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Inequivalence of the physical and Kohn-Sham Fermi surfaces
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The Fermi surface of an infinite system of interacting electrons is a sharply defined ground-state

property. An exact solution of the Kohn-Sham equations of density-functional theory, which yields

the correct physical density distribution and ground-state energy, also yields a Fermi surface. This

paper shows by an example that, in general, the Kohn-Sham Fermi surface does not exactly repro-

duce the physical one.

I. INTRODUCTION

The Fermi surface (FS) of an extended system of in-

teracting electrons is a well-defined ground-state proper-
ty, described by wave vectors k for which the quasiparti-
cle excitation energy X(k) equals the chemical potential. '

In density-functional theory the Kohn-Sham (KS) equa-
tions, which describe a noninteracting system with the
same density n (r) as the interacting one, also give rise to
a Fermi surface. This raises the question: are the KS
and physical FS's equivalent? ' The main purpose of
this paper is to demonstrate that the answer is, in general,
no.

There are two trivial cases for which the FS's are
equivalent: (1) in the absence of interactions, since the
two systems are identical, and (2) for a uniform system, in
which both FS's are spherical and enclose the same
volume in k space. ' Thus, any differences between the
FS's must result from the combined effects of interac-
tions, and inhomogeneities due to an external potential
v(r).

In the following two sections we construct an example
of a system which exhibits a Kohn-Sham FS that differs
from the physical one. In Sec. II we consider the electron
gas in a regime which permits a perturbative treatment of
both the interactions and the external source. Section III
is devoted to calculating the FS s in this regime. We con-
clude with some brief remarks in Sec. IV.

II. GENERAI. FORMS OF THE
FERMI SURFACES IN THE

REGIME CONSIDERED

We consider an electron gas in a weak external poten-
tial, '

v(r)=ycos(q r)

(y«1). It will be assumed that the density is high
enough so that the interactions, as described by the
Coulomb potential, V(r) =e /r, may also be regarded as
weak (e «1).

The forms of the FS's to lowest order in y and e can
be readily deduced by making the following observations,
which apply to both FS's. First, the FS must be invariant
under translations of v(r) in space, i.e., under phase
changes of the argument q.r. In particular, for

q.r~q r+~ we get y~ —y, so there can be no change
in the FS to order y. Also, the Fermi wave number (i.e.,
the magnitude of the Fermi wave vector) can depend only
on the angle between q and the Fermi wave vector. Fi-
nally, there can be no shift in the FS of order e alone
(y=0 term) because of the k-space volume constraint. '

Therefore, the KS and physical Fermi wave numbers can
be written as

(v) 1 +y2 k(2, 0)( v) +y2e2 k(2, 1)( v)

kF(v)=1+y kF' '(v)+y e kF "(v),
(2)

(3)

respectively, where

v=q kF&qkF=q kF&qkt;, (4)

kF(v)
g(k ) +y2g(2, 0)(v)+y2e2g(2, ))(v)

2
(6)

The first term in each of these equations corresponds to
the free-electron contribution; the remaining terms will
be calculated in the next section using ordinary perturba-
tion theory.

We now substitute Eqs. (2) and (3) into Eqs. (5) and (6),
apply the volume constraint'

l
3m.2

d k
(2n. )

to each FS, where % is the region enclosed by the FS, and
obtain

k' ' '(v)= —b( ' '(v)+ f dv'6( ' '(v')
0

and the wave numbers are measured in units of the un-

perturbed Fermi wave number. Since the two systems of
particles are identical for e =0, kF ' '(v) is common to
both. The combined effects of interactions and external
potential are represented by kF "(v}and kF "(v) which,
as we shall see, are different.

