Bulk band dispersion in Ti_2O_3 and V_2O_3

Kevin E. Smith^{*} and Victor E. Henrich

Applied Physics, Yale University, 15 Prospect Street, New Haven, Connecticut 06520

(Received 4 December 1987)

We report here a comprehensive study of the bulk electronic structure of single-crystal Ti₂O₃ and V₂O₃ using both angle-integrated and angle-resolved photoemission and synchrotron radiation. The electronic structure of these materials is of particular interest because of the metal-insulator transitions which they undergo. Slight (<0.4 eV) dispersion of the cation 3d bands is observed in both materials, supporting a band model for their electronic structure. Large discrepancies are observed between the measured band dispersion and published calculations for both materials. The O 2p emission is too broad to permit extraction of unambiguous band dispersions. Resonant photoemission is observed from cation 3d states in both Ti₂O₃ and V₂O₃ as the photon energy is swept through the cation $3p \rightarrow 3d$ optical-absorption edge. A valence-band satellite is resolved in the angle-integrated photoemission spectra from V₂O₃; resolving this feature shows that the actual width of the O 2p band in V₂O₃ is almost 2.5 eV narrower than previous studies indicated.

I. INTRODUCTION

The bulk electronic structure of Ti_2O_3 and V_2O_3 has been the object of much experimental and theoretical investigation over the past 40 years. The interest in these materials comes primarily from a desire to understand the nature of the metal-insulator transitions which these materials undergo, although even the nature of the room-temperature metallic state in V_2O_3 is controversial.¹⁻¹⁰ A variety of experimental tools have been used to probe the electronic structure of these materials,¹ and, with the advent of photoemission spectroscopy as a powerful method of extracting electronic-structure information, both materials have been the subject of numerous photoemission studies. $^{11-20}$ Unfortunately, the majority of these studies suffer from either using powdered samples¹⁶⁻¹⁸ (as opposed to single crystals), which allows the metal cations to have a variety of ligand coordinations, or by using single crystals whose surfaces are either damaged (i.e., have a high defect density induced by inert-gas ion bombardment)^{14,15} or are heavily oxidized.^{19,20} Recently, however, there have been a number of studies 11-13that have used single crystals cleaved in ultrahigh vacuum (UHV) and that have taken care to avoid both contamination and defects. While these angle-integrated photoemission studies allowed for the determination of the bulk density of states, they did not allow energy-band dispersions to be measured.

We present here a comprehensive angle-resolved ultraviolet-photoemission-spectroscopy (ARUPS) study, using synchrotron radiation, of single-crystal Ti_2O_3 and V_2O_3 . By using this technique we have, for the first time, mapped out the *d*-band dispersion of these materials and tested the validity of the available band-structure calculations.^{2,10} We also present angle-integrated photoemission spectra for V_2O_3 taken using synchrotron radiation and report one of the first observations of resonant photoemission in a vanadium oxide; discussion of the details of resonant photoemission in these oxides is presented elsewhere. 21

In Sec. II we present a review of the current experimental and theoretical understanding of the electronic structure of Ti_2O_3 and V_2O_3 . Section III contains a brief review of the theories of ARUPS and resonant photoemission and discusses some calculations relevant to ARUPS studies of cleaved Ti_2O_3 and V_2O_3 . Section IV describes the experimental methods and samplepreparation techniques. The photoemission data obtained for both materials are presented in Sec. V, and Sec. VI discusses our results in reference to the available theoretical calculations. The paper concludes with a summary of results in Sec. VII.

II. Ti₂O₃ AND V₂O₃: A REVIEW OF ELECTRONIC-STRUCTURE THEORIES

A. General considerations

Both Ti_2O_3 and V_2O_3 have the corundum structure with a trigonal (rhombohedral) Bravais lattice. The unit cell (see, for example, Refs. 1-3) consists of a ten-atom basis set made up of two M_2O_3 molecular units. The crystal field splits the atomic d states into a pair of e^{σ} orbitals, a pair of e_g^{π} orbitals, and an a_{1g} orbital.¹ The a_{1g} orbital is directed along the hexagonal c axis, forming a covalent molecular bond between pairs of metal ions,³ the e_g^{π} orbitals are involved in bonding between metal ions in the basal plane, and the e_g^{σ} orbitals are directed towards nearest-neighbor oxygen atoms. The ordering of these orbitals in energy is different for Ti_2O_3 and V_2O_3 (see Fig. 1) and will be discussed below. The a_{1g} band can contain up to one electron per metal atom (i.e., two electrons per molecular unit, or four electrons per unit cell). The e_g^{π} and $e_g^{\pi*}$ bands, which overlap, can contain up to four electrons per metal atom (the asterisk indicates an antibonding orbital). The remaining e^{σ} , $e^{\sigma *}$, and a_{1g}^{*}

FIG. 1. Empirical band structures for Ti_2O_3 and V_2O_3 (from Ref. 1).

bands can together hold five electrons per metal atom. Occupation of the a_{1g} band decreases the c/a ratio by increasing the metal-metal pair bonding in the c direction; conversely, occupation of the e_g^{π} states increases the c/a ratio.

B. Ti_2O_3

Below about 200 °C, Ti₂O₃ is a narrow-band-gap semi-conductor ($E_{gap} < 0.1 \text{ eV}$).^{1,22} The order of the bands, as shown in Fig. 1, was determined primarily from optical measurements.²³ Angle-integrated photoemission spectra have confirmed the width and position of the bands.^{12,13} At these temperatures, the a_{1g} band is filled, giving Ti_2O_3 a $3d^1$ electronic configuration. As is shown in Fig. 1, this material derives its semiconducting nature from the existence of the gap between this filled a_{1g} band and the unoccupied e_{e}^{π} band. Above 200 °C, the material goes through a broad ($\simeq 200$ °C wide) semiconductor-tometal transition with an accompanying increase in c/aratio but no change in symmetry.^{24,25} Although less controversial than the transition in V_2O_3 , the exact nature of this transition is unclear.^{1,8} A band-structure calculation that includes intra-atomic Coulomb interactions (which must be considered in Ti_2O_3 since U, the intra-atomic Coulomb potential between d electrons, is comparable in magnitude to W, the electronic bandwidth) seems to predict many of the observed phenomena.¹⁰

