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A method for calculating phonon dispersion curves of three-dimensional superlattices is present-
ed. The eigenvalues of the dynamical matrix are obtained by matching the eigenvectors of two adja-
cent media along their common interface. The dispersion curves are obtained by solving a polyno-
mial equation, the degree of which does not depend on the thickness of each medium, but is deter-
mired only by the range of interlayer coupling. This makes this method very competitive for large-
period superlattices. The formalism is applied to the linear superlattice with two kinds of atoms
coupled by nearest-neighbor interactions, for which the dispersion equation can be solved analyti-
cally. A formula for sound velocity is also included.

I. INTRODUCTION II. MODEL AND NOTATION

A superlattice consists of the periodic stacking of
different slabs having the same periodicity along the
plane parallel to every interface. Viewed as a crystal, its
lattice parameter in the stacking direction is much bigger
than the two others normal to it. Hence, as the unit cell
comprises a lot of atoms, solving the secular equation
amounts to diagonalizing a big matrix.

Several methods have been devised to overcome this
diSculty. Their common feature is to use the crystalline
nature of each layer in the stacking direction. Some use a
Green's function formalism the separation between
bulk and interface regions is then achieved as in the prob-
lem of surface phonons.

Another one starts with the dynamical matrix of the
entire unit cell and simplifies the calculation of its deter-
minant using mathematical tricks. ' Finally, a method
involving the matching of "bulk" eigenvectors has been
used for specific semiconductor superlattices. '

The goal of this work is to work out a version of the
matching procedure " well suited to studying any
three-dimensional (3D) superlattice. Our interest in this
method comes from its simplicity and the physical mean-
ing conveyed by this approach.

In this first paper, we present the theory together with
an illustrative application. In a second paper, the calcu-
lations for an fcc-fcc superlattice will be reported. The
outline of this first paper is the following: Sec. II is de-
voted to the presentation of the model and notations. In
Sec. III, the problem is presented, and the equations of
motion are classified in two sets: "bulk" equations and
interface equations. In Sec. IV, the bulk equations are
first solved. The number of coordinates is thus reduced,
which constitutes the crucial advantage of this technique.
Then, the interface equations are written in terms of
these new coordinates, which provides the searched
dispersion equation. General properties of the dispersion
curves are deduced in Sec. V. An example is dealt with
in detail in Sec. VI. The whole work is finally summa-
rized in Sec. VII.

The most general superlattice is made of N different
materials referred to by the index n (1 & n & N). It con-
sists of the stacking of identical slices 8;, each one made
of N slabs S„.For each S„,we define p„asthe number of
layers contained in S„,l„asthe range of the interlayer in-
teraction in S„,and M„asthe set of the atoms of S„in-

teracting only with atoms of S„.
For two adjacent slabs S„andS„+,, we define the in-

terface I„„+&
made of the layers of S„(S„+&) containing

atoms that interact with atoms of S„+,(S„),and we as-
sume that I„„+,contains I„layers of S„and1„+,layers
of S„+,. These definitions and properties are summa-
rized on Fig. 1.

As all slabs have the same periodicity perpendicular to
the stacking direction, we introduce the 2D Brillouin
Zone, and the eigenproblem can be solved separately for
each

q~~
in the 2D Brillouin zone. In all that follows, we

shall give the solution for a given
q~~

and, if the associated
dynamical matrix has other symmetry properties, for a
given irreducible representation of the symmetry group.

We now define c„asthe number of coordinates in a 3D
unit cell of S„,and u„'(j,l), I &j&c„,as the coordinates
describing layer I ofS„in the unit cell of slice 8;.

Although c„and '(uj, l) depend on q~~, we shall omit
this dependence in the notation for simplicity.

III. THE PROBLEM

To obtain the dispersion equation, we need to intro-
duce q~. According to Bloch's theorem, the displacement
associated with a given frequency co is looked for in the
form

u„'(j,l, co, q~) =u„(j,l, to, q~)Z',

where

(L is the period along the stacking direction).
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actly 2c„1„.
For a unit cell i, the displacement field of Eq. (4) is thus

defined by gN, 2c„l„coordinates,the R„'(k)'s. In terms
of these new coordinates Eq. (l) reads

g A„(j,k)z{k)' '[R„'(k)—R„(k)Z']=0.
k

This equation must hold for any j and I, which implies

R„'(k)=R„(k)Z'. (6)

FIG. 1. Schematic representation of the slabs of two adjacent
media. The solid lines separate difkrent media, the dashed lines

separate the interfaces from the bulk part of the media.

