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The effects of the incommensurate spin-density wave on the current-voltage characteristics in
pure chromium are investigated, using point-contact spectroscopy. A simple model is given to ac-
count for the changes in the Sharvin current as due to the additional gaps in the density of states for
the electrons. The results are compared with experimental data, which show a large increase in the

resistivity for voltages smaller than the gap energy.

I. INTRODUCTION

Chromium represents a very special element among
metals. This is due to the spin-density wave formed by
the conduction electrons below its Néel temperature at
Ty =312 K. This state is even more interesting because
of its nearly antiferromagnetic character. In other words,
chromium is incommensurate for temperatures below
Ty. The incommensurate spin-density wave has been
studied very intensively by neutron-diffraction experi-
ments.

Due to the incommensurate nature of the electron spin
wave, the density of states of the electrons shows many
additional gaps besides the ordinary gaps which are a re-
sult of the normal lattice periodicity. These additional
gaps are present for 2k=+NQ+K, where
Q=(02m/a)a,0,0) (a=0.962 at T =300 K), is the in-
commensurate wave vector, K& A*, a reciprocal-lattice
vector, and N is an integer. The size of these gaps is ex-
pected to become smaller for higher values of N. This
structure results in an increase of the bulk resistivity by
35% when changing from currents parallel to Q to
currents perpendicular to Q.2

A first-order (N =1) gap has been observed by many
authors®~* in infrared reflectance measurements and was
found to have a width of approximately 1000 cm™! or
124 meV. The higher-order gaps are expected to appear
for much lower energies.

We decided to find out whether these gaps influence
the conductivity by measuring the energy-dependent
resistance by means of point-contact spectroscopy. This
technique allows for a sensitive detection of nonlinear re-
lations between the current and voltage for energies up to
the order of 100 meV.

The paper is organized as follows. In Sec. II, the spin-
density wave and its effect on the density of states of the
electrons in chromium are described. Section III deals
with the basic aspects of point-contact spectroscopy and
especially the effect of gaps in the density of states on the
current through a point contact. The next section briefly
summarizes the experimental techniques used and in Sec.
V, the results are discussed. We end with a conclusion.
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II. THE STRUCTURE AND DENSITY
OF STATES IN CHROMIUM

A. The structure of chromium

Above the Néel temperature, chromium forms a bcc
paramagnetic structure. At the phase transition to the
incommensurate state (phase AF,), a spin-density wave
(SDW) is formed, with a wave vector Q=aa* and a
transverse polarization resulting in an orthorhombic
basic symmetry (Immm). The coefficient a varies from
0.963 to 0.952 between Ty and 4 K. In this phase,
domains are formed with the polarization and Q vector
along the (original) cubic axes. On lowering the tempera-
ture, a second phase transition occurs at 122 K to phase
AF,, where the spin direction is flipped resulting in a lon-
gitudinal SDW, forming a tetragonal basic structure
(I4/mmm). In both phases (AF, and AF,) a small in-
duced longitudinal displacive modulation of the lattice is
observed,® with wave vector 2Q. The superspace symme-
try’ of the two incommensurate phases was found to be
G(AF,)=PImmm (2a00)(111) and  G(AF, =PI4/
mmm (2a00)(1111).

B. The origin of the SDW

The origin of the itinerant spin wave seems to lie in the
fact that the electron band structure of chromium has
electron and hole states in the neighborhood of the Fermi
level, which are very comparable as their shapes in k
space are concerned. Loomer® found that the octahedral
sheets for the electrons around the I'(0,0,0) point in re-
ciprocal space, though somewhat larger, resemble to a
large extent the hole sheets of the H(1,0,0) point in the
paramagnetic phase. He pointed out that by a shift over
(0.96,0,0) the former coincide (nest) fairly well with the
latter. He used this nesting and the coupling between the
corresponding states to explain the observed incommens-
urate SDW. Fedders and Martin’ worked out this cou-
pling in a two-band model which indeed predicts a phase
transition to a SDW ground state. The interaction be-
tween the two states is provided by the Coulomb attrac-
tion between the electrons and the holes. The nesting
seems to be the best for («,5,0) or («,0,8), where 8540,
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i.e., at points somewhat away from the octahedron ver-
tices.