C. V₂O₃

 V_2O_3 undergoes a first-order transition at 150 K from a monoclinic antiferromagnetic insulator at low tempera-

tures to a trigonal metallic state. In addition, above about 450-500 K there is a broad ($\simeq 150$ K) secondorder transition from the metallic state to a semiconducting one; this transition is similar to that in Ti_2O_3 . There is a vast body of literature devoted to the nature of these transitions (see Refs. 1, 4-7, 10, and references therein). More relevant to our experiments, which probe the nature of the room-temperature metallic state, are theories of the electronic structure of this state itself. The metallic phase displays a variety of anomalous properties, among them an extremely large T^2 term in the electrical resistivity (10³ times larger than in transition metals),²⁶ and a very large electronic specific heat.²⁷ Central to understanding V_2O_3 , and the differences between it and Ti_2O_3 , is the realization that it possesses two types of 3delectrons; with a $3d^2$ configuration, both the a_{1g} and e_g^{π} bands are partially populated (see Fig. 1). As in Ti_2O_3 , the order of these bands in energy has been determined from optical experiments,²⁸ but the width and separation of the bands have not been unambiguously determined; this will be discussed in Sec. VI. The most comprehensive theory of the metallic state assumes a Hubbard model and has the a_{1g} orbital half full, with 0.5 electrons per V atom contained within it and the remaining 1.5 electrons per V atom residing in the e_g^{π} band.³ The Fermi level lies within both bands, but the thermodynamic and transport properties of metallic V2O3 are postulated to be determined primarily by the e_g^{π} electrons.

III. ARUPS AND RESONANT PHOTOEMISSION: THEORY

A. ARUPS

1. General

The technique of angle-resolved photoemission, when used in conjunction with a tunable ultraviolet photon source (i.e., synchrotron radiation), is the most powerful method available for fully mapping out the dispersion of electrons inside a crystal.^{29,30} The technique was initially used to study single crystals of simple metals (see, for example, Refs. 30-38) and has been successfully used to examine the band structure of elemental³⁹ and compound semiconductors⁴⁰ as well as metal carbides, nitrides, and sulfides.⁴¹⁻⁴⁶ However, the energy-band dispersions of electrons in metal oxides have been less widely studied. Among the oxides studied prior to this work are ZnO,^{47,48} $SrTiO_3$,⁴⁹ and Fe_3O_4 .^{50,51} The reasons for the dearth of information on oxides are many, ranging from the difficulty of obtaining suitable single crystals to the difficulty in interpreting the spectra since, in comparison to metals, the photoemission features tend to be quite broad. As will be seen in Sec. V, the experimentally observed *d*-band emission in Ti_2O_3 and V_2O_3 is narrow enough to observe band dispersions clearly, but the emission from the oxygen 2p band exhibits much broader structures, making it harder to identify specific dispersions (although gross motion of the bands can be observed). Ti_2O_3 is an ideal oxide upon which to test the applicability of ARUPS to this class of materials; its semiconducting nature eliminates any surface charging effects, and the Ti 3d emission is well separated from the O 2p emission, allowing for unambiguous interpretation of the *d*-band dispersion.

2. Theory

The theory supporting the use of angle-resolved photoemission to measure energy-band dispersions in solids is well established and has been reviewed in a number of publications.^{29,30,36,41,42,52} The theory assumes the validity of the three-step model for photoemission (i.e., the ability to separate the bulk photoionization process from the transport of the photoelectrons to the surface and their escape into the vacuum) and also assumes a directtransition picture.⁵³ In a direct transition, it is assumed that the momentum of an electron excited from one band to another is unchanged (since the photon momentum is negligible in comparison). Thus

$$E_f = E_i + h\nu , \qquad (1)$$

$$k_f = k_i , \qquad (2)$$

where E_f and E_i are the final- and initial-state energies of the electron in the solid, hv is the photon energy, and k_f and k_i are the final- and initial-state wave vectors, respectively. The goal of an ARUPS experiment is to map $E_i(k_i)$ by measuring E(k) in vacuum (i.e., the kinetic energy and direction of the photoelectron in vacuum). To relate these we either need to know or to assume the dispersion of the final state inside the crystal, $E_f(k_f)$. If suitable calculated final-state bands are not available, as is the case for most materials, one generally assumes a free-electron final state inside the crystal:

$$E_f(k_F) = \hbar^2 k_f^2 / 2m - V_0 \quad (V_0 > 0) , \qquad (3)$$

where *m* is the mass of the electron and V_0 is a constant positive inner potential referenced to the vacuum level which defines the zero of the free-electron final-state band. The free-electron final state has been shown to be a reasonable approximation in the case of metals³¹⁻³⁸ and some semiconductors.⁴⁰

The final state in the crystal must then be related to the experimentally observed energy and direction of the photoelectron. This is done by using the fact that upon exiting the solid the component of k_f parallel to the surface, k_f , is conserved to within a surface reciprocal-lattice vector.⁵⁴ With this knowledge, simple kinematic equations for the behavior of the electron can be derived;^{29,40} these become even simpler if only electrons emitted normal to the surface are detected. For this case of normal emission, we have

$$k_{f}^{\parallel} = 0$$
,
 $k_{i}^{\perp} = k_{f}^{\perp} = 0.51(E + V_{0})^{1/2} \text{ Å}^{-1}$, (4)

where the free-electron mass is assumed and E and V_0 are expressed in eV. [As written, Eq. (4) ignores any umklapp processes; these can be included trivially if necessary.^{29,40}] Thus by measuring the way in which the kinetic energy of a particular feature in an energydistribution curve varies as the photon energy is varied, we obtain different values of k_i^{\perp} ($=k_i$ if $k_j^{\parallel}=0$), and can thus map out the dispersion along a direction in k space normal to the surface.^{30,38} (Other directions in k space can be probed by examining the off-normal emission. If this emission is monitored in a mirror plane of the surface, simple symmetry selection rules assist in the interpretation of the spectra.⁵⁵)

The analysis outlined above can be complicated by the presence of umklapp peaks (both surface and bulk), Auger peaks, satellite peaks, surface-state emission, resonant photoemission, and density-of-states effects.⁴¹ Fortunately, most of these effects are easily distinguished from the direct-transition peaks by virtue of their non-dispersive nature.