Similarly, at the Fermi levels the excitation energies of
the KS and physical systems, e(k} and Z(k), respectively,
have the forms

kF(v)
e(k ) +y2i( (2,0)( )+y2e2i( (2, 1)( )

2
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k(2, 1)( ) tI)
(2, 1)(v)+ f dvigu(2, 1)(vt )

0
k(2, ))( ) g(2, 1)( )+f d ii) (2, 1)(

0

(9)

(10)

By definition, the effective potential must induce the same
linear response in the noninteracting (KS) systein, for
which the susceptibility is II0(q, O). Thus, if we write

III. CALCULATION OF THE
FERMI SURFACES

u,(t(r) =yu, (r(q) cos(q r),
then from Eqs. (14}and (15),

(16)

To determine the functions b, ' ' '(v), 6' "(v), and
5' "(v), we will calculate to order y e the shifts in e(k)
and Y(k) from the free-electron value k /2, and then
evaluate them at k =kF and k =kF, respectively. This
evidently requires self-consistency since the unknowns
being sought, kF and kz, also serve as input.

The excitation energies X(k } are solutions of the Dyson
equations,

n(r) =n' '+yII0(q, O)v,(t(q) cos(q.r) . (17)

Comparing Eqs. (14) and (17) we see, using Eq. (15), that

II i(q, 0)
v,(r(q) =1+e

II() q, O
(18)

In order to determine the effects of exchange on the FS
we need to isolate the exchange part of v,(t(q). We can
write the exchange potential as

[ )V—+—u(r)]g),(r)+ fd r'X(r, r';Z(k))f)(r')

=Z(k)fi, (r),
where X(r, r;Z(k)} is the proper self-energy. The KS
equations, which determine a{k),are

(12)

where

u,(t(r)=v(r)+ f d r'V(r —r')[n(r') —n'0']+v„, (r)
(13)

u„(r)=yv„(q }cos(q r ) .

Using Eqs. (14), (15), and (19) in Eq. (13) then yields

v,(t(q)=1+e II0(q, 0)V(q)+v„(q),

where

V(q) =4m /q

Comparing Eqs. (18) and (20) we see that

rl)(q, o)
u„(q) =e

(19)

(20)

(21.)

(22)

is the effective local potential, n' )=N/0, ' where N is
the number of electrons and 0 the volume of the system,
and v„,{r)is the exchange-correlation potential. Solution
of the Dyson equations to first order in e is equivalent to
a first order Hartree-Fock calculation. Accordingly, we
will be dealing with exchange only [v„(r) instead of
u„,(r ) ], and an eigenvalue-independent self-energy
[X(r,r') instead of X(r, r';E(k)}].

In calculating the two FS's we shall find it convenient
to separate the e contributions into direct and exchange
parts. The direct parts are equal and due to the second
term of u, (t(r) [Eq. (13)],which is common to X(r, r'} and
equal to its local part. It is the different treatments of ex-
change [local, in u„(r), and nonlocal, in X(r, r')] which
produce different FS's.

where

II))'(q, O) = II)(q, O) —V(q)[II0(q, 0)] (23)

k
e(k) = +y's"'(k),

2
where

(24)

s( '(k) = — 1+2e II0(q, O) V(q)

is the first order (in e }proper polarization propagator.
With these results for v,(r(r}, we make a standard per-

turbation calculation to get the KS eigenvalues, and ob-
tain

A. Kohn-Sham system

IIi)'( q, 0 )

110(q 0) q —4(k q)
(25)

We now turn to the calculation of kz(v) [Eq. (2)], using
the KS equations. The KS eigenvalues E(k) are deter-
mined by v,(t(r), which requires calculation of n (r). The
unperturbed eigenfunctions are plane waves, and by
orthogonality there is no shift in s(k} to first order in

u, (r(r). " Thus to compute s(k) to order y, it is sufficient
to determine v,(t(r) to order y.

The external potential u(r) results in the density

and

g(2'0 (v)
1

2
q —4v

g(2, 1)( ) g(2, I )( ) +g(2, 1)( )X

(26)

(27}

To determine the Kohn-Sham FS we evaluate e(k) at
k =k~. From Eqs. (2), (4), (5), (24), and (25), we then find

n(r)=n' '+yn(q)cos(q r), (14) where

n(q) =II()(q,O)+e II,(q, O) . (15)

where the linear response n (q) is equal to the susceptibili-
ty, or static polarization propagator for the uniform elec-
tron gas, II(q, O),

h(d "(v)= —2110(q,O) V(q) z,
q —4v

II~)(q, 0)

