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Empty-lattice test for non-muSn-tin multiple-scattering equations
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The extension of the Korringa-Kohn-Rostocker band-theory method to non-muffin-tin potentials
is studied analytically for the case of an empty lattice with a constant potential. The magnitude of
the potential is used as an expansion parameter and to first order the exact eigenvalues are obtained.
Second- and third-order corrections are studied and shown to vanish if the correct form of the
multiple-scattering equations is used. It is conjectured that also all higher-order corrections vanish
in the empty-lattice case. The errors arising from a truncation in the angular-momentum expansion
are investigated numerically, and it is shown that the convergence is much better than previously
believed.

I. INTRODUCTION

The multiple-scattering band theory, originally derived
by Korringa' and by Kohn and Rostoker (KKR) for the
case of muffin-tin potentials, plays a central role in
electronic-structure calculations, particularly for disor-
dered metallic alloys by the KKR-(CPA) (coherent-
potential-approximation) method and for impurities in
metals by the KKR Green's-function method. ' These
calculations heavily rely on the fact that multiple-
scattering theory for muffin-tin potentials can be separat-
ed into single-scattering properties depending on the
single-site potentials and into structural properties not
depending on the potentials. It would be very desirable
to have this separation also for the case of general non-
muffin-tin potentials. This seems to be a difficult problem
and several different suggestions have been published in
the past as to how the multiple-scattering equations can
be extended to the general case. ' Unfortunately, some
of the earlier authors, " ' who claimed that a separation
is possible in the general case, derived their equations
with unjustified assumptions. Ziesche' and Faulkner
have argued that a correct derivation must contain the
so-called near-field effects which probably prevent the
separation between structure and potential-dependent
terms. On the other hand, by presenting new arguments
Brown and Ciftan, ' Gonis, ' and Zeller' have recent-
ly tried to show that a separation is possible with the
same structure dependence for the cases of non-muffin-tin
and muffin-tin potentials. However, although these au-
thors agree on that they have derived exact multiple-
scattering equations showing the separation, they
disagree on the analytical form of the multiple-scattering
equations and on the situations where they can be applied
and where they fail. Therefore it is desirable to investi-
gate a model for which the exact energy eigenvalues are
known and to see if and how the different proposals for
multiple-scattering equations lead to these eigenvalues.
The model always used in such investigations ' ' ' is
the empty lattice with a constant potential v(r) =A, . This
potential is clearly of non-muffin-tin form when written
as a set of nonoverlapping potentials v(r)=A. Q e (r).

The step function 8 (r) has the value l inside the mth
unit cell and is zero outside. The eigenvalues for the
model are easily obtained from the free-electron eigenval-
ues by a constant shift

E„(k)= ik+K„i'+A, ,

where k is the Bloch vector and K„ is a reciprocal-lattice
vector. Only Badralexe and Freeman' are able to prove
analytically that their equations exactly reproduce the ei-
genvalues given by (1). For all other types of multiple-
scattering equations, particularly for the interesting cases
with separation between structure and potential depen-
dence, " ' ' only numerical investigations were possi-
ble. ' ' ' The most extensive calculations were recently
done by Faulkner, who investigated the two-
dimensional square lattice including very high angular
momenta up to 1,„=56. He neglected near-field effects,
and for the multiple-scattering equations originally given
by Williams and van Morgan' ' he showed that if eigen-
values are converged with /, „=56 then they agree with
the exact results. Numerical instabilities prevented him
to go beyond 1,„=56 and to see if all eigenvalues con-
verge to the exact results or not. Therefore his calcula-
tions are inconclusive as to whether or not near-field
effects exist and how large they are.

The aim of the present paper is to investigate analyti-
cally the empty lattice with a constant potential within
the general potential KKR formalism and to show that
for this special case near-field effects vanish faster than to
third order in the strength of the potential. This result
and the general arguments of Ref. 17 lead to the conjec-
ture that also no higher-order corrections exist, which
means near-field exactly vanish for the empty-lattice
model. A necessary condition for the present derivation
is that certain restrictions for the unit cells are satisfied
and the equations originally proposed by Williams and
van Morgan' ' must be used, whereas the more recent
equations by Brown and Ciftan' are only approximately
valid. The convergence with 1,„critically depends on
the particular form used for the secular matrix. It is
shown that the convergence is similar to that in the Tay-
lor expansion of e, but only if the secular matrix given in
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Sec. II is used, whereas it is much slower in the form
given, e.g., by Williams and van Morgan, ' ' Faulkner, o

and Gonis. ' The present paper is organized as follows.
In Sec. II the general multiple-scattering equations are
expanded in orders of the magnitude of the constant po-
tential. It is shown in Sec. III that the first-order terms
give the exact result (1} in the limit l,„~ao. The con-
vergence is studied in Sec. IV and numerical results for
the case of the two-dimensional square lattice are given.
The importance of the present results for practical appli-
cations is discussed in Sec. V. Finally, the Appendix is
used for treating the mare complicated higher-order
terms of the expansion.