3. Normal emission from $(10\overline{1}2)$ surfaces of Ti₂O₃ and V₂O₃: Theoretical considerations

As will be discussed in Sec. IV, the only low-defectdensity cleavage surface for both Ti₂O₃ and V₂O₃ single crystals is the (1012) plane (hexagonal notation). [In trigonal notation, the $(10\overline{1}2)$ plane indexes as (411).⁵⁶] All ARUPS spectra presented here are for emission normal to this surface. As detailed earlier, both crystals have a trigonal Bravais lattice with the $D_{3d}^6(R3C)$ space group.^{1,2} The unit-cell dimensions for V_2O_3 are $a_H = 4.95$ Å, c = 14.00 Å,⁵⁷ and for Ti₂O₃ they are $a_H = 5.16$ Å, c = 13.61 Å.²⁴ The three-dimensional Brillouin zone, after Slater,⁵⁸ is shown in Fig. 2. Using the trigonal basis vectors defined by Slater, 58 it can be shown that the direction normal to the (1012) plane lies in the xzplane and intersects a Γ point 5.15 Å ⁻¹ from the Γ_0 origin for V₂O₃ and 5.04 Å ⁻¹ for Ti₂O₃; this Γ point is five zones from the origin. Thus the direction in k space probed by the normal-emission experiment from the (1012) surface is the $\Gamma_0 B \Gamma_5$ line, as shown in Fig. 3. Unfortunately, none of the available band-structure calculations give dispersions along this direction.^{2,10} However, as shown in Fig. 3, the calculated directions (the x and zaxes) do intersect the experimentally probed line, so that

FIG. 2. Bulk Brillouin zone for a rhombohedral Bravais lattice (after Ref. 58). The direction perpendicular to the $(10\overline{1}2)$ plane is the line marked ΓC .

FIG. 3. xz cut through the bulk Brillouin zone of Fig. 2. The direction perpendicular to the $(10\overline{1}2)$ plane is the dashed line from Γ_0 through Γ_5 . The scale is appropriate for Ti₂O₃. s and r are the fundamental units of the rhombohedral basis vectors (Ref. 58): for V₂O₃, s = 2.86 Å and r = 4.67 Å, and for Ti₂O₃, s = 2.98 Å and r = 4.54 Å. Thus in k space $|\Gamma_0\Gamma_5| = 5.15$ Å⁻¹ in V₂O₃ and 5.05 Å⁻¹ in Ti₂O₃.

comparisons between experiment and theory be can be made at selected points; this is done in Sec. VI. [Offnormal spectra were not taken here. Since the $(10\overline{1}2)$ surface does not contain a mirror plane, we decided to limit our first attempt at a band mapping of these materials to a normal-emission experiment.]

B. Resonant photoemission

Resonant photoemission is the phenomenon whereby photoemission from *d*-electron states is enhanced when the energy of the incident photons exceeds a threshold value related to the interband transition energy between a low-lying core level (in this study, a cation 3p level) and empty valence-band states near the Fermi level. This effect has been the subject of intensive investigation recently, and a comprehensive review has been published by Davis.⁵⁹ Much of the work in this field has concentrated on the heavy (Z > 25) transition metals and their compounds and on the rare-earth metals. In contrast, there are only a handful of studies concerned with resonance in the light (Z < 25) transition-metal compounds.^{13,49,60-62} We report here the observation of $3p \rightarrow 3d$ resonance effects in 3d photoemission from both Ti₂O₃ and V₂O₃ single crystals.

Resonant photoemission occurs when a separate ionization mechanism exists which leaves the system in the same final state as does conventional photoemission. For emission from a d state, the latter process can be written in an atomic picture as

$$3p^{6}3d^{n}+hv \rightarrow 3p^{6}3d^{n-1}+e^{-(\varepsilon)}$$
,

where a photon of energy hv ionizes the neutral atom and ejects a 3d electron with kinetic energy ε . If the photon energy is equal to, or slightly greater than, the 3p-3dinterband separation, we can get optical absorption,

$$3p^{6}3d^{n}+h\nu \rightarrow [3p^{5}3d^{n+1}]^{*}$$
,

where the asterisk indicates an atom or ion in an excited state. This state can decay a number of mechanisms; the one which is responsible for the resonance is direct recombination,

$$[3p^{5}3d^{n+1}]^* \rightarrow 3p^{6}3d^{n-1} + e^{-(\varepsilon)}$$
,

where the excited state transfers all of its energy to the emitted electron in an Auger-type decay. The final state following a direct recombination is the same as that following conventional 3d photoemission, and it is interference between these two phenomena that is the origin of resonant photoemission.

In the light transition metals, the onset resonance in 3d photoemission is delayed, occurring at photon energies higher than the 3p-3d interband separation.⁶⁰⁻⁶⁴ This delay is postulated to be due to the exchange interaction which increases the energy of the $[3p^{5}3d^{n-1}]^*$ excited state.⁶⁰⁻⁶⁵ The delay may be as much as to 10-15 eV and has been observed in Ti,^{60,63} TiN,^{61,62} and V,⁶³ among others.

The d electron emitted following deexcitation of the $[3p^{5}3d^{n+1}]^*$ state by direct recombination has the same initial state as does the d electron emitted by conventional photoemission. This is an important point since it implies that the resonant photoemission feature should show the dispersion of the d band if such dispersion exists. The intensity of the d emission may thus change dramatically during resonance, but the binding energy will just be that of the bulk d band. This has been observed previously in the ARUPS spectra of UPd₃.⁶⁶ However, some authors claim that resonant photoemission features should be dispersionless.⁴⁵ Nondispersive resonances have indeed been seen in the ARUPS spectra from a variety of materials, ^{45,62,67} but this is most likely a density-of-states effect, occurring at higher photon energies where k broadening of the spectra becomes important. We will not discuss the details of the resonance as displayed by these materials in this paper; a forthcoming publication will be devoted to the resonant photoemission process alone.²¹

IV. EXPERIMENTAL METHODS

A. Sample preparation

The single-crystal V_2O_3 in this experiment was grown by Dr. D. Buttrey of Purdue University, and the Ti_2O_3 by T.B. Reed of Lincoln Laboratory. Both materials cleave along only one direction, exposing the $(10\overline{1}2)$ face.^{11,12} In the case of Ti_2O_3 (1012) it is possible to reproduce a cleaved surface by a laborious sputter-anneal technique; 68,69 no analogous process has been found for V₂O₃ $(10\overline{1}2)$.⁷⁰ Since enough material was available to cleave, this was the method chosen to obtain stoichiometric surfaces approaching as closely as possible a truncation of the bulk lattice. In general, Ti₂O₃ cleaves much better than V_2O_3 . Both surfaces display (1×1) low-energy electron-diffraction (LEED) patterns, but those from Ti_2O_3 are generally of higher quality. The crystals were oriented using Laue x-ray diffraction and cut into rods approximately $3 \times 3 \times 10$ mm³ with the long axis perpendicular to the $(10\overline{1}2)$ direction. Cleavage grooves were cut every 1.0 mm on the side of the rods to facilitate cleavage. All crystals were cleaved in the experimental chamber at pressures $< 1.5 \times 10^{-10}$ torr.