C. Density of states

Besides the properties of the electron band structure
discussed above, one can expect effects on the density of
states (DOS) due to the additional wave vector of the
crystal. If the SDW would be perfectly antiferromagnet-
ic, the states at Q'=(4,0,0) and —Q’ would interact, re-
sulting in a gap halfway into the Brillouin zone, in the
direction of Q. The consequence would be a doubling of
the (magnetic) unit cell; the bands being folded back into
the new Brillouin zone. In the case of an incommensu-
rate wave, these gaps also open, but now at a general
point in the Brillouin zone. Strictly spoken, the resulting
crystal has lost its translational symmetry in the [100]
direction. This symmetry can, however, be restored, by
using the forementioned superspace description. The
mixing of states resulting in gaps, happens for wave vec-
tors given by k=1tNQ=K, where KE A* and N integer;
the gaps, however, becoming smaller for larger values of
N. The resulting band structure shows an infinite number
of gaps throughout the energy scale. Such a band struc-
ture was studied by de Lange et al.'® in a one-
dimensional modulated Kronig-Penney model.

The higher-order gaps become more important when
higher harmonics of Q play a more important role in the
modulation. In chromium Pynn et al.!' have found
second and third harmonics in the SDW. The contribu-
tion of the second harmonic increases with decreasing
temperature, while that of the third harmonic starts to
saturate at 220 K. Hence, effects due to the higher-order
gaps can be expected to become more appreciable for low
temperatures.

III. POINT-CONTACT SPECTROSCOPY

Point-contact spectroscopy (PCS) is a technique which
has been proven to be very useful for studying the effects
of excitations and their scattering processes with elec-
trons.!? For this purpose a very sharp point of one metal
(or alloy) is brought into contact with another metal and
the first or second derivative of the current through the
contact with respect to the voltage across the contact is
measured as a function of that voltage. The linear con-
tact dimension is assumed to be small compared to the
mean free path of the electrons. Therefore the transport
through the contact is ballistic. Typical contact resis-
tances are 0.1-10 (2 and voltages are 0—~50 mV. For nor-
mal metals a constant density of states for the electrons
can be assumed if one takes into account that the energies
corresponding to the applied voltages are much smaller
than thF Fermi energy. If electron phonon scattering is
dominant, the resulting spectra show an increase of resis-
tance with voltage due to the back flow of electrons
through the orifice being scattered by acoustical phonons.
The resistance shows large increases when the phonon
density of states has a singularity, for instance, for ener-
gies of states at the Brillouin-zone boundary (Debye ener-
gy).

In our case, the technique is used to observe gaps in the
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electron density of states. The singular effects of phonons
can be neglected as long as we stay far away from the De-
bye energy, which is for chromium 38 meV for the
longitudinal-acoustical phonons and approximately 32
meV for the transverse-acoustical phonons.!> We impli-
citly exclude effects due to gaps in the phonon density of
states which result from a small induced modulation of
the lattice characterized by a wave vector k=2Q. A
comparable use of PCS has been made by Moser et al.'*
to observe anomalies in the electron DOS in CePd; and
related compounds. For our purpose it is sufficient to
concentrate on the first-order derivative ¥ /9! as a func-
tion of the voltage V.

We will illustrate the effect of the SDW on the ¥V /31
spectrum in chromium by assuming that the electron
band properties of the basic structure (no modulation)
resemble those of the free-electron gas. The effects of the
additional wave vector of the SDW as given by Q is to
open gaps whenever two surfaces of constant energy in k
space (spheres in our approximation) at k=1+Q=K,
where K€ A* cross each other. This can be understood
if we use the full symmetry of the crystal as provided by
the superspace description, where the reciprocal-lattice
vectors are labeled by four integers (h,k,I,m). This
four-dimensional vector corresponds in three dimensions
to the vector ha*+kb*+Ic*+mQ. As the basic
reciprocal-lattice vectors (m =0) are concerned, we can
neglect the effect of the energy shift on the Fermi level,
due to the voltage across the contact; the Fermi level is
raised but the metal-like band structure is considered to
be constant for the voltages applied. The wave vector Q,
however, provides for gaps in the neighborhood of or
even centered on the Fermi level. Therefore, these gaps
can be crossed by applying relatively small voltages.
Moreover, as will be shown hereafter, all additional gaps
below the Fermi level contribute to the increment of the
resistance. The above-mentioned illustration will there-
fore be given for free-electron energy levels, whose
spheres do not touch the Brillouin-zone boundary of the
basic structure (m =0), but do cross the corresponding
boundary in superspace. This is possible because 4 and m
can be chosen as to result in a very small wave vector as
compared to, say, (1,0,0)E A}. The crossing of the ener-
gy bands results in orbits that open and close as a func-
tion of the energy, as can be seen schematically in Fig. 1.
The directions in k space, perpendicular to Q, are in our
approximation independent of the modulation. There-
fore, one can use, for example, the results of the one-
dimensional Kronig-Penney model of de Lange et al.'®
for the band structure along the direction of Q.