II. MULTIPLE-SCATTERING EQUATIONS

The present paper is based on the simple observation
that the eigenvalues E„(k) in (1) depend exactly linearly
on the constant potential A, . Compared to the case of an
arbitrary potential, this linear dependence considerably
simplifies the investigation for the empty-lattice case. In
order to show that multiple-scattering equations are ex-
act for this special case, it is not necessary to solve them
exactly; it suffices to make an expansion in orders of A,

and to show that the first-order terms give the correct re-
sult (1) and that all higher-order terms vanish. Section V
contains a detailed discussion on the connection between
the different farms for multiple-scattering equations. For
that reason the expansion is considered here only for the
multiple-scattering equations as derived by the present
author. ' They can be written for the special case of a
constant potential v(r)=A, g 8 (r) as below in Eqs.
(2)—(5). The single-site wave function is given by the in-

tegral equation

g(r —r', E)=g( [ r —r' [, E)= —e'"~' '
~ /(4ir

~

r —r'
~

) .

(3)

The single-site t matrix is given by

t«(E)=A, f dr J~(r, E)R~ (r,E), (4)
T

and the band-structure eigenvalues E„(k) are obtained
from the zeros of the KKR determinant as solutions of

det 5« —gg«(k, E)tL,. L, (E) =0.
L"

The KKR structure constants

g«(k, E)= g exp(ik. R )gt™L'(E)
m~0

are the usual ones of the muSn-tin case. ' They have the
symmetry property gL™L'(E)=(—1)' 'gL L'(E), are not
defined for m =0, and are given for m &0 by

gL™L'(E)= 4mi—vgi' '+' C«t-HL„(R~, E), (7)
Ltl

with the Gaunt coeScients

CLLL = YL r ~ YL r P YL r

Ht -(R~,E } is the product of the spherical Hankel func-
tion h&'-" (iiR } and the real spherical harmonic
YL-(R /R ), and R is a real lattice vector with length
R =JR

A consistent and convergent expansion for (2), (4), and
(5} in orders of A, , not limited by the magnitude of A, , is
obtained by applying Fredholm's theory to the linear in-
tegral equation (2) and to the infinitely dimensional linear
system of algebraic equations for the expansion
coefficients cL (k, E}of the Bloch waves,

RL (r, E)=JL (r,E)+A f dr'g(r r', E)R—L (r', E),
'r

cL(k, E}= g g«. (k, E)tt-t (E)cL (k,E),
L, 'L"

(9)

where the integration is over the unit cell with volume w.

Jt (r, E) is the product of the spherical Bessel function

jl(ar } and the real spherical harmonic Y& (r/r ) with the
usual notation r =

~

r ~, v=&E, and I. combining 1 and
m. The free-space Green's function g(r —r', E} is given
by

for which (5) represents the condition that the Fredholm
determinant vanishes. Equation (2) is solved as

RL(r, E)=JL(r,E)+A f dr'I (r, r', E,A)JL(r', E), (10)
T

and the resolvent kernel

I (r, r', E,A, ) = g(r —r', E)+ g ( A, }t'K~(r, r', E)—
p)1

1+ g ( —A. )% (E)
p)1

can be obtained from the recursion formulas

K (r, r', E)=5 (E)g(r —r', E)
—f dr"g(r r", E)K~,(r",r',—E),

7

5 (E)=p ' fdrK, (r, r, E),
'T

(12)

(13)

starting with Ko(r, r', E}=g(r—r', E). Because
Ko(r, r', E) does not exist for r=r', it is necessary to
make the usual extension Ko(r, r, E ) =0 leading to ~"'(k,E)=p-' yK,",-"(k,E),

L
(15)

5i(E }=0. The determinant in (5) can be expanded as

det 5« gg«-(k, E ) tL, .L.—(E )
L"

=1+ y ( —1) b, '~'(k, E) . (14)
p)1

In analogy to (12) and (13}, the quantity b, '~'(k, E) is
given by
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with

K,",'. (k,E)=~"'(k,E)K,",', (k, E)
—g KL'L'-(k, E)Kq~L "(k,E),

L tl

KLt (k, E)=ggt.L (&,E)tL-L, (E)
L It

(16)

(17)

tLL.(E ) =A, tt. 't.'. (E),

with

ttt (E)=f dr JL(r,E)Jt..(r, E) .

(18)

(19)

It should be noted that the parameter A, which usually ap-
pears in Fredholm's theory is set equal to 1 in (9) and in
(14)—(17).