One then just has to satisfy the equations of motion of
one unit cell. They constitute a homogeneous linear sys-
tem in the unknowns u'i(l, l},. . . , u i(ci,pi), . . . ,
u„'(l,l), . . . , u„'(c„,p„).Denoting by D the associated
matrix, the dispersion equation can be written

det(D )=0 . (3)

Solving this equation is cumbersome because of the
large size of the matrix D. The number of unknowns of
the preceding system is g„c„p„,which may equal 100
for large-period superlattices.

In writing Eq. (3), we did not explicitly take advantage
of the finite length of the interaction. As a consequence,
the nonvanishing matrix elements of D are concentrated
on both sides of the main diagonal.

This is turned into profit by dividing the equations of
motion in two sets, depending upon whether u„(j,l) is
relative to an atom of M„orI„„+,. This is meaningful if
M„is not empty, which supposes p„&21„,a hypothesis
assumed hereafter. It is easy to deduce from the
definitions of Sec. II that I„„+,involves c„l„+c„+,1„+,
coordinates, while M„involves c„(p„—21„)coordinates.
Hence, we get g~, 2c„/„interface equations and

i c„(p„—21„)"bulk" equations.
The interesting feature of the bulk equations is that the

equations of two u„'(j,l) and u„'(j,l') relative to a given
coordinate of two different layers in the same S„areiden-

tical; it is possible to solve these equations before writing
down the dispersion equation, whereby the number of
coordinates is considerably reduced.

The bulk equations being automatically satisfied by the
displacement field of Eq. (4), we must only pay attention
to the interface equations. Written in terms of the
R„'(k)'s,they yield a problem formally identical to the in-

itial one. Denoting by E the associated matrix, we now
can write the dispersion equation as

det(E)=0 .

This equation constitutes the main result of this work.
Its advantage with respect to (3} lies in the dimension of
the matrices: D is gf ic„p„Xg„ic„p„,while E is

(QN, 2c„l„X+~,2c„l„).Whereas p„can take arbi-

trarily large values depending on the superlattice, l„de-
pends only on the constitutive materials and can be taken
&2 with a very good accuracy for most metals. The
simplification for superlattices with large periods in the
stacking direction is thus considerable.

V. PROPERTIES OF THE DISPERSION CURVES
WITH RESPECT TO q&

The secular equation is an algebraic equation in Z.
What is of significance here is its degree, as it determines
the maximum number of qj's for a given co. It can be
very easily deduced from a schematic representation of
the matrix E (Fig. 2). The lines labeled by 21„c„represent
the interface equations of S„,while the columns labeled

by 2l„c„represent the coeScients of the coordinates of
S„in the equations of the unit cell i. The dashed blocks
are the loci of the only a priori nonvanishing coeScients.

2lgi 2lzc2 2{3c3

IV. THE DISPERSION EQUATION

As S„is periodic along the stacking direction, we can
apply Bloch's theorem and look for a solution of the
equations of motion of M„in the form

2{3c3

u„'(j,l)= g A„{j,k)z„(k)' 'R„'(k}.
k

(4)

The z„(k)'sare the solutions of the secular equation,
and the A„(j,k)'s are defined by the condition that the
displacement field A„(j,k)z„(k)' ' satisfies the bulk
equations in 5„-.As the slab S„is of finite thickness,
every solution z„(k)of the secular equation enters the ex-
pansion in Eq. (4), whence the number of solutions is ex-

2i~„F~Z/&~

FIG. 2. Schematic representation of the matrix E of Eq. (7).
The explanations are given in the main text.
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The presence of Z in a dashed block means that its
coeScients are polynominals of degree 1 in Z. To avoid
the appearance of Z ' in the matrix, we have written the
equations for the set of interfaces shown in Fig. 3.