B. Apparatus

All the experiments reported here were performed on beamline U14 at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. Photons of energy 30 < hv < 100 eV from a plane grating monochromator were used in this study. Angle-integrated spectra were taken using a cylindrical mirror analyzer (CMA) and angle-resolved spectra with a Vacuum Generators (VG) model 424 hemispherical electron spectrometer. Typical resolutions for both spectrometers were of the order of 200 meV at hv = 30 eV and 600 meV at hv = 100eV. Most angle-resolved spectra were taken with the photon beam incident at 45° to the sample normal; this gives mixed s- and p-polarized light. The closest to normal incidence (s polarization) that the experimental arrangement allowed was $\simeq 35^{\circ}$ (0° is normal). Angleintegrated spectra were taken with the photon beam incident at approximately 60° off the sample normal and the CMA axis at 45°. Base pressures during measurements were less than 1.5×10^{-10} torr. All spectra presented here are referenced to the Fermi level (E_F) , which was determined both by the emission from an automatically clean gold film and from the angle-integrated V_2O_3 spectra themselves. In addition, unless otherwise noted, all spectra presented are normalized to constant O 2p emission (i.e., the area under the O 2p peaks, after subtraction of a linear background). Pass energies were fixed at 25 eV for the CMA and 15 eV for the VG detector.

V. RESULTS

A. Angle-resolved photoemission from Ti₂O₃

Angle-resolved photoemission spectra for cleaved $Ti_2O_3(10\overline{12})$ are shown in Figs. 4 and 5. Figure 4 shows a series of normal-emission spectra taken with photon energies between 39 and 90 eV and with the photon beam incident at 35° to the sample normal. Figure 5 compares spectra from obtained at the same photon energy and emission angle (0°) but different incident-photon angles. The general features of all the spectra are similar. Emission from the Ti 3d a_{1g} band lies just below E_F . Emission from the O 2p band occurs because 4 and 10 eV below E_F . These bands are separated by a region of broad, low-intensity emission. As the photon energy is increased, changes occur in the emission from each of these regions. Resonant photoemission is dramatically displayed by the Ti 3d feature just below E_F . For $h\nu > 42$ eV, there is a huge enhancement of this emission (Fig. 4). As the photon energy is increased above the resonance maximum (\simeq 45 eV), the emission decreases slowly in intensity. The O 2p emission also shows the effect of resonance, displaying intensity changes as the photon energy is swept. The region of the spectra between the main Ti 3d emission and the broad O 2p emission shows apprecia-

FIG. 4. Normal-emission ARUPS spectra from cleaved $Ti_2O_3(10\overline{1}2)$ for photon energies from 39 to 90 eV.

ble variation in intensity and structure as the photon energy goes above resonance. In the available band models, 1,2,10 this region is an absolute bulk band gap. The O 2p emission displays a broad structure at all energies, with some variations in shape with changing photon energy. These data will be discussed in Sec. VI.

FIG. 5. Normal-emission ARUPS spectra from $Ti_2O_3(10\overline{1}2)$ taken with $h\nu = 54$ eV for photon angles of incidence of 35° and 45°.

B. Angle-resolved photoemission from V₂O₃

Angle-resolved photoemission spectra for cleaved $V_2O_3(10\overline{1}2)$ are shown in Figs. 6 and 7. Figure 6 shows a series of spectra taken with photon energies between 35 and 80 eV with the photon beam incident at 45° to the sample normal. Figure 7 shows the effect on a normalemission spectrum taken at hv = 60 eV of varying the angle of incidence of the photons from 35° to 65°. All spectra display the same general features; a broad structureless peak at E_F due to emission from the V 3d bands, and a wider and more structured peak beginning approximately 3.5-4 eV below E_f due to emission from the O 2p bands. The absence of a formal band gap between these features will be discussed in Sec. VI. The spectra are seen to pass through a resonance beginning at $h\nu \simeq 46$ eV. The V 3d bands show a dispersion slightly smaller than that seen for the Ti 3d bands in Ti_2O_3 . As for Ti_2O_3 , the O 2p bands show some intensity changes as the photon energy is varied.

C. Angle-integrated spectra from V₂O₃

Figure 8 shows a series of angle-integrated photoemission spectra for photon energies from 40 to 65 eV. The main features are very similar to those visible in the ARUPS spectra of Fig. 6. In addition to the resonant behavior described in the preceding section, a new feature at approximately 11 eV below E_f , labeled A, is visible in

FIG. 6. Normal-emission ARUPS spectra from $V_2O_3(10\overline{1}2)$ for photon energies from 35 to 80 eV.

FIG. 7. Normal-emission ARUPS spectra from $V_2O_3(10\overline{1}2)$ taken with $h\nu = 60$ eV for photon angles of incidence of 35° and 65°.

all the spectra. At higher photon energies, a second small feature labeled B, is visible about 2-3 eV below A. These data will be discussed in the next section.

VI. DISCUSSION

The data presented in the preceding section contain information on a number of phenomena of interest in Ti_2O_3

FIG. 8. Angle-integrated photoemission spectra from $V_2O_3(10\overline{1}2)$ for photon energies between 40 and 75 eV.

and V_2O_3 : the bulk electronic density of states, the nature of the band gap between the cation *d* levels and the oxygen *p* levels, the polarization dependence of the photoemission spectra, the bulk band dispersion, and the resonant photoemission phenomenon. We will discuss all but the last of these topics in the present paper; resonant photoemission is considered in a separate publication.²¹

A. Bulk band dispersion in Ti₂O₃ and V₂O₃

In general, the angle-resolved spectra from both Ti_2O_3 and V_2O_3 obtained in this study are similar to those obtained in an angle-integrated mode. The photoemission spectra from these materials have been shown previously to be primarily representative of the bulk electronic structure as opposed to any specifically surface-related structure.¹² The similarity between the angle-integrated and angle-resolved spectra indicates that even at low photon energies density-of-states effects are important in these materials. However, as illustrated in Figs. 4 and 6, there is a small but significant dispersion of the 3d bands in Ti_2O_3 and V_2O_3 as the photon energy is varied; this cannot be explained as a density-of-states effect. Additionally, changes in the O 2p emission feature with photon energy can be seen in both materials, but the emission is too broad to extract unambiguous O 2p band dispersions.