It follows from (15)—(17) that to first order in A, only
5"'(k, E ) contributes in (14) and the resulting condition
for the eigenvalues E„(k) is

III. FIRST-ORDER EXPANSION

The result for the eigenvalues E„(k) to first order in A,

is obtained if RL (r, E) in (10) is replaced by JL (r,E) and
if the single-site t matrix is evaluated as

0= 1 —}(, g gL L.(k, E„(k))tt t (E„(k)) .
L,L'

The use of (6) and (19) leads to

(20)

0=1—A, g g exp(ik R )gtL'(E„(k)}f dr JL (r, E„(k))JL (r, E„(k})
L,L' m&0

=1+isa.„(k) g exp(ik R )f dr g Jt (r,E„(k)}HL(r R, E„(k—)),
m~0 L

(21)

ixHL (r+R—, E)= g Jt. (r, E)gLL'(E) .
L

Equation (22) leads for the special case 1 =0 to

g(r —R, E)= is.g JL (r,E)—HL.(R,E)
L'

(23)

(24)

when (6) with COOL L- (4n) ' ——5L L is used a~ nd when
(3) is written in the form

g(r —R, E)= (4n. )
'~ i—~H~(r R, E) . —

with a„(k)=[E„(k)]' . In (21) the generalized addition
theorem for products of Bessel functions and spherical
harmonics has been used. It can be written as

iaHL, (r —R, E)=—ggtL'(E)Jt. (r,E),
L'

or, equivalently, by using YL ( rlr )=( —I)'Yt (—rlr) and
the symmetry properties of gt L''(E ) as = 1 —A,r g exp(ik R }g(R,E„(k))

m&0
(25)

because the integrand loses its dependence on r. The nor-
mal definition of the reduced KKR structure constants
D& (k,E), see, e.g., Eq. (A2.22) of Ref. 2, can be used to
write (25) further as

0= I (Ar/&4m )Do—o(k, E„(k)) i &Att„(k)/4m—, (26)

or, alternatively, as a sum over reciprocal-lattice vectors
by using Eq. (A2.9) of Ref. 2,

In (22) —(24) the important condition r &R must be
satisfied for the convergence of the sums over L and L'.
When R in (24) is replaced by r —R the convergence
condition reads r ~

I
r —R

I
and (21) can be written as

0= 1 —A. g exp(ik R )f dr g(R, E„(k)}
m~O

0=1—[A'TK„(k)/4m](i +c to[a„(k)s] &/4m)+A[JO(a„(k)s)] 'g [ I
K„,+k

I

—E„(k}] 'jo(
I
K,+k

I
s),

n'

where s is arbitrary provided that s is smaller than the muffin-tin radius. The ansatz

E„(k)=
I
K„+k

I
+A.E„(k}, ~„(k)=[E„(k)]'

leads to

0=1—[A~~„(k)/4m][i+cot[~„(k)s]/&4~j —[e„(k)jo(sc„(k)s)] 'Jo(
I
K„+.k

I
s)

+~[jo(~.(k}s)] ' g [ IK. +k I' —IK.+k I' —~e.(k}l 'jo( IK., +k Is) .
n+n

(27)

(28)

(29)
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The lowest-order terms in (29) are independent of A, and
sufficient to determine e„(k). For nondegenerate eigen-
values with

~
K„.+k

~
&

~
K„+k

~

follows

0=1—[E„(k)jo(a„(k)s) 'jo(
~
K„+k

~

s)

=1—[e„(k)]-', (30)

where the equivalence of a„(k}and
~
K„+k

~

to lowest
order in A, has been used. This leads to e„(k)=1 and the
ansatz (28) reproduces the exact result (1). Degenerate ei-
genvalues arising from the symmetry of the underlying
lattice do not pose a problem because the constant poten-
tial does not change the symmetry and does not lift the
degeneracies. The above derivation can be repeated for
each irreducible representation of the symmetry group,
leading always to the result (1).

It should be emphasized that the derivation given in
this section is only valid if both conditions r &

~
r —R

and r & R are satisfied. This puts certain restrictions on
the construction of the unit cells around the cell centers
R . The first condition means that the cells must be

I

separated by planes bisecting perpendicularly the
straight-line connections between cell centers, i.e., by us-

ing the Wigner-Seitz construction. The second condition
does not allow too small distances between lattice points
in one direction together with too large distances in other
directions.