From Fig. 2, we see that Z appears only in the 2c, l,
first columns, whereas it appears in 2c&1I+2c„/„lines. A
development along the columns thus shows that the
determinant of E is a polynomial of degree 2I

& c &.

The fact that the result depends only on the parameters
of S, is puzzling, as the choice of the first material in the
unit cell 0 is arbitrary. This paradox can be solved in the
following manner.

Let us denote by P„the polynominal of degree 2c„l„
equal to the determinant of the matrix E „obtained by
starting the unit cell 0 with the material n.

Multiplying the first 2c, 1
&

columns of E
& by Z ', then

the lines labeled by 2c212 by Z, we obtain a matrix that
differs from E 2 only by the order of the columns. Hence,
we have

p +z 2 2 1 1p
1 2

VI. APPLICATION: THK LINEAR SUPKRLATTICK

We apply the previous theory to the case of a linear
chain with two kinds of atoms coupled by nearest-
neighbor interaction. The unit ce11 is made of p, succes-
sive atoms of mass m, followed by p2 atoms of mass m2.
The dynamics of the system is defined by three force con-
stants: k, (k2) between two atoms of mass m, (m2), k
between an atom of mass m, and an atom of mass m2.
The total length of the unit cell is denoted by L (see Fig.
4).

To make the link with the notation of Sec. II, we note
that I

&

——I2 ——1 (nearest-neighbor interactions), c, =c2
——1

(one atom per unit cell for each medium), and I& 2 and

I2 &
contains one atom of each type.

A,s c, =c2 ——1, we can drop the index j from the nota-
tion u„(j, l ); the displacements in the cell i thus are
uI(1), . . . , uI(p] ), u2(1), . . . , u2(p2). q~~

is of course ir-
relevant.

According to Sec. IV. insofar as p„p2)2, the u'&(1),
1&1&p&, can be replaced by 21&ct ——2 coordinates. The
secular equation of medium 1 is easily derived:

from which we deduce m, co =k&(2 —z —z ) .2= —1 (10)

P +Z le l8 P
2l c

n m (9)

If z is a solution, z ' is also a solution. We denote the
two solutions by z, and z& '. Then, we can write for
1&l &pi

whatever n and m.
Hence, putting r =min„(2c„l„),the secular equation

2c l —r
relative to E „contains the nonsignificant factor Z
whenever r &2c„l„,and the effective degree of the secu-
lar equation is r =min„(2c„l„).

In a plot of co as a function of qj for 0 &qj & m. /L, the
preceding result means that for a given co we shall find at
most r/2=min„(c„l„)q~'ssatisfying Eq. (7).

The other interesting property is the number of
branches of the spectrum, i.e., the number of co's for a
given q~. As D is hermitic, it is equal to the degree in co

of the secular equation, which is easily inferred from Eq.
(3) to be g„t c„p„.

u', (l)=R', (z, )z' '+R', (z, ')z

m2co =k2(2 —z —z )2= —1

and we write for 1 & I &p2

Q2(l)=R 2(z2)z2 +R 2(z2 )z2

(12)

(13)

The interface equations involve 2I &c&+212c2——4 coor-
dinates. Written in terms of uI(p, ), uI(1), uz(p2), and
u', +'(1), they read

which defines the two coordinates of medium 1.
The situation is similar for medium 2. The secular

equation reads
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FIG. 3. Schematic representation of a unit cell with parts of the neighboring cells. The multiplying factor depicted below the
number of the cell is that of Eq. (6). The chosen set of interfaces corresponds to the matrix of Fig. 2.
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m) mg

k, k k~

p& atoms

mg mg

k~ k~ k

m2~ u2(P2) k2[ 2(P2) u2(P2 1)]

+k [uz(pz) —u', +'(1)],

m, ~'u ', + '(1}=k [u,'+'(1)—u ', (p, )]

+k, [u', +'(1)—u'+'(2)],

(14a)

(14b)

FIG. 4. Illustration of the notations used for the linear super-
lattice.