Our goal is to determine the dispersion of the initialstate cation d bands and relate it to the available bandstructure calculations.^{2,10} As was discussed in Sec. III A, this requires either calculated final-state band dispersions or an analytic functional form for the final state in order to extract a k vector from the observed electron direction and kinetic energy. Since we do not have calculations for the final-state dispersions further than 8 eV above E_f , we must assume a free-electron final state and proceed as detailed in Sec. III A. Ashkenazi and Chuchem² (AC) use a value of 21.76 eV for the inner potential, V_0 , in both Ti₂O₃ and V₂O₃ in their linear combination of atomic orbitals (LCAO) calculation of the band structure of these materials; we thus used that value for V_0 in Eq. (4). As discussed earlier, the direction in k space probed in our normal-emission experiments is $\Gamma_0 B \Gamma_5$ (see Fig. 3), and from Eq. (4) it can be shown that the dispersion along this direction can be examined between roughly the points D and Γ_5 . From each spectrum presented in Fig. 4 for Ti_2O_3 and Fig. 6 for V_2O_3 , we can extract a binding energy for the cation d emission relative to E_F and a corresponding kinetic energy relative to the vacuum level. Using the latter in Eq. (4) gives the k vector associated with a given electron. In this manner we generate d-band dispersion curves (plots of cation d-state binding energy versus k vector) for Ti_2O_3 and V_2O_3 , shown in Figs. 9 and 10, respectively. (Also indicated in Fig. 9 is the dispersion curve generated from a set of normal-emission ARUPS spectra from Ti_2O_3 where the angle of incidence of the photons was equal to 45°; the original spectra are not shown.)

As noted earlier, neither of the available bandstructure calculations provide dispersions along the

FIG. 9. Cation *d*-band dispersion in Ti_2O_3 . Measured dispersions are indicated by \bullet and \triangle ; the lines shown are merely guides to the eye. Theoretically predicted points from Ref. 10 are also shown. See text for details.

FIG. 10. Cation *d*-band dispersion in V_2O_3 . Measured dispersions is indicated by \bullet . Theoretically predicted points from Ref. 10 are also shown. See text for details.

direction that we are probing in k space. However, there are three points at which the calculations intersect the experimentally probed direction; these are at D, E, and Γ_5 , where D and E are the intersections of the $\Gamma_0 B \Gamma_5$ (1012) direction with the k_z and k_x axes in the fourth zone, respectively, and Γ_5 the center of zone 5. Since the calculations of Ashkenazi and Weger¹⁰ (AW) include the effects of electron correlation, we compare our experimentally determined dispersions to those calculations. The predicted binding energies of the d band at points D, E, and Γ_5 , as extracted from the published curves of AW, are marked on Figs. 9 and 10 for Ti₂O₃ and V₂O₃, respectively. Where more than one band exists at a particular k-vector value in the calculations, all of the binding energies are marked.

There is little absolute agreement between the observed and calculated binding energies of the cation d electrons for either material. As discussed in AC and AW, the influence of the ligand levels is treated only roughly, thus allowing some flexibility in "adjusting" the calculations to fit experimental data.²⁸ Indeed, AC are required to increase the binding energy of the calculated conduction band in V_2O_3 by almost 1 eV in order to get reasonable agreement between the calculations and the optical data of Shuker and Yacoby.²⁸ A shift of this magnitude is also required to bring the calculations of AW into closer agreement with our measurements for V_2O_3 (Fig. 10). In Ti₂O₃, the agreement between theory and experiment (Fig. 9) becomes progressively worse as the k vector increases. However, our experimental resolution decreases significantly as the photon energy increases (see Fig. 4), making the assignment of a unique binding energy to the Ti 3d emission at higher energies more difficult.

More significant than the numerical agreement of the calculated and measured binding energies is the observation of any dispersion at all. In both Ti_2O_3 and V_2O_3 the dispersions are small (<0.4 eV), but nonetheless support a band model for the electronic structure of these materials. Additionally, as discussed in Sec. IV, Ti_2O_3 is an ideal material on which to test the applicability of ARUPS to investigations of the band structure of metal oxides. It is clear from this study that ARUPS can be used profitably on this class of materials, providing direct information on the bulk band dispersion.

B. Polarization effects in Ti₂O₃ and V₂O₃

The effect of changing the angle of incidence of the photons on the normal-emission spectra of Ti_2O_3 can be seen in Fig. 5, where the spectra taken with photons incident at 45° and 35° for hv=54 eV are shown superimposed. The spectra are normalized to the same O 2p emission intensity. It is clear that varying the angle by this amount results in only slight changes in the spectra. The location of the Ti 3d maximum is unchanged, although its full width at half maximum (FWHM) has increased somewhat. Emission from the nonbonding states at the top of the O 2p band decreases in intensity, with a consequent narrowing of the band, as the p component of the photon polarization is not displayed by the Ti 3d or-

bitals. it is noteworthy that Ti_2O_3 displays none of the large sensitivity to polarization that has been found in TiN.⁴³

Figure 7 shows the normal-emission spectra from V_2O_3 taken with 60-eV photons incident at angles between 35° and 65° to the surface normal. Much more dramatic changes occur here with changes in photon polarization than occurred in Ti_2O_3 . The V 3d emission is enhanced with respect to the O 2p emission as the angle of incidence approaches 0° (normal incidence). In addition, the V 3d peak shifts to higher binding energy as the photons approach grazing incidence. The structure of the O 2p band also changes, with emission from the nonbonding O 2p orbitals at the top of the band being favored at high angles of incidence (grazing incidence). This is the opposite of the effect observed in Ti_2O_3 . The spectra become increasingly surface sensitive as grazing incidence is approached, which adds to the complexity of the changing polarization selection rules. At present we are unable to account for these observations.

C. Bulk-band-gap emission in Ti₂O₃ and V₂O₃

The empirical band structure for Ti₂O₃ illustrated in Fig. 1 indicates that there is a separation of approximately 2.5 eV between the bottom of the Ti 3d a_{1g} band and the top of the O 2p band,¹ based on optical data.^{1,23} However, angle-integrated ultraviolet-photoemission (UP) spectra of cleaved single-crystal Ti₂O₃ display significant emission above the background in this region.^{12,13,69,71} When the photon energy is swept through the $3p \rightarrow 3d$ resonance, this band-gap emission is also seen to resonate, indicating a significant cation component.¹³ As can be seen in Fig. 4, identical behavior is observed in the ARUPS spectra. In previous studies^{12,13} it was speculated that either this emission originates from a surface state (with considerable *d*-band character, as evidenced by the resonant behavior of the emission) or that the bulk band gap is much narrower than optical measurements indicate. Unfortunately, the ARUPS spectra do not clarify this issue; no resolvable surface-state peak was observed at any photon energy in normal emission. The optically deduced band gap of 2.5 eV is too large for hole lifetime broadening of the valence-band emission spectra to account for the band-gap emission. This mechanism has been postulated as the reason that no band gap is observed between the Ir 5d and O 2p emission in the valence-band x-ray-photoemission (XP) spectra of the rutile 5d transition-metal oxide IrO_2 .⁷² Considering that for IrO₂ band gap is almost 1 eV narrower than that in Ti₂O₃ and that our resolution at low photon energies is approximately twice as good as that of the XPS study, 7^{2} we conclude that in Ti₂O₃ lifetime broadening is not sufficient to explain the bulk-band-gap emission; the origin of this emission remains undetermined.