IV. STUDY OF THE I CONVERGENCE

For applications of multiple-scattering theory to
electronic-structure calculations, it is very important that
the results rapidly converge with l,„, the maximum
number of angular momenta used. For simplicity the
present consideration is restricted to the first-order term
(20), which is justified for two reasons. First, in the Ap-
pendix it is shown that second-, third-, and presumably
all higher-order terms vanish and, secondly, the residual
error in Faulkner's numerical investigation is rather ob-
viously proportional to A, . By using (A2.5) of Ref. 2 and
by noting that A I~.&.~. of Ref. 2 is equivalent to
gLL (k, E ) i tt5—LL, the following result is easily obtained,

Agtt. (k, E)=Att5Lt. [i nl(as—' )/jl(as)] A(4—m )'i' ' [rjI(as j)~ (as' )]

&& X( I
Kn'+k

I
E) 'A(

I
K '+k

I
s}J'i'( IK '+k

I
s')YL(k ')YL, (k ')

n'

(31)

AgLL (k, E„(k))=(4n ) i' '[ve„(k)] 'YL (k„)YL (k„),
(32)

where only terms of zeroth order in A. are retained on the
right-hand side. Implementing this result in the condi-
tion (20) and using (19) leads to

e„(k)=r ' f dr 4n gi'YL(k„) Jt(r,
~
K„+k

~
)

T L

(33)

which, upon summation over L, leads to

e„(k)=r ' f dr
~
exp[i(K„+k).r]

~

=1 .
T

(34)

This result is very similar to the usual first-order pertur-

where k„. is abbreviated as (K„+k)/
~
K„+k

~

and
where s and s' are arbitrary provided that s &s' and pro-
vided that s' is smaller than the muffin-tin radius. By use
of the ansatz (28} and by the arguments which led to (30)
follows

bation result for the bound states of the empty lattice
with constant potential, except that the integration is
over the unit cell instead of over the entire crystal and
that the plane waves are accordingly normalized. Ex-
pression (33) contains the usual angular-momentum ex-
pansion for the plane wave exp[i(K„+k) r] and can-
verges with l,„as the Taylor expansion for the exponen-
tial function e, i.e., rapidly if the argument
x =

~
K„+k

~

r is not too large. The actual convergence
is now studied for a particular example of a two-
dimensional lattice. This example is chosen because the
integral in (33) with a truncated sum is more easily per-
formed in two dimensions and because Faulkner inves-
tigated the same case. The main differences from the
three-dimensional case are that spherical Bessel and
Hankel functions jI and ltI" are replaced by Bessel and
Hankel functions JI and HI'" of integer order and that
the spherical harmonics are replaced by "circular" har-
monics which are simple exponentials. For a two-
dimensional square lattice with lattice constant a =2m. ,
i.e., the example considered by Faulkner, the Grst-order
result for the t matrix can be written as

t&&"(E)=f dx f dy exp[i(1+1')P]JI(ar)JI.(ar)

=f dr r JI(ar)JI(ar) f dgexp[i(1+1')P]+ f dr r JI(ar)JI(ar) fdesex [pi(l +1')P], (3&)
0 0 7r

where the polar coordinates x =r cosP and y =r sing have been used and where the last dg integral is over the four in-
tervals

arccos(n/r)+vs. /2&/&(v+1)n/2 arccos(n/r) w—ith v=0, 1,2, 3 . (36)
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By the fourfold symmetry, tII (E ) vanishes, except for I +I'=4p with arbitrary integer p, and the last d((} integral in (35)
can be replaced by 4 times the integral over the interval with v=O. By trivial integration over d P follows

(1) ~a2
tI&. (E}=2m' dr r J&(ar)J«(ar) —8 dr r Jl(ar)JI(ar)arccos(m'/r) for I+I'=0 (37)

and

tJ". (E)= —8/(I+I') f dr r JI(irr )Jl,(~r )sin[(1+I')arccos(tr/r )] for I+ I'=4p&0 . (38)

Because of J&(xr)=( —1)J &(ar), it is possible to choose the order of the Bessel functions always positive and to apply
a convenient expression for their products,

J&(ar )JI.(sr ) = (sr /2 )
+ g ( —1 }I'(ar /2 ) ~( I +I'+ 2p )!/[p!( I +I'+p )!(I +p )!(I'+p )!],

p&0
(39}

which is valid if I )0 and I &0. The remaining integrals
in (37) and (38) are easily perfortned numerically, e.g., by
Simpson integration to any desired accuracy.

It is interesting to compare the results obtained by (33)
with ones presented by Faulkner, who had to use much
more involved computations. The eigenvalues studied by
him were for the case k=O and for