F31 ——(m1co —k, —k)C1(p1)+k1C1(p1 —1),
F32 ——(m1co —k1 —k)S1(p1)+k1S1(p1 —1),
F33 ——k,
F34=o

F4, ——kC, (P, ),
F42 ——kS1(P, ),
F43 m zoo k ——k2+ k2C2(2),

F44 k2Sz——(2 ),
and the (4&(4) matrix 6 defined by

6j ZF j i and j (2 (18a)

m1o1 "I(P1}=k1["'i(P1) u'i(P1 —1)1

+k[u', (p, ) —u2(1)],

m2co u 2(1)=k[u 2(1)—u', (p, )]

+kz[uz(1) —u2(2)] .

(14c)

(14d)

6J ——F;, i or j)3
iq&L

where Z =e ', the interface equations read

'a1

=0,

(18b}

(19)
The next step consists of writing this system in

terms of the coordinates defined by Eqs. (11} and
(13). Remembering that R„'+'(zk}=R„'(zk)Z (where

iq&LZ =e ), we get a closed system. The vanishing of its
determinant provides the dispersion equation.

In accordance with the general formula derived in Sec.
V, this equation is of degree 2 in Z. To solve it explicitly,
it is convenient to deal with a real matrix, which is
achieved by expressing the previous system in terms of a
and y given by

aj =R~(zj )+R/(zj. '},
y =e [R (z ) —Ri(z ')],

where

.y2.

and the dispersion equation det(6 ) =0 is written

AZ +BZ+C =0,
where A, B, C are functions of co given by

F11F22F33F44

8 = (F3zF43 F42F33 )(F1—4F21 Fz4F11 )—
—F14Fz2 (F31F43 F4, F33)—
+F44 11F32F23 F44F13(F21F32 F31F22 } &

C =(F14Fz3 F24F 13 )(F3—1F42 F41F32 ) . —

(20)

(21a)

(21c)

1 if Im(zj )=0
i if Im(z )&0 . (16)

It is readily verified that A =C, which ensures that if
Z is a solution, Z ' is also a solution.

Finally, the equation of the dispersion curves for q j & 0
Introducing

l —1+ —l+1
C (I)= ZJ ZJ

2
SJ(1)=

l —1 -I+1
J J

1s

if B —4A2&0, no q&

(22)

the (4X4) real matrix F defined by

F11
—k

F12 ——0,
F,3 = (m2co —kz —k) C2(pz )+k2C2(p2 —1),
F,4 (m 2' kz —k——}Sz(pz )+—k2S2(pz —1),
F~, =m1co —k1 —k+k, C1(2),

F~2 =k, S,(2),

F23 =kC2(p2 ),
F~4 ——kS2(p~ ), (17)

m1
sin(qa /2) (23)

for 0 & q & m. /a.
With the notation of the superlattice, L =(p1+p2)a

and q is restricted to 0 & q & m. /L. The p1+p2 dispersion

if 8 —4A &0, qj =—cos '( B/2A) . —
L

We now brieAy discuss the nature of the dispersion
curves. Two limiting cases are particularly important.
On one hand, if k, =k2 ——k and m, =m2, the superlattice
is in fact a monoatomic linear chain. Denoting by a its
lattice parameter, the dispersion curve is given by

k
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Q)I =21

1 /2
1

sin( l m /2p, ), 1 =0, 1, . . . ,p, —1
m&

(24a)

for the atoms 1 and
' 1/2

co 2I sin(lm/2p, ), 1=0,1, . . . ,p, —1 (24b)

curves are obtained from the curve of Eq. (23) by a mere
folding procedure.

On the other hand, if k=O, the superlattice is a collec-
tion of independent finite linear chains of two types. The
system is dispersionless, and its frequencies are those of
the two finite linear chains with free ends. They are given
by

for the atoms 2 (see the Appendix). The frequency co=0
is doubly degenerated; this corresponds to the transla-
tional motion of each chain. Hence, the dispersion
curves of the general superlattice can be interpreted in
the following two ways.

The perturbation due to k, &k2&k and m &&mz opens
gaps at the zone boundaries in the dispersion curves ob-
tained by folding the dispersion curve of the monoatomic
linear chain. '

The nonvanishing value of k introduces a dispersion in
the dispersionless spectrum of the two independent finite
linear chains.