II()(q, O) q2 —4v

(28)

(29)
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are the direct and exchange contributions. It will be as-
sumed that q & 2 so that no singularities appear in these
quantities [by Eq. (4), v is restricted to the range
—1&v&1]. Finally, we use Eqs. (26)—(29) in Eqs. (8)
and (9) to get

Hence we can write

g(2, 1)( ) g(2, 1)( )+g(2, 1)( )

kF "(v)=kF d"(v)+ kF „'"(v),
where

(37)

q2 —4 4q q —2
(30) k(2, 1){ } g(2, 1)( )+ d ig(2, 1)( (38)

and

kF {v} kF d (v)+kF x (31)

and focus attention on the exchange part of the Dyson ei-
genvalue Z(k).

Let us make an expansion of'K(k) in e 2,

where
1

kF d"(v)= h(d "—(v)+ dv'b, d("(v')
f(k)=ep(k)+e [Z( d(k)+E, „(k)],

where

(39)

=2Ilp(q, O) V(q)
1

q —4v

1 q+2
ln

4q q —2

(32)

and

k q&p(k) = —y'
2 q 4(k q)

2

f) ~(k)= —2y II()(q, O)V(q)
q —4(k q)

(40)

(41)

k' '"(v)= —b' "(v)+ dv'b' "(v')1

F,x x x

IIF(q, o) 1 1 q+2
IIp(q, O} q2 4v2 4q q —2

(33)

are obtained with the results of the KS calculations (Sec.
III A), and

&) „(k)= —g 8()M —Zp(k'))

X fd r d r'V(r —r')g1', (r)1{1,.(r)

Although Ilp(q, 0) can be evaluated analytically, 7 for gen-
eral q, IIF)(q, O} requires numerical computation. '2

B. Physical system

To determine the physical FS we calculate kF '"(v) in

Eq. (3), using the Dyson equations. To first order in e
the self-energy is

X(r, r') =5(r—r') fd3r" V(r r')[n(r") ——n'P']

—V(r —r') g $1,(r)$1', (r'}8{)M—Z(k)), (34)

where 8(x) is the step function

Xygr )y„(r ) . (42)

0'~2 '
(q +2k.q) (q —2k q)2

X 1 —y
e

—iqr

q +2kq q —2kq2 +

In ~~iti~g Eq. (42) we have assumed that the eigenfunc-
tions $1,(r) are normalized,

fd r
( $1,(r) ~

=1 .

To calculate E) (k) we need the eigenfunctions to
second order in y, zeroth order in e . This involves a
perturbation expansion in just v (r), and the result is

8( )
1, x)0
0, x&0

{35) +0(y2)e-'"'

and p, is the chemical potential. The two terms of X(r, r')
are the direct and exchange parts, respectively. The
direct part is local, and equivalent to the second term in
U,(r(r), Eq. (13). It therefore leads to the same direct
terms in 'E(k) and kF(v) as found in e(k) and kF(v).

The first factor involving y is due to the normalization,
Eq. (43). In the second, the terms of order y do not con-
tribute to the normalization, and integrate to 5+zq 0

——0 in
Eq. (42), so they need not be evaluated. Using Eq. (44) in
Eq. (42}and integrating, we obtain

s, „(k}=——,'0 ' g 8{)M—& (k')) V(k —k')
k'

+y'Q —' g'[8(1—k') —8(1—
~

k'+q
~
)]V(k —k')

k'c

1 1

q +2k-q q +2k'. q

2

+(q~ —q) . (45)

~e have used the even iri q property of pp(k) [Eq. (40)], hence the factor —,
' in the first term. The second term has a fac-

tor y2 so we have replaced 8(p —Ep(k')) by 8(1—k'). By inspection of Eqs. (6}, (36), and (39), we see that b,„''"(v) is