~ K„~ =1.0. The p-
and d-like eigenstates had rapidly converging eigenvalues
(agreement of six figures with the exact results were ob-
tained with 1,„=34},whereas the s-like eigenstate had a
slowly converging eigenvalue. Even with 1,„=56
Faulkner could not decide whether near-Qeld corrections
were necessary or not. From symmetry arguments the ei-
genvalue for the s-like eigenstate can be obtained by using
4 times the right-hand side of (33) and by restricting the
sum over l to multiples of 4. In Fig. 1 the results ob-
tained for different values of l,„are shown together with
the results of Ref. 24. The present results (stars) clearly
converge much better than those of Ref. 24 (circles). De-
viations from the exact result (1—s=0) can only be seen
for l,„=0and 4. At first sight, the discrepancy between
Ref. 24 and the present paper is rather puzzling but it
has a simple reason. It arises from the particular form of
the secular matrix used in the calculations. Here 1 —gt is
chosen and t is truncated, whereas Faulkner chose
CS '+B and truncated CS '. Without the truncation
the two forms are completely equivalent because CS ' is
the negative of the real part of t ' and B is the real part
of g, but with the truncation they lead to quite different
results. Also, with the present expansion in A, it is possi-
ble to proceed as Faulkner and to obtain less rapidly con-
vergent results. The first-order t matrix (35) must be cal-
culated with a rather large cutoff (1=124 is chosen here
and by Faulkner) such that its inverse becomes a good
approximation for t '. The matrix t ' can be truncated
equivalently to Faulkner with different values of l,„and
the inverse of the truncated t ' can be used as an ap-
proximation for t in condition (20). The results are
shown in Table I. The first two columns are directly ob-
tained from (33) and represent an average over the sym-
metrized eigenvalues that would be obtained as actual
output from a band-structure calculation. Obviously, the
values obtained by truncating t (present work) converge
much more rapidly than those obtained by truncating t
(proceeding similarly to Faulkner). The last two columns

in Table I contain the symmetrized results for the s-like
eigenstate for which only I =0,4, 8, 12, . . .contribute.
These results are shown in Fig. 1 by stars (if truncating t )

and by crosses (if truncating t '). The values obtained
by truncating t ' compare very favorably with
Faulkner's values, particularly if one considers that he
used A, = —0.2 and —0.4, whereas the present calcula-
tions are for the limit A, —+0. For l,„&20 the present re-
sults can be directly estimated from extrapolating
Faulkner's values for A, = —0.4 and —0.2 to A, =O.O. ForI,„&20 Faulkner had considerable numerical difficulties
obtaining S ' because detS becomes very small. It
should be noted that the truncation problem mentioned

I 1 1 1 I 1 1 ~ t

t04
0

*

X

0.2 — ~

0.1

0 ' ~ ~x a ~
p ~

* * * * * * 4 * * * * * *

t
I l 1

t
I l l

t
I ! I

0 20 40 60
&mox

FIG. 1. Relative error for the eigenvalue of the s-like eigen-
state at

~

K„+k
~

=1.0 in the two-dimensional square lattice
with lattice constant 2m. The results obtained by truncating (33)
are shown by stars and the results obtained by truncating t
are shown by crosses. These results (valid in the limit A, ~O) are
compared with Faulkner's results (Ref. 24) for A, = —0.20 (open
circles) and for A, = —0.4 (solid circles).
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TABLE I. Averaged relative error for the eigenvalues and relative error for the s-like eigenstate at

~
K„+k

~

= 1.0 in the two-dimensional square lattice with lattice constant 2m. The results obtained by
truncating (33) are shown together with those obtained as described in the text by a procedure similar
to Ref. 24. Note the rapid convergence of the present results.

Averaged error
Present Ref. 24

Error for s-like state
Present Ref. 24

0
1

2
3
4
5

6
7
8
9
10
11
12
20
40
60

0.835
0.423
0.209
0.0699

—0.0157
—0.00609
—0.002 49
—0.000 810
—0.000 012 2

0.000 006 63
0.000 002 84
0.000 000 94
0.000 000 00

0.851
0.482
0.244
0.138
0.0915
0.0907
0.0818
0.0667
0.0489
0.0489
0.0474
0.0427
0.0335
0.0193
0.00633
0.00285

0.339

—0.003 29

0.000 003 79

0.000 000 00

0.404

0.217

0.146

0.109
0.068
0.024
0.011

here does not occur for muan-tin potentials for which
the matrices t and t ' are diagonal. It is therefore a
problem only appearing in non-mu5n-tin multiple-
scattering equations.

V. DISCUSSION AND CONCLUSION

It is easy to establish the connection between the
single-site wave function RL (r, E) used here and in Ref.
17 and the single-site wave function 4z(r, E) used by
other authors. ' ' ' Equation (2.5) in Ref. 13 reads

4L (r, E)= g JL(r, E)CLL
L

+ f dr'Re[g(r —r', E)]v(r')4 L(r', E) .
T

as

(r, E)= g JL.(r, E)(CLL'iaSL.L'),
L

+Afdr', g(r r', E)4—L (r', E) . (43)
T

Comparison with (2) shows that 4L ~ can be identified as

QL RL(CLz iaSLL —) Inserti. ng this into the definition
of SLL. leads to

SLL, , — &f d—r JL(r, E)@z (r, E)
7

= —A, g f dr JL(r, E)RL-(r, E)(CL, L iaSL L,
—),

L
tl 7

(44)

and using (4) leads to

(40) SqL ———gtLL (CL. L &xSL-q ), —
LII

(45)

