolic hole bands using a heavy- and light-hole
mass average. The results can be checked by comparison
with the exact linear energy dispersion indicated by the
dashed lines. Labels are chosen according to the quan-
tum numbers (n, m ) of the radial functions, where the an-
gular momentum quantum numbers

m =(. . ., —2, —1,0, 1,2, . . . )

are denoted as

m =(. . . , d-,p-, s,p, d, . . . ) .

The label (2p-) for example corresponds to a transition
between the second hole and first electron Landau level.
%'e observe that at 10 Tesla the basis set II is very accu-
rate for main quantum numbers n =1 and 2, performs
fairly well for n =3, only moderately for n =4, and fails

(n, urn /)

ls, 2s

2p, 3d, 4f

TABLE IV. Radial basis set exponents.

Set I (A)

10 50 100 150 200
2.5 12.5 25 37.5 50

Set II (A)

10 20 35 50 75 100 150 200
2 8 14 20 26 32 38 44 50 60
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for n =5. The reason for the discrepancies at higher en-

ergy is not so much the Gaussian falloff of the Landau-
type wave function but its larger number of nodes. The
performance of the smaller basis set I is satisfactory for
zero-field problems. At 10 T a description as above can
be used, provided that the quantum numbers n are re-
duced by one.

In Fig. 7 the calculations which led to Fig. 6 are re-
peated including the Coulomb interaction (but neglecting
couplings to higher subbands). There are no analytical
results to compare with now, but it is observed that even
high Landau-level transitions are strongly modified by
the electron-hole attraction. We thus expect that the
convergence of our hydrogenic basis will be better for the
excitons than for the Landau levels.

C. Excitons

-100 I I

4 6
Magnetic field (T)

10

FIG. 6. Landau-level transition energies relative to the first
subband energy gap in a quantum well as a function of a mag-
netic field. The parameters y2, y3, g„~, and q are set equal to
zero. The dashed lines give the exact results, while the solid
curves are obtained with the present exciton program and basis
set II (Table IV). The labels are the angular momentum quan-
tum numbers (n, m) of the relative electron-hole motion, e.g.,
2p-~n =2,m = —1.

The convergence properties of the expansion of the en-
velope function at a magnetic field of 10 T are surnma-
rized in Figs. 8 and 9 for the ground-state excitons associ-
ated with the four magnetic quantum numbers of the
valence-band multiplet. The parameters g„~, and q are
set equal to zero in these calculations. The binding ener-
gies are defined relative to the zero-field subband energy.
We monitor the effects of increasing the number of sub-
bands for electron, heavy-hole and light-hole bands in the
expansion of an envelope function component F~~., as
well as the number of envelope function components,
which, for fixed electron spin, is a number between 1 and
4.
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UJ 3p

20

10

d 100A, x 0.3 4f+
5f-
3s
4d-
3p+
3d+
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M
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Mo=-—I 3
2

~—5~—5~O 0

d -100A
x -0.3
H 10T

p~O

o 1h-band
o 2h-band
~3h-band
~ 4h —band

2
0 2 3 4 6 7 8

-10p I I

4 6
Magnetic field (T)

10

FIG. 7. Transition energies relative to the first subband edge
in a quantum well as a function of a magnetic field (see Fig. 6).
The solid curves are exciton transitions which are obtained by
including the electron-hole Coulomb interaction. The coupling
to higher subbands is neglected here.

Subbands

FIG. 8. I 7g (heavy-hole) exciton ground-state binding ener-
gies relative to the zero-field band edge at 10 T. The s-type en-
velope function component is associated with spin-up and spin-
down heavy-hole valence bands (Mo ——+—', ). The ordinate is the
number of subbands in the expansion of the exciton envelope
functions. The different models are explained in the text.
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As Fig. 8, but for 1 «(light-hole) excitons