The contributions of the forementioned orbits to the
current through the contact is calculated as follows. Be-
cause the linear dimensions (b) of the orifice of the con-
tact are small compared to the mean free path (/) of the
electrons, b <<, the corresponding, so-called Sharvin
current through the orifice is determined by the ballistic
transport of electrons from the metal with the higher (V)
potential, to the other metal:

d’r ['d*k v, fOr,k), (1)

orifice

2e
Jg=—2—
ST (2)3 J
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FIG. 1. Schematic drawing of open and closed orbits on sur-
faces of constant energy for four different values. Each surface
is drawn as a projection from four-dimensional superspace in
the (a*,b*) plane in an extended zone scheme. Note that the
directions along b* and c* are free-electron-like. The lattice
vectors in reciprocal space are denoted by (h,k,I,m). For the
sake of clarity only the first-order gaps are given. Shaded areas
represent occupied surfaces. Each of the four energies lies in a
different band within the conduction band.

where v, is the component 0 of the electron velocity per-
pendicular to the orifice, f° is the electron distribution
function, and e is the electron charge. The integration in
k space involves all k vectors that can contribute to the
current, for which v, is positive and the corresponding
energy lies between € and € +eV. These restrictions
are denoted as a prime at the integral. At zero tempera-
ture this can be written as
3 de(k)

(mb?)— f kg

Jsn= (2)

(2 )3
where we have assumed a circular orifice with radius b.
e(k) is the energy of the electron. For the unperturbed
free-electron gas (FEG) we have e(k)=#%k2/2m, thus
finding

JFEG 2e 2mm € f5F+eV 82b2 m

2 _eo m
= (27T)3(1rb ) » orle, de= o ﬁ3€FV ,
(3)

if we assume for the Fermi energy that e >>eV. (For
normal metals eV /e;~10"3-10"%) The resistance is
therefore independent of the energy of the electrons, re-
sulting in a linear relation between the current and volt-
age. When we introduce the modulation to the problem,
the factor € in the integrand of (2) in general is no longer
a continuous function of k,, due to the additional gaps in
the spectrum (cf. the normal energy bands in a crystal
field). Thus Eq. (2) becomes
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If we replace the integral in k space by an integral over
the energy, we find

_2e

J
Sh = Qr )3

ﬁzz_fde [ds,n.s, , (5)
where n, is a unit vector in the direction of the velocity
of the electron and s, is a unit vector perpendicular to the
orifice. S, is a surface of constant energy in k space.
From (5) we conclude that for every energy €, the projec-
tion of the corresponding surface in k space on the plane
of the contact determines the Sharvin current. We will
distinguish between two different cases for which the
orifice normal is either parallel or perpendicular to Q. In
the former case we need the projection along k,, while in
the latter situation the projection along k, (or k) should
be used. Fig. 1 can be an aid for a visualization. As the
exact band structure of chromium is too complicated, we
will continue our simplification by splitting the energy in
a part that depends on k vectors perpendicular to Q and
one depending on k vectors parallel to Q:

e(k)=¢,(k,,k,)+¢g k), (6)

where €, =(#*/2m)(k}+k}) and ¢/(k,) depends on the
actual modulation amplitude. Then Eq. (4) reduces to

2e
Jb =——
S Qr)? #

)
>, fE:Eﬁsudslfds"s . (7

The summation over s involves all bands between e=¢
and e=ep+eV. In Fig. 2 the area relevant for the in-
tegrals is shaded. Using this figure and slightly overes-
timating the small triangular contribution of the highest
occupied band, we find