Contrary to (2), the last equation contains only the real
part of the free-space Green's function. The imaginary
part can be obtained from (24) as

Im[g(r —r', E)]=—~ g JL(r, E)Jz (r', E),
L

which leads to

(41)

f dr'Im[g(r —r', E)]U(r')4L.(r', E)
7

= —~ g JL (r, E)f dr'Jz (r', E)U(r')4L (r', E)
L

=~+ JL(r, E)SLL. ,
L

(42)

with the notation —SLL for the last integral as intro-
duced in (3.4) of Ref. 13. By use of (42), one can rewrite
(40} for the special case of a constant potential U(r') =A,

from which t '= —CS '+i~ follows. Faulkner
denotes the matrix CS ' by X and Williams and van
Morgan' by g, whereas Gonis' uses the notation m for
t '. This consideration shows that the multiple-
scattering equations used here and in Refs. 12, 13, 15, 17,
and 24 are equivalent provided that the angular-
momentum expansion is not truncated. On the other
hand, Brown and Ciftan' ' ' define a wave function
4L (r, E) by using (40) with the integral extended to a
sphere which bounds the unit cell. They then use this
wave function to calculate C and S, which differ from
C and S defined by Williams and van Morgan. ' ' In the
present notation the procedure of Brown and Ciftan is
equivalent to calculating Rr (r, E) from (2) with the in-

tegral extended to the bounding sphere and using

RL (r, E}=JL(r,E}+Af dr'g(r r', E)Rr(r', E) (—46)
T
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as an approximation for Rr (r,E). An expansion of RL
agrees with that for RL to zeroth and first order in A, .
The second order differs and leads to a difference in third
order for the t matrix,

rgb'. '(E)=f dr fdr'f dr"Jr (r, E)g(r —r", E)
r ~ S

Xg(r" —r', E)Jr (r', E), (47)

which is equal to (A4), except that the dr" integration is
over the bounding sphere instead of the unit cell. With
(47) the result (A16) cannot be obtained because the sum
of integrals over bounding spheres is not equal to the in-
tegral over all space. This prevents application of (A14)
and the derivation of the Appendix breaks down. As a
result the eigenvalues obtained by the multiple-scattering
equations of Brown and Ciftan are likely to show devia-
tions from the exact values (1) in the third order of A, . Be-
cause the third-order terms are very small for the test
cases studied in the literature, ' it is clear that no
discrimination between the difFerent formulations could
be made on a numerical basis. A final remark can be
added concerning the atomic-sphere approximation,
where the integrals over unit cells are approximated by
integrals over spheres of equal volume. To first order in
A, the exact results is obtained, as (34) easily reveals.
Second and higher orders deviate because the integral
over all spheres is not equal to the integral over all space
and (A15) cannot be obtained.

In conclusion, it is worth summarizing with the follow-
ing points.

(1) An expansion with the magnitude of the constant
potential as an expansion parameter has been made for
the empty-lattice model and it has been shown that the
multiple-scattering equations given in Ref. 17 lead to a
first-order term which is the exact result, and that
second- and third-order terms vanish identically. It is
very likely that this is also true for higher-order terms.

(2) It has been shown that the eigenvalues converge ex-
ponentially with the number of angular-momentum com-
ponents taken into account. l=4 or 6 appears to be
suScient for practical purposes. This is in contrast to the
common belief that the convergence is very slow.

(3) The multiple-scattering equations given by Williams
and van Morgan' ' and similarly by Faulkner and
Gonis' are equivalent, but suffer from the form of the
secular matrix if the angular-momentum expansion is

APPENDIX: SECOND- AND THIRD-ORDER
EXPANSION

The result for the single-site t matrix (4) to third order
in A, is obtained from (11)—(13) as

trr (E)=AtLq (E)+A, tLr' (E}+AtLL' (E), .

with

tz"~', (E)=f dr Jr(r, E)JL (r,E),
'r

rLrI (E)=f dr f dr'JL(r, E)g(r —r', E)J~ (r', E),
T 7

tLILI (E)=f dr f dr' f dr"Jr (r, E)g(r —r", E)
7 7

Xg(r"—r', E)Jr (r', E) .

The KKR determinant follows from (14)—(17) as

(Al)

(A2)

(A3)

(A4)

truncated. The results are much less rapidly converging.
The equations given by Brown and Ciftan' are not exact,
but represent a good approximation.

(4) For the derivations in the present paper as well as
for those in Ref. 17, certain conditions for dividing space
into cells must be satisfied. They are stated at the end of
Sec. III as the Wigner-Seitz construction together with
r ~R . It seems likely that the cells around the atomic
positions cannot be constructed otherwise without intro-
ducing divergencies for l,„~00. For practical applica-
tions this is not problematic because the conditions can
always be satisfied by introducing additional empty cells.