The calculations labeled 1h band refer to a model of
one envelope function component only, which is
equivalent to the neglect of all nondiagonal elements in
the Luttinger Hamiltonian. Due to the neglect of ~ and q
the heavy- and light-hole excitons are spin degenerate in
this case. By comparison with the full calculations we
observe that this model is unsatisfactory. In the 2h-band
model the effect of the coupling of s- and p-type heavy-
and light-hole excitons by the operator 8 in Eq. (5) is in-
cluded. A strong spin splitting is induced which ref}ects
the two different angular momenta of the p states to
which the s-type excitons couple. In the 3h-band model
we also allow for interactions with excitons having d
symmetry in the plane, but neglect the effect of warping.
This is a good approximation for zero-field problems, but
at 10 tesla the convergence is not complete. The results
labeled 4h band include the coupling between all states in
the multiplet up to f symmetry. The effect of warping is
small in all cases (50.05 meV). We are, therefore,
confident that the effects of warping for non-[001] quan-
tum wells are also negligible. When the radial basis set I
is used, a small but significant decrease (of the order of
0.1 meV) in the binding energies is observed. We may
conclude from Figs. 8 and 9 that the 4h-band model and
a basis of about five subbands is in principle necessary to
obtain well-converged results. Computational effort can
be saved without introducing large errors by reducing the
number of electron subbands. At zero magnetic field
basis set I and the 3h-band model usually suSces.

For a given basis set the convergence decreases with in-
creasing magnetic field and depends only weakly on well
width. For narrower wells our confidence in the subband
expansion decreases because of the increased contribution

of the continuum states, although Ekenberg and Altarel-
li found the subband continuum admixture into the
ground-state excitons to be negligible. The quality of the
expansion decreases of course for higher excited states.
We do not attempt to establish general rules here, but
refer to Fig. 7 for the radial functions and note that for
the second subband transition the number of subband ex-
pansion functions is effectively reduced by one.

IV. REPRESENTATIVE RKSUI.TS AND DISCUSSION

In the following we present and discuss representative
numerical results from the theory outlined in the preced-
ing sections. We do not single out individual experiments
here. The comparison with several experiments on quan-
tum wells with different growth parameters has already
been carried out successfully in Refs. 22, 25, and 66-70.
In an attempt to give a comprehensive impression of the
effects of exciton mixing we proceed as follows. The
effects of the crystal-growth orientation are presented
first as a function of well width. The effects of external
perturbations on the other hand are illustrated for the
"standard" 100 A GaAs/Alo, Gao,As[001] quantuin
well for which convergence properties have been dis-
cussed in Sec. III. From this it should be qualitatively
clear what results are to be expected for different sample
parameters and/or different combinations of external per-
turbations as pressure and magnetic fields.

To indicate the main character of an exciton (at the
first electron subband) a notation as h (n, m ) and l~(n, m )

is used, where j is the subband index of heavy (h) and
light (I) holes and (n, m ) are angular moinentum quan-
tum numbers, as before (see Sec. III B). In all cases the
same state of the art parameter set ' in Table III and
68/32 band offsets have been employed (which do not
necessarily give best agreement with all experiments,
however ). In all cases the width of the infinite potential
well which eliminates the subband continuum exceeds the
quantum-well width by 250 A.

A. Crystal growth direction and mell width dependence

The results of our calculations for heavy- and light-
hole excitons are presented in Figs. 10—14 as a function
of quantum-well crystal orientation and well width (3h-
band model, four electron plus six holes subband basis,
radial basis I, cf. Sec. III C). Also displayed are the re-
sults as obtained in the two-band model where valence-
band mixing is neglected (though Coulombic couplings
between excitons at different subbands are included).
Ground-state energies of I 7s (predominantly heavy-hole)
excitons and their oscillator strengths for unpolarized
light with wave vectors normal to the well are plotted in
Figs. 10 and 11. The oscillator strengths for [001] quan-
turn wells differ by a scale factor from our previously
published ones, which had been obtained for a different

f and light polarization. In Fig. 12 binding energies of
I 7s first excited (2s) excitons are given. The effects of
mixings, crystal direction, and well width are small,
which lends credit to the method of measuring exciton
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FIG. 10. I 7g (heavy-hole) ground-state exciton binding ener-
gies of GaAs/Alo 3Gao 7As quantum wells grown along the main
crystal directions. The two-band model corresponds to the
neglect of exciton mixing. The dot-dashed line is corrected for
electron nonparabolicity.

14
Light —hole excitons (1s)

FIG. 12. As Fig. 10, but for the first (2s) excited state of I 7g

(heavy-hole) excitons.
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FIG. 11. Oscillator strengths of the exciton transitions in
Fig. 10 for unpolarized light incident normal to the well.