EF EF'oeV E.L

FIG. 2. Schematic drawing of the surface of constant energy
as a function of the applied voltage in energy space. Note that
e=¢,+¢). For directions parallel to Q the energy bands (shad-
ed areas indicate filled bands) are present, while in the perpen-
dicular direction the electrons are assumed to be free.
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e’b: m
Jghz—zr—;;Vg [ de,, . (8)

Analogously, we find for the current when the orifice nor-
mal (say z) is perpendicular to Q:
172
L e*? 1

_ 1 dk,. | 9
Sh 27 wh V%f XS &)

2m
i

where we have used €, =#°k2/2m. From the last two
equations we conclude that whenever €(F) crosses a gap,
the Sharvin resistance stays constant. Between two gaps
the conductivity increases linearly for a contact with its
normal parallel to Q, while for the case perpendicular to
Q, the band structure at the edges determines the con-
ductivity. This result is schematically drawn in Fig. 3.
An important result is that the structure due to the gaps
in the 8V /I spectra is roughly the same for all orienta-
tions of the point contact.

Up to now only the gaps at k=tNQ=xK with N =1
have been considered. Higher harmonics of Q can (and
in chromium do!!) play a role, the corresponding gaps be-
ing smaller. The effects of these higher-order gaps on the
Sharvin resistance is analogous to what was described for
the first-order gaps. At this point it is worthwhile to
make an estimation of the size of the change in the Shar-
vin current due to these gaps. An essential difference be-
tween chromium and a normal metal is the contribution
of all gaps between occupied bands s (see Fig. 2) decreas-
ing the current in chromium. The Fermi energy in anti-
ferromagnetic chromium is approximately 7 eV accord-
ing to the band-structure calculations of Asano and
Yamashita.!> The first-order gap in the neighborhood of
the Fermi level is of the order of 100 meV. Therefore,
this single gap already causes a 1.4% decrease of the
current for contact normals parallel to Q, at least in our
model. If we also take into account the effect of the other

s
v

v

FIG. 3. The Sharvin conductivity, schematically, as a func-
tion of the applied voltage for point-contacts parallel and per-
pendicular to Q. The constant regions in Jly /¥ represent the
gaps. It should be noted that for normal applied voltages only
one gap is traversed.

5927
gaps in the conduction band (see de Lange and Janssen'®)
we can expect larger decreases of the current.

IV. EXPERIMENT

A single crystal of chromium was obtained from a Czo-
chralski growth. The resulting crystal (=7X7X4 mm?)
was oriented by means of x rays and spark cut to obtain
specimens with faces perpendicular to the cubic axes.
The crystals were then etched electrochemically. At first,
point contacts were made between these samples using
the Kharkow configuration, for which two fairly sharp
edges of the samples are gently pressed against each oth-
er. In later experiments these samples were forced to
single-Q domains by applying a magnetic field of 8 T
above the Néel temperature and thus slowly cooling
down (0.5-1 K/min) to room temperature. Afterwards
they were immediately cooled down to 4.2 K in a He-
bath cryostat. A third series of measurements was per-
formed by placing a sharp etched tungsten needle on a
chromium bulk sample which was also magnetically
oriented as described above. All measurements were per-
formed at 4.2 K or lower, down to 1.2 K. First deriva-
tives 9V /09I versus V were measured with a four contact
configuration in a compensating resistance bridge, using
lock-in techniques.