(5) It is an important question as to whether or not the
results found here for the special case of the empty lat-
tice, i.e., rapid I convergence and negligible near-field
effects, are generally valid also for arbitrary smooth po-
tentials. The present work supports this view because a
nonconstant potential represents a minor diSculty com-
pared to the complicated nonspherical geometry for the
single-scattering event which already occurs in the
empty-lattice case. Nevertheless, further work is really
desirable to investigate this point because rapid conver-
gence and insignificant near-field effects would allow one
to use multiple-scattering theory in electronic-structure
calculations not limited by the muSn-tin approximation,
e.g., for not closely packed materials, surfaces, and inter-
faces.

det
~

1 gt
~

=1—A, Tr(gt—'")+(A, /2)[ —2Tr(gt' ')+[Tr(gt"')] Tr(gt"'gt"')I—
—(A, /6)[6Tr(gt' ')+6Tr(gt' 'gt'"}+2Tr(gt"'gt'"gt'"}]
—(A, /6)Tr(gt'") I [Tr(gt'")] —6Tr(gt' ') —3 Tr(gt'"gt"') I (A5)

in matrix notation with g =grr (k,E) and t"=tr'L. (E).
The sums over the angular-momentum indices in (A5}
can be performed by using (6) and the addition theorems
(22) —(24). The term proportional to A. has already been
derived in (25) as

Tr(gt'")=~ g exp(ik R)g(R, E. ) .
m~0

(A6)

The other traces in (A5) are obtained by repeatedly using
the result
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g g~~~'(E) f dr f dr'f(r, r')J~(r, E)Jt (r', E)=f dr f dr'f(r, r')g(r' —r+R, E),
L L' T T T

7

(A7)

which can be established for arbitrary functions f(r, r') by splitting the double integral fdr fdr' into two integrals,

one over r'(r and the other over r') r, and by interchanging r and r' in the second integral. This leads, for the left-
hand side of (A7), to

g gtIt'(E) f dr f dr'[f(r, r')JL(r, E)Jt (r', E)+f(r', r)Jt.(r, E)JL(r', E)]
L L' T r(r

7

by using (22} and (23) to

i~—f dr f dr' f(r r') QHL(r R,—E)Jt (r', E)+f(r', r) QHt (r+R, E)JL(r', E)
T r (r L

and by using (24) with r replaced by r' and R~ replaced by r —R or r+R to

f dr f dr'[f(r, r')g(r' —r+R, E)+f(r', r)g(r' —r —R, E)],
T r (r

which is equal to the right-hand side of (A7) because of g(r, E)=g(r, E). The necessary conditions r &
~

r —R
~

and
r'&

(
r+R

~

are satisfied because of r'&r and because the conditions r &
~

r —R
~

and r &
~

r+R
~

are satisfied
provided Wigner-Seitz cells are used. By using (A7} the following results are obtained:

Tr(gt' ')= g exp(ik. R )f dr f dr'g(r —r', E)g(r' —r+R, E),
m~0 T T

(A8)

Tr(gt ' )= g exp(ik R )f dr f dr' f dr"g(r —r", E)g(r" r', E)g(r—' —r+R, E),
m~O T

(A9)

Tr(gt( 1 )gt( 1 )
)

Tr( gt ( 2)gt ( 1 )
)

m&0, m'~0

m~0, m'@0

exp[ik (R +R .)]f dr f dr'g(r' —r —R, E)g(r' —r+R, E),
T T

exp[ik (R +R )]f dr f dr' f dr"g(r —r", E)g(r —r' —R, E)g(r' —r"—R, E),
T T T

(A 10)

(Al 1)

(gt ( ~ )gt ( ~ )gt ( ~ )
)

m+0, m'~0, m "~0
exp[ik (R +.R .+R .)]

X f dr f dr' f dr"g(r —r' —R ., E)g(r' —r"—R -, E)g(r"—r —R, E) .
T T T

(A12)

The terms (A8) and (A10) can be combined to yield

2Tr(gt' ')+Tr(gt'"gt'")= g exp[ik (R +R .)]f dr f dr'g(r' —r —R~, E)g(r' —r+R, E)
m, m' T T

dr r'g r' —r, E g r' —r, E
T T

= g exp(ik R )f dr g f dr'g(r' —r —R, E)g(r' —r+R -—R, E)
tl T T

—f dr f dr'g(r' —r, E)g(r' —r, E),
T T

(A13)

which is obtained by renaming R +R ~ as R -. The sum over m and the integration dr over the unit cell can be
combined into an integration over all space, and the general Green s-function identity