FIG. 13. Binding energies of I «(light-hole) excitons relative

to the light-hole band edges of GaAs/Ala 3Ga07As quantum

wells grown along the main crystal directions. Solid lines indi-

cate the position of the first heavy-hole subband edges. An-

ticrossing with h&(3d) is displayed but mixing with other d

states is omitted. The two-band model corresponds to the

neglect of exciton mixing.
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FIG. 14. Oscillator strengths of the exciton transitions in
Fig. 13 for an unpolarized light incident normal to the well.

binding energies via 1s-2s term splittings. ' ' Note the
sudden increase of the binding energy at large well widths
for the [111]system which is caused by interactions with

excitons associated with the third heavy-hole subband.
Although this effect is hardly observable, it indicates that
interesting mixing effects can be expected for still larger
well widths, but we are not aware of experimental work
in this direction. The binding energy of h, (3s) is calcu-

lated to vary between 0.52 and 0.61 meV for the investi-

gated well widths and crystal orientations.
The effect of the electron nonparabolicity has been es-

timated by employing the electron effective masses at the
bottom of the first subband as calculated by the eight-
band k p method from Refs. 75 and 76. The effects on
the binding energy are quite different from the results of
previous work, being smaller and less dependent on well
width. This is probably due to the consistent treatment
of the nonparabolicities in well and barrier materials,
which partly cancel and compensate well width depen-
dences. Following suggestions in Ref. 76 we have also
tried to incorporate the effect of the light-hole nonpara-
bolicity by using subband-energy-dependent Luttinger
parameters. It turned out that such an approach is
meaningful only in the limit of a very large spin-orbit
splitting, which is not realistic for the present system.
The effect on the exciton binding energies is probably
significant in the neighborhood of exciton anticrossings
only.

The results for the l&(ls) binding energies are given in

Fig. 13. The position of the first heavy-hole subband con-
tinuum is indicated by heavy lines. The light-hole s-type
exciton mixes with the heavy-hole d-type excitons, which
leads to the anticrossing close to the band edge. This is
more evident in the oscillator strengths (Fig. 14). If
separated in energy from I, (ls) the oscillator strength of

the it, (3d) is very weak, but close to crossing the light-
hole exciton line will split into a doublet. This borrowing
of oscillator strength of h, (3d) from l, (ls) has recently
been observed. When the light-hole exciton merges
with the continuum a Fano resonance occurs. The lines
in Fig. 13 inside the heavy-hole continuum trace the ap-
proximate location of the resonance as obtained from a
numerical "dediagonalization" of the s-type light-hole ex-
citon and the unbound heavy-hole states with d charac-
ter. The higher excited but bounded ht(4d), etc. states
are so closely spaced in energy that we treat them like the
continuum.

It is well known by now that valence-band couplings
are more important for the light-hole than for the heavy-
hole bands, causing electronlike effective masses at the
zone center (Fig. 3). In agreement with previous theories
we find indeed a larger binding energy, with more
significant effects of exciton mixing. There is also a clear
dependence on the quantum-well crystal orientation,
which is easily understood as follows: The h2(2p) exci-
ton turns out to strongly mix with the ground state of the
light-hole exciton I, ( ls). The anisotropy of the light-hole
exciton binding energy can thus be traced to the strong
anisotropy of the second heavy-hole subband energy. In
the [111]direction the second heavy-hole subband energy
is minimaI and pushes the light-hole exciton to lower en-
ergies, causing a larger binding energy. The oscillator
strength of the exciton in [111]quantum wells (Fig. 14) is
smaller than that of the other directions, which is caused
by the increased hz(p) component, which has no oscilla-
tor strength in itself.

The effect of mixing on the exciton ground states is not
very dramatic, so that perturbation theory can be ap-
plied, and limitations of the basis also do not seriously
affect the results. The present binding energies for the
[001] direction are therefore only a few tenths of an meV
larger than those of comparable theories. ' But there
is mounting evidence ' ' ' that theory underestimates
ground-state exciton binding energies by =1—1.5 meV.
Duggan ' obtains good agreement with experiment us-

ing a two-band model of impenetrable potential barriers
and a heavy-hole parallel mass of 0.18, but his approxi-
mations are known to overestimate binding energies. It
has been claimed that polaron corrections to exciton
binding energies can explain the discrepancies. But pola-
ron corrections to the exciton binding are completely
negligible for the bulk. The enhancement of polaron
corrections in the quantum well is according to our esti-
mates clearly too small to achieve agreement between
theory and experiment. Corrections due to image poten-
tials are also estimated to be very small considering the
small difference in dielectric constant between GaAs and
(Al, Ga)As alloy and the rather wide wells considered
here. It is thus tempting to ascribe the discrepancies to
the neglect of "central-cell corrections, " which are quite
significant in the case of shallow impurities with compa-
rable binding energies.