We cannot make as definitive a statement in the case of V_2O_3 . As can be seen in Fig. 6, there is, as in Ti_2O_3 , no formal band gap between the V 3d and O 2p emission, although again theory predicts that one should exist.¹ However, in this case the width of the d-band emission is large enough to make a hole lifetime broadening mecha-

nism more plausible; indeed the spectra look quite similar to those of IrO_2 . Finally, studies of the effect of deliberately creating defects on the surfaces of these materials indicate that the anomalous band-gap emission is not primarily defect related.¹¹

D. Valence-band satellites in V₂O₃

Most transition-metal compounds exhibit satellite emission associated with both cation core and valence levels.⁵⁹ For the light- (Z < 25) transition-metal compounds, two competing theories exist for the origin of these satellites. $^{73-75}$ The first, by de Boer, Haas, and Sawatzky,⁷³ is an exciton model in which the polarization of the ligands is responsible for screening the cation hole; the satellite is then due to an electron-hole pair (exciton) on the ligand. The mechanism for satellite formation in transition-metal compounds in this model is the following. The metal atom loses a core electron via photoemission, leaving behind a core hole which acts as a Z + 1 impurity with respect to the valence electrons.⁷³ There are two expected final states for this system. One consists of the ligand states polarized towards the cation but with no change in the population of the ligand states. The second consists of both a polarization of the ligand states and population of a higher, previously empty ligand level. Consequently, this second state corresponds to an electron-hole pair on the ligand. The existence of these two final states leads to two peaks in the photoemission spectra of metal core levels. In contrast with this mechanism is that of change-transfer screening. Veal and Paulikas⁷⁴ have constructed a theory for satellites in insulating transition-metal oxides which involves ligand-to-metal charge transfer, with the main photoemission line corresponding to emission from a fully relaxed (locally screened) state, and the satellite emission arising from less fully screened states. However, the model of cationto-ligand charge transfer which is adequate for heavy-(Z > 25) transition-metal oxides is inadequate for the high-energy (≥ 10 eV) satellites in light oxides⁷³ and we shall not discuss it further here.

We do not observe any valence-band satellites in the spectrum from Ti₂O₃ (see Fig. 4 and Ref. 13), but a satellite has been reported 13 eV below the main-line emission in XPS spectra of the Ti 2p core level.¹³ A possible reason for the lack of a valence-band satellite in Ti₂O₃ is the presence of only one d electron per cation, which would imply a low intensity for this feature.¹³ Since V_2O_3 has a $3d^2$ configuration, we might expect to be able to observe a valence-band satellite in this material where one could not be seen in Ti₂O₃. A feature, which we have labeled A, is clearly visible in the angle-integrated spectra of Fig. 8 at higher binding energy than the O 2p band. This feature lies 10.8 eV below E_F , or 9.3 eV below the V 3d emission. This feature is not resolved in the ARUPS data of Fig. 6; what is observed is a broad asymmetrical tail on the high-binding-energy side of the O 2p emission. Because of this asymmetry, the width of the O 2p emission (as measured above a smooth background) is considerably larger in the ARUPS spectra than in the angleintegrated spectra. However, the width of the O 2p emission in the ARUPS spectra (including the asymmetric tail, Fig. 6) is identical to the sum of the width of the O 2p emission and feature A in the angle-integrated spectra (Fig. 8). So while not resolved, we believe that feature A is also present in the angle-resolved data.

This feature has not been identified in previous angle-integrated UPS spectra of cleaved V_2O_3 .¹¹ However, the emission from the O 2p band in that work exhibits the characteristic asymmetrical tail, and the width of the band is just that of our angle-integrated spectra if we include feature A. Thus we believe that the same feature is present in the data of Ref. 11, although it was not resolved, leading to an overestimation of the O 2p bandwidth. Honig et al.¹⁹ use a Gaussian at approximately 11 eV as part of the deconvolution of their valence-band XPS data, although they do not give a physical origin for this emission. Werfel and Brummer¹⁴ observe a feature in their valence-band XPS spectra of sputtered singlecrystal V_2O_3 at 10.7 eV; they assign it to a plasmon loss. It is not known whether a similar feature exists in the data of Vasudevan *et al.*²⁰ as they do not publish data for the appropriate energy region. In any case their surfaces are heavily oxidized, as can be seen from the relative V 3d-to-O 2p intensity ratio. Beatham et al.¹⁸ do not observe any emission in the region 10-12 eV below E_f in their HeI spectra of polycrystalline V₂O₃; they do observe a feature in their valence-band XPS spectra approximately 13.5 eV below E_F , but do not identify it. Sawatzky and Post¹⁷ do not publish data in the appropriate energy range. In electron-energy-loss-spectroscopy (EELS) measurements, a feature at 10 eV is seen in the spectra from both V_2O_3 powders⁷⁶ and single crystals.⁷⁷ In the former case it was tentatively assigned to a surface-plasmon loss, while in the latter it is identified as a bulk transition from the O 2p band to empty V 3dstates.

Based on this observation of a bulk transition in the EELS spectra at 10 eV from single-crystal V_2O_3 ,⁷⁷ we tentatively assign the feature marked A in Fig. 8 to an exciton satellite of the main V 3d emission, according to the model of de Boer *et al.*⁷³ This model requires that exciton satellites occur at the same energy as peaks in EELS spectra or optical-absorption spectra. A second weak feature, labeled B, is visible in the higher-photon-energy spectra of Fig. 8, approximately 14 eV below E_F . No corresponding feature is identified in the EELS spectra of Ref. 77, but the 10-eV loss is very broad and could easily include a contribution at this energy. Thus the existence of a bulk loss at the energy equivalent to peak B is undetermined and the feature remains unidentified.

VII. CONCLUSIONS AND SUMMARY

We have studied the bulk band structure of the corundum transition-metal oxides Ti_2O_3 and V_2O_3 using both angle-integrated and angle-resolved photoemission and synchrotron radiation. The density of states for these materials determined in this study is similar to that obtained previously using He I and He II radiation. Emission from the cation d bands, 1.5 eV wide in Ti_2O_3 and 3 eV wide in V_2O_3 , occurs close to E_F . Emission from the O 2p band begins about 3.5 eV below E_F . For V_2O_3 we have shown that the width of the O 2p band is about 2.5 eV narrower than was previously thought. This is due to the resolution of a separate emission feature at the bottom of the O 2p band which is interpreted as a valence-band satellite.