Bzg(r —r', E)=—f dr"g(r" —r, E)g(r" —r', E) (A14)

can be used to rewrite (A13) as

2 Tr(gt '2'}+Tr(gt ~ "gt ' ")= —~ g exp(ik R )azg (R , -E ) —f dr-' f dr g(r —r', E )g (r —r', E ) .
lt T

(A15)

Similarly, the terms (A9), (Al 1), and (A12) can be combined to yield
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6Tr(gt' ')+6Tr(gt' 'gt'")+2Tr(gt"'gt'"gt'")

=2 g exp[ik (.R +R .+R -)]
m, m', m"

X f dr f dr' f dr"g(r r—' R—., E)g(r' —r"—R -, E)g(r"—r —R, E)
T T T

—2f dr f dr' f dr"g(r —r", E)g(r' —r", E)g(r"—r, E)
T T T

=r g exp(ik. R -.)Bzg(R -.,E)—2f dr f dr' f dr"g(r —r", E)g(r' —r",E)g(r" —r, E),
ltt T T T

m

(A16}

where the last result is obtained by renaming R +R +R ~ as R and by using (A14) twice. With the abbreviations

G, (E)=~ g exp(ik. R )g(R,E)
m&0

=(7rKI4Ir)[i +cot(~s )/+4m ] [jo(—res }] g (
I K. +k

I

'—E} 'jo{
I
K'+k

I
s } (A17)

G2(E) =ag exp(ik. R )t3Eg(R, E)= —g( i
K„+k

~

E)— (A18)

G3(E)=~+exp(ik. R )t3zFg(R, E)=2+ (
i
K„,+k

i

2 —E) (A19)

finally follows, up to second order in A, ,

det
i

1 gt i

—=1—AG, (E)+(Az/2)[G, (E)+Gz(E)]+(Xz/2) f dr' f drg(r —r', E)g(r —r', E),
T T

and, up to third order in k,

det
i

1 gt i

=—1 —AG&(E)+(A, /2)[G&(E)+Gz(E)] —(A, /6)[G&(E) +3G&(E)Gz(E) +G (3E)]

+[A, l2 —(t(, /2)G, (E)]fdr'f drg(r r', E)g(r ——r', E)
T T

+(A, l3)f dr f dr' fdr"g(r —r", E)g(r' —r",E)g(r"—r, E) .
T T T

(A20)

(A21)

To establish the result (1) up to third order in A, , it must be shown that the ansatz E„(k)=
i
K„+k i

+A, +A, /+X g'

for the eigenvalues —if inserted into det
i

1 gt
i
=0—le—ads to /=0 and g =0. Enstead of using (A21) to determine

both g and g' it is easier to use first (A20) to determine g and then (A21) to determine g'. Equation (A20) leads to

0= —,'+(A2/2)Gz(E„(k))+ —,'[1—AG, {E„(k))]+(A, /2) fdr'f drg(r —r', E„(k))g(r—r', E„(k)) . (A22)
T

To obtain g it is sufficient to retain terms independent of 2 and proportional to A, in (A22). By the first-order result, the
expression 1 —AG|(E„(k)} is at least proportional to A, and the last two terms in (A22) can be neglected. Expanding
(A18) leads to

0= —,'+(t(2/2) (A, +k2g) —g (
i
K„+k

i

—
i K„+k i

—A, —A, g)

= —A,/+terms of higher order than first in A, .

This implies (=0. Similarly, {A21}leads to

0= —,
' —(A, /6)G3(E„(k)) ——,'[1—AG, (E„(k))]

+[1—AG, (E„(k))][1—AG, (E„(k))]+(A, /2)[G, (E„(k))+G2(E„(k))]

+(A, /2)[1 —AG, {E„(k))f dr' f drg{r —r', E„(k))g(r—r', E„(k)}
T

+(A, /3) f dr f dr' f dr"g(r —r", E„(k))g(r' —r", E„(k))g(r"—r, E„(k)) .
T T

(A23)

(A24)

Here all terms but the first two can be neglected because they are at least proportional to A, . Expanding (A19) leads to

0=-,' —(A, '/3) (A, +A, 'g') '+ g (
i K„+k ~

' —
i
K„+hi' —A, —A, 'g') '

= —A, g'+ terms of higher order than second in A, . (A25)
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This implies g'=0 and, finally, for the eigenvalues
E„(k)=

~
k+K„~ +A, . It is conjectured that, similar to

second- and third-order terms, fourth- and higher-order
terms also lead to vanishing corrections for the eigenval-
ues. Because the investigation of higher orders is still
more complicated than for the second and third orders, it

was not done and the conjecture is based on the results of
Ref. 17. There it was shown that the multiple-scattering
equations used here converge to the exact results if possi-
bly diverging angular-momentum expansions are summed
by the Borel technique.
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