B. Pressure and electric field eSects

Stress applied in the growth direction of a [001) quan-
tum well shifts the heavy-hole subband relative to the
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light-hole subband. The subband order can be reversed

with a relatively small external pressure of a few kbar. In
the present context pressure effects are interesting be-
cause of the anticrossings expected due to the exciton
mixing. Note that mixings observed in Refs. 18 and 24
are not treated here because they originate from pressure
applied parallel to [001] quantum wells which breaks the
fourfold rotational symmetry.

In Fig. 15 the main exciton peaks with nonzero oscilla-
tor strengths and subband edges of heavy- and light-hole
excitons are plotted as a function of the external stress for
our standard quantum well (basis as in Sec. IV A). As in

Fig. 13, anticrossings are calculated between h, (3d} and

l&(ls), l&(2s) as well as between lt(3d) and h t(ls), h &(2s).

Parity-forbidden exciton states like lt(2p) and h, (2p)
gain oscillator strength when an electric field is switched
on. Also, new anticrossings can be expected ' when

the subband edges are tuned through each other as indi-

cated in Fig. 16. The mixings involving 3p states (not
shown) are very weak. Utilizing the external pressure
effects, field-induced anticrossings reported by Vi5a
et al. ' should be observable also for other sample pa-
rameters. Note the anomalous behavior of 1&(2p} caused

by the interaction with hz(ls), which decreases with in-

creasing pressure.

C. Magnetic field efFects

45
Q - 30kV/cm
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FIG. 16. As Fig. 15, but in the presence of an applied electric
field of 30 kV/cm.
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FIG. 15. Exciton energies as a function of uniaxial pressure
of a 100 A [001] GaAs/Alo, Ga07As quantum well. h(ao ) and
I( ao ) denote the subband edges of heavy- and light-hole transi-
tions.

The main effects of a magnetic field are a parabolic
confining potential in the plane of the well and a splitting
of the (Kramers) spin degeneracy of the exciton states.
The magnetic confinement leads to an enhancement of

the oscillator strengths, especially of weakly bound excit-
ed exciton states, and a large number of them may be-
come observable. The energy shifts of the different exci-
tons are also very different, resulting in complicated pat-
terns in the spectral fans. Results for our standard quan-
turn well are depicted as a function of magnetic field in
Figs. 17-21. They have been obtained with a basis of six
subband states for the holes and the radial basis II. To
save computer space and time only two electron subbands
are included which causes for the present well width er-
rors of about 0.05 meV. Warping is neglected, but all
other couplings up to f symmetry are included. Exciton
states are plotted separately according to their group rep-
resentation labels I 7g I 6g I7 and I 6„and the spin
direction of the hole. The full lines correspond to the
hole "spin-up" states, i.e., the s component belongs to the
valence band with M' = ——,

' or M' = ——,', while the
dashed lines denote the "spin-down" states M'= —,', —,'.
The spin directions can be observed separately by polar-
ization analysis of the light in the Faraday configuration,
as indicated in Fig. 2. The electron g factor is too small
to cause observable effects on the energy scale in Figs.
17—20 (=0.1 meV). The ungerade exciton transitions
are strictly forbidden in one-photon experiments on sym-
metric quantum wells, but they are the observable ones in
two-photon spectroscopy. ' There are also indica-
tions that mechanisms exist which render forbidden
transitions visible, like unintentional imperfections or re-
sidual electric fields. Also it is possible to transfer oscilla-
tor strength from allowed to forbidden transitions by an
intentional application of an electric field, as discussed
above. The states with 1arge radial quantum numbers
which are not calculated accurately because of basis set
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7 7 K
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The Coulomb interaction is seen to be diagonal in the an-
gular momentum quantum numbers (n, m) by substitut-
ing (Al) into (A2) and carrying out the angular integrals.
The radial integrals are of the type (N integer)

where the ~*s may be real or imaginary and the integral
bounds are determined by the width of the quantum well
and the distance to the outer infinite potential barriers
which have been introduced to avoid continuum subband
states. Equation (A4) is most easily evaluated by using
the relation

dpp Jo pq e (A3)
—~ lz, —z& l dt q I~(z, —z„)

~ q2+t2
(A5)

where Jo(pq ) is the zero-order Bessel function. Equation

(A3) is readily calculated analytically. The integrals over

the subband wave functions can be decomposed into a

sum of integrals of the type

The z integrals are then easily carried out, while the t in-
tegral is evaluated by contour integration. The remaining
one-dimensional integrals over the Fourier components q
are complicated but well behaved and can be computed
numerically with arbitrary precision.
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