V. RESULTS AND DISCUSSION

All measurements showed an anomalous behavior
around zero-bias voltage. For normal pure metals, the
first derivative d¥ /3l shows a minimum for zero-bias
voltage. The signal becomes bigger for higher voltage
mainly due to electrons which, after being scattered by
phonons, reenter the orifice, thus increasing the resis-
tance. A comparable behavior is observed in chromium,
although a broad symmetric peak around zero indicates
an additional increase of the resistivity for low voltages.
The shape and height of this anomaly differs for different
point contacts. In Fig. 4 some shapes are given for
several point contacts. As can be seen in this figure, the
fraction of the differential resistance of the anomaly, as
compared to the zero-bias point-contact resistance, varies
from approximately 3% to more than 25%. The voltage
for which an increasing resistivity becomes the main
feature varies from 20 mV to approximately 100 mV,
with a tendency for high-resistance point contacts to start
increasing at higher voltages. In order to find out wheth-
er this zero-bias anomaly depends on the orientation of
the modulation wave vector with respect to the current
through the contact, we measured the spectrum for sam-
ples which were oriented in a magnetic field of 8 T, either
with Q parallel or with Q perpendicular to the point con-
tact. Experimentally there was no significant difference
in spectra between these two conditions. This result did
not change for a similar experiment using a tungsten
spear on a chromium bulk sample. The latter config-
uration is expected to provide a more reliable orientation
of the point contact with respect to the crystal. Once a
sample was magnetized, several point contacts with the
same orientation of the crystals generally showed compa-
rable peak shapes and heights.
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FIG. 4. Some typical point-contact spectra for different Cr-
Cr point contacts. The percentages indicate the vertical scale
with respect to the zero-bias resistance.

For point contacts, which allowed for high-resistance
contacts, it was possible to measure the resistance depen-
dence of the anomaly height. A result of such a measure-
ment is given in Fig. 5. This figure shows that the height
of the anomaly is independent of the point-contact resis-
tance over more than one decade, and moreover, that the
shape does not change for one and the same point con-
tact. From this result we can conclude that the size of
the effect is linear in the contact resistance.

There was no observable temperature dependence of
the anomaly between 4.2 and 1.2 K.

Any dependence of the spectrum on magnetic field was
not observable up to 15 T, neither for fields parallel to Q
nor for perpendicular fields. The measurements using the
tungsten spear turned out to be very sensitive to high
magnetic fields, for which the noise increased drastically.
This latter effect is probably due to magnetomechanical

dvidl (%R,)

25 50
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FIG. 5. The zero-bias anomaly for one and the same point
contact but different zero-bias resistances.
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effects.

Before explaining the observed zero-bias anomaly in
terms of gaps in the density of states for the electrons,
changing the Sharvin current through the contact, we
first will exclude an explanation in terms of heating
effects. Heating is known to be often the cause of ob-
served structure in point-contact spectra.!® The first
derivative dV /dI as a function of voltage then more or
less resembles the bulk resistivity as a function of temper-
ature p(T). The link between temperature and voltage is
achieved by Joule-heating effects, which have only appre-
ciable contributions in the so-called dirty limit (thermal
regime), for which both the mean free path of the elec-
trons and the inelastic diffusion length are smaller than
the linear contact dimension. These thermal effects can
be disregarded in chromium for two reasons. First of all,
the dirty limit is in pure metals normally met for high
(>100 meV) voltages and secondly, the resistivity in
chromium shows a normal metallike (decreasing) behav-
ior at low temperatures, albeit that the antiferromagnetic
part of the resistivity increases with decreasing tempera-
ture.!” Our results for low voltages, when interpreted as
due to thermal effects, would suggest an increase of the
resistivity at low temperatures. Therefore, heating effects
can be disregarded.

As explanation based on the electronic density of states
near the Fermi level is, given the results of Sec. III, ap-
pealing. The actual form of this function, however, is not
very well known, surely if one takes into account the
influence of the modulation wave. Some remarks,
though, can be made. First of all, the height of the
anomaly is at most approximately 25% of the zero-bias
resistance. For a triangular shape this means a 13% drop
in the resistance. This is ten times as large as the value
expected due to the single first-order gap and is a measure
for the effect of all additional gaps. Moreover, the possi-
bility of obtaining such high resistances as 100 Q with a
stable contact indicates also the intrinsic properties of
chromium as compared to normal pure metals.

The sizes of the different gaps are too small to be pre-
dicted by band-structure calculations. Experimental
techniques as x-ray photoemission spectroscopy (XPS)
and soft x-ray absorption, used to reveal the band struc-
ture, are not adequate for determining the low-energy
effects which are relevant here. However, experiments
sensitive in the low-energy regime of the conduction elec-
trons have been performed. These are infrared
reflectance and inelastic neutron scattering measure-
ments. The values for the energy gap reported by several
authors varies considerably. We will first give an over-
view of the results reported and afterwards compare
them with our measurements.