We exemplify those remarks with the help of Eq. (22)
by plotting two series of dispersion curves relative to su-
perlattices with p, =p2 ——5.

k)=kg=k=1

2.5

m2=1 m2=1.2 m2=1.6 m2-1.8

0.5

0
0

qL q, L qL
m0

(a)

q, L
m0

q L
m0

q L

k)=kg=1 ~=1 ~=2 p=g=5

2.5
k=0.8 k=0.6 k=0.4 k=0.2

0.5

q L

m0
q, L

(b)

q, L
m0

q L
m0

q L

FIG. 5. Plots of dispersion curves for the linear superlattice for (a) various values of m2, and (b) various values of k. All other pa-

rameters keep the value indicated above the figures.
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Fig. 5(a), we start from a monoatomic chain

(ki ——kz ——k =1, m, =m2 ——1) and we increase m2 while

keeping all other parameters constant. This opens nine

gaps between the ten dispersion curves, as previously ar-
gued.

In Fig. 5(b), we start from the last curve of Fig. 5(a)

(k, =kz ——k= 1, m, =1, m2 ——2}, and we decrease k from

1 to 0 (all the other parameters remaining constant). Two
features appear clearly. Firstly, the gaps increase, or
equivalently the dispersion decreases in each band, until
k=O where the curves are dispersionless. Secondly, the
two lowest curves decrease constantly and both 6nally
give co=0, the translational motions of the constitutive
chains.

Let us emphasize the fact that Eq. (22) gives explicitly
the equation of the dispersion curves. We chose relative-
ly small values of p, and p2 (p, =p2 =5}for the clarity of
the 6gures, but the treatment is exactly as simple for any

p, and p2. This is of course not the case if one deals with

Eq. (4), as the coefficients A, B, and C of Eq. (20) would
require the development of a (p, +p2)X(p, +pz) deter-

minant, a task already hopeless for p, =p2 ——5.
Finally, a simple formula for the second velocity can be

obtained:

For the linear superlattice with two kinds of atoms and
nearest-neighbor interaction, the dispersion equation can
be solved analytically. This result is used to illustrate the
two possible interpretations of the dispersion curves of a
superlattice.

(mco —k)u, +kuz ——0,
(mco 2k—)ui+kut i+kut+, ——0, 2&& &p —1

(mco —k)u +ku, =0 .

(A 1)

(A2)

(A3)

Equations (A2) are satisfied if we look for a solution of
the form

u, =az'-'+pz-'+',

where z is solution of the secular equation

(A4)

APPENDIX

This result was previously proved through the use of a
Green's function analysis. ' We derive it here by using
the matching procedure.

The equations of a monoatomic linear chain (mass m,
force constant k, p atoms) with free ends read

p&
—1 p2 —1 2

(p~mi+p2mz) + +—
1 2

in Vi . (25) mco =k(2 —z —z ) . (A5)

With the help of (A4) and (A5), we can rewrite (Al)
and (A3) as

The derivation will be given elsewhere' in a more gen-
eral context.

(1—z ')a+(1 —z)p=0,
(z~-' —z~)a+ (z -~+' —z -~-')p=o .

(A6)

(A7)
VII. CONCLUSION

The calculation of phonon dispersion curves for the
most general superlattice by the matching procedure
comprises two main steps: (i) to solve the bulk secular
equation for each constitutive medium, which produces a
new set of coordinates, and (ii) to write the interface
equations in terms of these new coordinates.

The degree of the determinantal secular equation of the
dispersion curves depends only on the number of atoms
per unit cell and on the interaction range in the constitu-
tive media. This degree is equal to the maximum number
of wave vectors associated with a given frequency which
is thus shown to be independent of the thickness of the
layers.

A necessary condition for (a,p) to be nonvanishing is
that the determinant vanishes, which leads to

k
N =2

m
siil( l 8'/2p ) (A9)

where I =0, 1, . . . ,p —1.

(AS)

The solutions are z =e*', 0(l (p. z = —1 gives
a = —p and must be rejected as the displacement field of
(A4) vanishes.

Putting the remaining solutions in (A5), we find p fre-
quencies (e+' ~~ and e ' ~~ give the same frequency)
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