38 INEQUIVALENCE OF THE PHYSICAL AND KOHN-SHAM. . . 5909

equal to E, „(kF}, up to an additive constant. The sums in Eq. (45} may be converted to integrals and carried out al-
most completely; details are discussed in Appendix A. The result is

e( „(kF)=y2b, „' "(v)+C,
where C is a constant independent of v, and

(46}

g(2. 1)( )
27Tq

ln(q+v —1} ln(q+v+1)
q —2 q+2

I+ —,
' ln1, q —4v

2n(q —4v )
'

q —4
v q+2v——In

q —2v

(-,'+1 2)1
1

2nq2(q .+2v) '
q —2

q+v+1
q+v —1

q+2v
1 (1 }1 q+2 q

1
(q +2vq+1) +1

q —2 q+2v (q2+2vq+1))i2 (q2+2vq+1)'i2 —1

+f z
21n iz —vi +4ln(q+z+v) — 2+ ln

i
G(z}

i
+(v—+ —v),q+2v

—
& q+2z q +2z

(47}

where

G(z)=2z(q+v)+q +2vq+2v +[4(q +2vq+1)z +4(q+v)(q +2vq+2)z+q (q+2v) +4(q+v}2]'i . (48}

Substitution of Eq. (47) in Eq. (38) yields kF „'"(v).

C. Discussion

+y 2e 2k (2, 1)(v)

kF(v)=1+y k )(v)+y e k( 1)(v)
7

+y2e2k(2, 1
( )

(49)

(50)

respectively. Equations (29} and (47) illustrate the
diS'erence in shaI)es of the FS's due to exchange, since

kF „"(v) and kF „'"(v} are equal to —b, „' "(v) and
—b„' '"(v) up to additive constants. We observe a much

more complex structure in kF„"(v) than in kF „"(v).
These have not been evaluated for arbitrary q )2; howev-

er, exact results are available for the limit q~ ~, which
is discussed in Appendix B.

IV. CONCLUSIONS

To summarize, we have shown that the Fermi wave
numbers for the KS and physical systems may be written
as

kF(v)=1+y kF'' '(v)+y e kF'd"(v)

ing carried out to estimate the magnitude of the
discrepancy in real metals.
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APPENDIX A: EVALUATION OF'E1, {KF)

Here we discuss the calculation leading to Eq. (46).
Taking the continuum limit [0 'g1, ~(2m) Jdsk] in

Eq. (45) we find, after some manipulation,

1
'K( (kF ) = —Ip+ y (I) —I2 )

q (q+2v)

2
(Is +I4 )

q(q+2v)

+Is I6 + ( v~ v) (A 1

where
We have shown here that the KS and physical FS's are

in general different, by explicit construction of a
representative example. We would like to comment on
the practical consequences of this result.

The KS equations are used for approximate calcula-
tions of the band structure of solids and, in the case of
metals, the FS. ' ' One source of error is the necessarily
approximate form of u„,(r) used. What we have shown is
that for an exact u„,(r) the Kohn-Sham FS is generally
not exact. Semiquantitative calculations are currently be-

8(p —f (p))
Io= d p

4n (K—p}

K=[1+y kF '(v)]e„,
1 ds 8(1—p)

2(e„—p)

1 d& 8(1—p)
2H (e„—p+q)

(A2)

(A3)

(A4)
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1 d3 8(1—P) 1

2n. (e„—p) q +2p q
(A5)

1 d3 8(1—P) 1

2H (e,—p+q} (q —2p q)
(A8)

1 3 e 1 —p 1

2~ e —p+q q —2p-q

and e is a unit vector such that
(A6)

v=e .q/q . (A9)

1 3 8(1—p) 1

2n. (e„—p ) (q +2p.q)
(A7) The integrals I) —I6 are straightforward to evaluate. The

results are

1I =—
7T

1 q +2vq (q +2vq+1)' +1
2(q +2vq+1)'~ (q +2vq+1)'~ —1

I3 —— ln(1+ v) ln
1 q+2v q+2+ln(1 —v) ln

4m.q q —2 q+2v 2 ITq —1

ln
/
z —v

/

q +2z

(A10)

(Al 1)

(A12)

ln2
1

q+2
4 ln

4~q q —2
1 ) dzf [21n(q+z+v) —ln

~

G(z)
~ ],

2mq —i q+2z
(A13)