As the infrared reflectance experiments are concerned,
Barker and Ditzenberger® found an energy gap of 1000
cm~! (124 meV) at 80 K. The same value was found by
Lind and Stanford* (30 K). These latter authors found an
additional peak at 0.45 eV, which disappeared above T).
Kirillova and Nomerovannaya® found a value of 0.112 eV
at 100 K. For all these measurements, the low-energy
side of the spectrum was limited to approximately 60
meV. Inelastic neutron scattering experiments range to
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lower energy transfers. Using this technique, Ziebeck
and Booth'® found a gap of 16.9 meV at 295 K. They
used energy transfers up to 74 meV. The extrapolated
value at O K, using a BCS-like temperature dependence of
the gap, then yields 71 meV. This result is in agreement
with that obtained by Moyer et al.'® who fitted magnetic
susceptibility data to a theoretical model, thus finding 28
meV for the gap. Barker and Ditzenberger suggest that
their result of 124 meV is a measure of the first-order gap
due to the SDW. Higher-order gaps are expected to lie at
lower energies. An important question for the interpreta-
tion of our results is which gaps enclose the Fermi level.
For infrared reflectance measurements the effect of a gap,
enclosed by or above the Fermi level, is seen as an ab-
sorption of radiation for energies higher than the gap, ir-
respective of its exact position. The only restrictions im-
posed are that the transition between the bands obeys
momentum conservation and that the corresponding
transition matrix element is not zero. In an incommensu-
rate structure the equivalence between states at k=0 and
k=1+NQ (N integer), allows for transitions from k to
ktNQ=xK. This additional transition scheme was used
by Lind and Stanford to account for the absorption peak
at 0.45 eV. In their explanation, both gaps (0.124 and
0.45 meV) are first-order gaps corresponding to wave vec-
tors Q and 2a*—Q, respectively. They used band-
structure calculations of Asano and Yamashita,!> who
also discussed the gap structure. The Fermi level lies in
the low-energy first-order gap. Addition of small
amounts ( < 1%) of Mn increases the value of Q. The
effect on the reflectivity is to decrease the 0.1 eV absorp-
tion peak and increasing the peak at 0.4 eV. For higher
percentages Mn, the SDW becomes commensurate and
the two first-order gaps merge to one gap at approximate-
ly 0.4 eV, as discussed by Bos and Lynch.?® Second-order
gaps in the neighborhood of the Fermi level are expected
to occur on both sides of the first-order gaps for a metal-
like band and small first-order gaps. On the other hand,
it is possible that the second-order gap lies inside the
first-order gap for a large enough value of the latter gap,
resulting in an open orbit within the first-order gap. In
this latter case it is possible to find gaps at lower energies
than that of the first-order gap. This can account for the
lower extrapolated value of 71 meV found by Ziebeck and
Booth, although these authors interpret their result in
terms of the first-order gap.

As the aim of our measurements was to find gaps at
lower energies (see Fig. 4), we also measured the far-
infrared reflectivity of our crystal in a nonsingle Q state
in the energy range 6.2-37 meV at room temperature
and at 30 K. We found no structure at all, probably be-
cause the instrument limited the sensitivity to approxi-
mately 1%. For comparison, the first-order gap at 124
meV generally causes a dip of 3% in the reflectivity.’
Our instrumental resolution probably is too small to ob-
serve second-order gaps because the corresponding tran-
sition probabilities are expected to be considerably small-
er. A transition is allowed in principle at least.

As the insensitivity of the anomaly to the direction of
the point contact with respect to the modulation wave
vector is concerned, we have to distinguish between two
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possibilities. The first one is a direct consequence of the
results of Sec. III. As already discussed, the difference in
spectra for parallel and perpendicular currents is only
due to the structure in the density of states near the band
edges corresponding to the additional gaps (see Fig. 3).
The other possible reason stems from the polarized
reflectance measurements of Barker and Ditzenberger.
These authors used single Q-state crystals (oriented in 2.5
T, resulting in 10-20 % higher bulk conductivity for
directions perpendicular to Q) and found no difference in
reflectivity for polarizations parallel or perpendicular to
Q. They conclude that, given the infrared skin dep}h, the
modulation wave vector in at least the first 200 A near
the surface lies in the surface. A magnetic field of 2.5 T
would not be strong enough to change the direction of Q
near the surface, due to the intrinsic defect of any sur-
face, pinning the modulation wave. Although their con-
clusion is not unambiguous, the results clearly show a
preference for the wave vector to have a fixed orientation
with respect to the surface. Therefore, the point-contact
spectra, which measure the effect of the modulation over
a distance of the mean free path of the electrons from the
surface, are expected to show no appreciable dependence
on the bulk orientation of Q. Whether, despite the mag-
netic alignment procedure, our measurements involve
only contact normals parallel or perpendicular to Q is
still an open question for us. Moreover, misalignment of
the point contact with respect to the surface normal can
also account for differences in spectra of several contacts.
And as was mentioned before, the first reason mentioned
above, namely, the results (8) and (9) of Sec. III, suggest
already a small difference for currents parallel or perpen-
dicular to Q.