Angle-resolved photoemission has been used to study bulk band dispersion in both Ti_2O_3 and V_2O_3 . The *d* bands of these materials are relatively flat, and consequently only small dispersions were observed. However, the observation of any dispersion at all supports the validity of a band model for the electronic structure of these materials. Large discrepancies were observed between the calculated *d*-band binding energies¹⁰ and our measurements; these are thought to arise from inadequacies in the theory. In both materials the O 2*p* band exhibited complex behavior as the photon energy was swept in a normal-emission experiment. This behavior precluded the determination of any unambiguous and credible O 2*p* band dispersion.

Finally, resonant photoemission was observed from both of these materials as the photon energy was swept through the respective cation $3p \rightarrow 3d$ optical-absorption edges. A detailed analysis of the resonant photoemission data is presented elsewhere.²¹

ACKNOWLEDGMENTS

The authors are pleased to acknowledge R. J. Lad both for assistance during the course of the data acquisition and for many useful discussions. We would also like to thank R. F. Garrett, M. J. Sagurton, and G. P. Williams of NSLS for helpful and friendly advice, and E. Kneedler, also of NSLS, for invaluable and dedicated technical assistance. This work was partially supported by the U.S. National Science Foundation under Solid State Chemistry Grants Nos. DMR-82-02727 and DMR-87-11423. Research was carried out at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Grant No. DE-AC02-76-CH00016.

- *Present address: Department of Physics, University of Oregon, c/o National Synchrotron Light Source, Building 725-U4, Brookhaven National Laboratory, Upton, NY 11973.
- ¹J. B. Goodenough, Prog. Solid State Chem. 5, 145 (1972), and references therein.
- ²J. Ashkenazi and T. Chuchen, Philos. Mag. 32, 763 (1975).
- ³P. Hertel and J. Appel, Phys. Rev. B 33, 2098 (1986).
- ⁴C. Castellani, C. R. Natoli, and J. Ranninger, Phys. Rev. B 18, 5001 (1978).
- ⁵C. Castellani, C. R. Natoli, and J. Ranninger, Phys. Rev. B 18, 4967 (1978).
- ⁶C. Castellani, C. R. Natoli, and J. Ranninger, J. Phys. (Paris) Colloq. **37**, C4-199 (1976).
- ⁷J. Ashkenazi and M. Weger, Adv. Phys. 22, 207 (1973).
- ⁸H. J. Zeiger, Phys. Rev. B 11, 5132 (1975).
- ⁹N. F. Mott, *Metal Insulator Transitions* (Taylor and Francis, London, 1974).
- ¹⁰J. Ashkenazi and M. Weger, J. Phys. (Paris) Colloq. 37, C4-189 (1976).
- ¹¹R. L. Kurtz and V. E. Henrich, Phys. Rev. B 28, 6699 (1983).
- ¹²R. L. Kurtz and V. E. Henrich, Phys. Rev. B 25, 3563 (1982).
- ¹³J. M. McKay, M. H. Mohamed, and V. E. Henrich, Phys. Rev. B 35, 4304 (1987).
- ¹⁴F. Werfel and O. Brummer, Phys. Scr. 28, 92 (1983).
- ¹⁵F. Werfel, D. Drager, and U. Berg, Cryst. Res. Technol. 16, 119 (1981).
- ¹⁶N. Beatnam, I. L. Fragala, A. F. Orchard, and G. Thornton, J. Chem. Soc. Farday Trans. II 76, 929 (1980).
- ¹⁷G. Sawatzky and D. Post, Phys. Rev. B 20, 1546 (1979).
- ¹⁸N. Beatham, A. F. Orchard, and G. Thornton, J. Phys. Chem. Solids **42**, 1051 (1981).
- ¹⁹J. M. Honig, L. L. Van Zandt, R. D. Board, and H. E. Weaver, Phys. Rev. B 6, 1323 (1972).
- ²⁰S. Vasudevan, M. S. Hedge, and C. N. R. Rao, Solid State Commun. **27**, 131 (1978).
- ²¹K. E. Smith and V. E. Henrich, Solid State Commun. (to be

published); Phys. Rev. B (to be published).

- ²²J. M. Honig and T. B. Reed, Phys. Rev. **174**, 1020 (1968); L. L. Van Zandt, J. M. Honig, and J. B. Goodenough, J. Appl. Phys. **39**, 594 (1968).
- ²³S. H. Shin, F. H. Pollak, T. Halpern, and P.M. Raccah, Solid State Commun. **16**, 687 (1975); J. Solid State Chem. **12**, 407 (1975).
- ²⁴C. E. Rice and W. R. Robinson, Mater. Res. Bull. 11, 1355 (1976).
- ²⁵S. H. Shin, R. L. Aggarwal, B. Lax, and J. M. Honig, Phys. Rev. B 9, 583 (1974).
- ²⁶D. B. McWhan, T. M. Rice, and J. P. Remeika, Phys. Rev. Lett. 22, 887 (1969).
- ²⁷D. B. McWhan, J. P. Remeika, T. M. Rice, W. F. Brinkman, J. P. Maita, and A. Menth, Phys. Rev. Lett. 27, 941 (1971); D. B. McWhan, J. P. Remeika, S. D. Bader, B. B. Triplett, and N. E. Phillips, Phys. Rev. B 7, 3079 (1973).
- ²⁸P. Shuker and Y. Yacoby, Phys. Rev. B 14, 2211 (1976).
- ²⁹F. J. Himpsel, Appl. Opt. **19**, 3964 (1980), and references therein.
- ³⁰E. W. Plummer and W. Eberhardt, Adv. Chem. Phys. **49**, 533 (1982), and references therein.
- ³¹E. Dietz and D. E. Eastman, Phys. Rev. Lett. 41, 1674 (1978).
- ³²F. J. Himpsel and D. E. Eastman, Phys. Rev. B 18, 5236 (1978).
- ³³F. J. Himpsel, J. A. Knapp, and D. E. Eastman, Phys. Rev. B 19, 2919 (1979).
- ³⁴P. Thiry, D. Chandesris, J. Lecante, C. Guillot, R. Pinchaux, and Y. Petroff, Phys. Rev. Lett. 43, 82 (1979).
- ³⁵F. J. Himpsel and D. E. Eastman, Phys. Rev. B 21, 3207 (1980).
- ³⁶W. Eberhardt and E. W. Plummer, Phys. Rev. B 21, 3245 (1980).
- ³⁷J. A. Knapp, F. J. Himpsel, and D. E. Eastman, Phys. Rev. B 19, 4952 (1979).
- ³⁸J. Stohr, P. S. Wehner, R. S. Williams, G. Apai, and D. A.