This brings us to the question why the zero-bias anom-
aly manifests its minimum at different voltages for
different contacts. To answer this question we have to
distinguish between three different contributions to the
Sharvin resistance of the contact: the gap structure in
the density of states, the scattering by phonons, and Joule
heating. The first reason has already been discussed in
detail.

The increase of the resistance for higher voltages due
to scattering by phonons normally is of the order of a few
percent of the zero-bias resistance and is limited by the
Debye energy. The increase of the resistance in our mea-
surements, however, always continues up to voltages well
above the Debye energy (32 meV for the transverse-
acoustical phonons, which provide the main contribution
to the scattering process). Furthermore, the increment in
resistance is often far too big to be accounted for by pho-
non scattering only.

Heating effects, on the other hand, are more probable.
As mentioned before, such effects normally occur in pure
metals for voltages of the order of 100 meV. The size of
the effect is expected to increase with decreasing point-
contact resistance. This actually is what we on the aver-
age observe. Typical low-resistance point contacts
(Ry<1 Q) have spectra that increase already at 20-40
meV, while contacts with a relatively large resistance
(Ry>5 Q) have a zero-bias anomaly continuing up to
maximal 100 meV. This latter category of contacts either
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shows an increase of resistance for higher voltages or
even tends to saturate (see, e.g., the 3-Q spectrum in Fig.
4). There are a few exceptions to this behavior (see, e.g.,
the 0.5-Q) spectrum in Fig. 4, which does not increase un-
til approximately 40 meV) but this abnormal behavior
can be attributed to the actual point contact with all its
unknown incidental peculiarities. In any way, the in-
creasing resistance seemingly depends more on the point
contact itself, rather than on the structure of chromium.

The fact that for energies still inside the gap, the Shar-
vin current increases with increasing voltage, indicates
that our model is too crude to predict the exact shape of
the spectra. In particular, the assumption that the
dispersion relations in mutually perpendicular directions
are independent of each other appears to be nonrealistic.
We expect for the gaps a k, and k, dependence too,
which, moreover, diminishes on approaching the gap
edges. This can account for the decreasing resistance for
increasing applied voltage.

V1. CONCLUSION

In conclusion, we can say that in our Cr-Cr point-
contact spectra, the zero-bias anomaly is a measure for
the gaps in the density of states due to the modulation
wave, which, depending on the point-contact resistance,
is diminished by heating effects, causing an increase of
the resistance. The origin of the anomaly is probably
mainly due to the first-order gap because the maximal
voltage for which the anomaly is observed is approxi-
mately 100 meV in fair agreement with the results ob-
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tained by infrared spectroscopy and inelastic neutron
scattering. The actual forms of the anomaly, triangle
shaped, rounded, or even with a sharp cusp at zero-bias
voltage, probably depends on the orientation of the point
contact with respect to the surface of the crystal (and cor-
respondingly to the modulation wave vector Q). The
effect of gaps lying at lower energies is intrinsically
present, because the effect of the single first-order gap is
relatively big compared to the zero-bias resistance, which
can become unusually high in the case of chromium. The
actual shape of the anomaly cannot be fully explained
within our simple model. A more realistic approach for
which, e.g., the dependence of the gap structure on k
and k, is also taken into account is required. The results
as given in Fig. 5, where heating effects are not yet dom-
inant, indicate that the height of the anomaly depends
linearly on the resistance. This is in agreement with (8)
and (9), the Sharvin resistance being inversely proportion-
al to the area of the point-contact orifice.
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