Shirley, Phys. Rev. B 17, 587 (1978).

- ³⁹D. E. Eastman, J. Vac. Sci. Technol. 17, 492 (1980), and references therein.
- ⁴⁰T. C. Chiang, J. A. Knapp, M. Aono, and D. E. Eastman, Phys. Rev. B 21, 3513 (1980).
- ⁴¹T. Grandke, L. Ley, and M. Cardona, Phys. Rev. B 18, 3847 (1978).
- ⁴²N. G. Stoffel, Phys. Rev. B 28, 3306 (1983).
- ⁴³L. I. Johansson, A. Callenas, P. M. Stefan, A. Christensen, and K. Schwarz, Phys. Rev. B 24, 1883 (1981).
- ⁴⁴J. H. Weaver, A. M. Bradshaw, J. F. van der Veen, F. J. Himpsel, D. E. Eastman, and C. Politis, Phys. Rev. B 22, 4921 (1980).
- ⁴⁵J. Lindstrom, L. I. Johansson, A. Callenas, D. S. L. Law, and A. N. Christensen, Phys. Rev. B 35, 7891 (1987).
- ⁴⁶C. H. Chen, W. Fabian, F. C. Brown, K. C. Woo, B. Davis, B. Delong, and A. H. Thompson, Phys. Rev. B **21**, 615 (1980).
- ⁴⁷W. Gopel, J. Pollmann, I. Ivanov, and B. Reihl, Phys. Rev. B 26, 3144 (1982).
- ⁴⁸G. Zwicker and K. Jacobi, Solid State Commun. 54, 701 (1985).
- ⁴⁹N. B. Brooks, D. S. L. Law, T. S. Padmore, D. R. Warburton, and G. Thornton, Solid State Commun. 57, 473 (1986).
- ⁵⁰K. Siratori, S. Suga, M. Taniguchi, K. Soda, S. Kimura, and A. Yanase, J. Phys. Soc. Jpn. 55, 690 (1986).
- ⁵¹R. J. Lad and V. E. Henrich (unpublished).
- ⁵²N. V. Smith, in *Photoemission in Solids, Part I*, Vol. 26 of *Topics in Applied Physics*, edited by M. Cardona and L. Ley (Springer-Verlag, Berlin, 1978).
- ⁵³See, for example, G. D. Mahan, in *Electron and Ion Spectros-copy of Solids*, Vol. B32 of *NATO Advanced Study Institute*, edited by L. Fiermans, J. Vennik, and W. Dekeysen (Plenum, New York, 1978), p. 1; W. E. Spicer, *ibid.* p. 54.
- ⁵⁴E. O. Kane, Phys. Rev. Lett. 12, 97 (1964).
- ⁵⁵J. Hermanson, Solid State Commun. 22, 9 (1977).
- ⁵⁶B. D. Culity, *Elements of X-Ray Diffraction*, 2nd ed.

(Addison-Wesley, Reading, MA, 1978), p. 504.

- ⁵⁷P. D. Dernier, J. Phys. Chem. Solids **31**, 2569 (1970).
- ⁵⁸J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1965), Vol. II, p. 418.
- ⁵⁹L. C. Davis, J. Appl. Phys. **59**, R25 (1986), and references therein.
- ⁶⁰E. Bertel, R. Stockbauer, and T. E. Madey, Phys. Rev. B 27, 1939 (1983); E. Bertel, R. Stockbauer, R. L. Kurtz, D. E. Ramaker, and T. E. Madey, *ibid.* 31, 5580 (1985).
- ⁶¹R. D. Bringans and H. Hochst, Phys. Rev. B 30, 5416 (1984).
- ⁶²P. A. P. Lindberg, L. I. Johansson, J. B. Lindstron, and D. S. L. Law, Phys. Rev. B 36, 939 (1987).
- ⁶³J. Barth, F. Gerken, and C. Kunz, Phys. Rev. B 31, 2022 (1985).
- ⁶⁴S. Raaen and V. Murgai, Phys. Rev. B 36, 887 (1987).
- ⁶⁵J. L. Dehmer, A. F. Starace, U. Fano, J. Sugar, and J. W. Cooper, Phys. Rev. Lett. 26, 1521 (1971).
- ⁶⁶B. Reihl, N. Mårtensson, D. E. Eastman, A. J. Arko, and O. Vogt, Phys. Rev. B 26, 1842 (1982).
- ⁶⁷A. J. Arko, D. D. Koelling, and B. Reihl, Phys. Rev. B 27, 3955 (1983).
- ⁶⁸J. M. Mackay and V. E. Henrich, Surf. Sci. 137, 463 (1987).
- ⁶⁹K. E. Smith and V. E. Henrich, Phys. Rev. B 32, 5384 (1985).
- ⁷⁰K. E. Smith, Ph.D. thesis, Yale University, 1988.
- ⁷¹R. L. Kurtz and V. E. Henrich, Phys. Rev. B 26, 6682 (1982).
- ⁷²G. K. Wertheim and H. J. Guggenheim, Phys. Rev. B 22, 4680 (1980).
- ⁷³D. K. G. deBoer, C. Haas, and G. A. Sawtsky, Phys. Rev. B 29, 4401 (1984).
- ⁷⁴B. W. Veal and A. P. Paulikas, Phys. Rev. B **31**, 5399 (1985).
- ⁷⁵E. Sachar, Phys. Rev. B **31**, 4029 (1985); **34**, 5130 (1986).
- ⁷⁶F. J. Szalkowski, P. A. Bertrand, and G. A. Somorjai, Phys. Rev. B 9, 3369 (1974).
- ⁷⁷V. E. Henrich, H. J. Zeiger, and G. Dresselhaus, in *Electroca-talysis on Non-Metallic Surfaces*, Natl. Bur. Stand (U.S.) Spec. Publ. No. 455 (U.S. GPO, Washingon, D.C., 1976), p. 133.

FIG. 10. Cation *d*-band dispersion in V_2O_3 . Measured dispersions is indicated by \bullet . Theoretically predicted points from Ref. 10 are also shown. See text for details.

FIG. 9. Cation *d*-band dispersion in Ti_2O_3 . Measured dispersions are indicated by \bullet and \triangle ; the lines shown are merely guides to the eye. Theoretically predicted points from Ref. 10 are also shown. See text for details.