1 q+2
4n'q ( q +2v ) q —2

1 21n2 ln(q+v —1) ln(q +v+1)+
2&q2 q2 4 q q+2

1
1

(q+2)(q+ —1) ) d
1 ~G( )

~q+2v (q —2}(q+v+1) —) (q+2z)z

where

G(z)=2z(q+v)+q +2vq+2v +[4(q +2vq+1)z +4(q+v)(q +2vq+2)z+q (q+2v) +4(q+v) ]'~

(A14)

(A15)

(A16)

We are left with evaluating Io.
Eualuation of Ip. In Eq. (A2), we need the chemical

potential to second order in y. In zeroth order it is equal
to —,', corresponding to the free-electron system. Let us

write

Before using these expressions in Io, we make the change
of variable p~p+y kF '(v)e„ to get

1 d'p
Ip= z f z 8[(u —Zp(p+y kF ' '(v)e„)] .

4n (e„—p)

and

p= —,'+y p2 (2)

2

ep(p) = +y+I) '(p),
2

(A17)

(A18}

(A22)

All the y dependence is now contained in the step func-
tion, which has the expansion

8((M —s (p+ y'k ""(v)e„))

where

2

&p (p)=- q
q' —4(p q}'

(A19)

=8(1—p )+y'kF'"(v)5(1 —p)(1 —e„p)
—y 5(1—p)['EI) (p) —'KI) '(e„)], (A23}

where p =p/p. Substituting in Eq. (A22}, we obtain
[see Eq. (40)]. Then with

( =4[[1+y'kF'"(v)]e.) (A20)
where

I( )+ (I( ) +I(2) ) (A24)

we obtain

(2) k(2, p)( ) +E(&)(e ) (A21}
(o) 1 „3e1 p 1

4H (e„—p)
(A25)
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Io,' —— kz ' '(v) fd p 5(1—p ) z4 (e„—p)

1 k' ' '(v)
2~

1 1 1 q+2
2m q2 —4v 4q q —2

[/~2~(e ) gi2l(~)]Ob 4 2 p( ~}2 0 ev 0 p
V

(A26)

so that, from Eq. (33),

k"„"(v)=O(q )(v' ——,
' } .

On the other hand, Eq. (47) has the asymptotic form

b,„'"(v)=O(q ')[1+2(1—v')q '+ . ],
which, by Eq. (38), leads to

k,"„"( ) =O(q-')(v'--, ') .

(B2)

(B3)

(B4)

q +2v
q —2v

(A28)

Finally, substituting Eqs. (A25), (A26), and (A28) in Eq.
(A24), we get the result

1 g 1
1

q+2
ln0 2 Y 8

1+~ 22n(q —4v }

—4vX1+lnq —4

q —4
I

v q+2v——ln
q —2v

(A27}

Using Eq. (A19) and performing the integrations, we find
P

q —4v
IO, b qln

4mq(q —4v ) q —4

Equations (B2) and (B4) show that the distortions of the
FS's due to exchange differ by 4 orders of magnitude in

q '. This might seem peculiar. After all, by definition
the densities of the two systems must have the same
asymptotic form. %hy should their FS's be so different~

Briefly, this can be explained as follows.
It is easy to show that the exchange part of e(k) can be

written as

e„(k) = & Wi, I
v

I
k & +c.c. , (B5)

where gk(r) is the exchange term of gk(r) [i.e., the shift
in t/i&(r) involving v„(r)], and

I
k& is a plane-wave state.

The shift Pz(r) has the same asytnptotic behavior as the
exchange part of the density, which is proportional to
Ii)(q, O) and hence behaves like q . This results in a
contribution of order q in e„(k) which is uniform (in-
dependent of k), and hence does not affect the FS. The
distortion of the FS shows up in the next higher order,
which is q, hence Eq. (B2).

By contrast, the exchange part ofZ(k) is

(A29}
&„(k)=(k

I
&

I
k&+((Pf, I

U
I
k&+c c ) (B6)

Substituting Eqs. (A10)—(A15) and (A29) in Eq. (Al)
yields Eq. (46).

b, „' "(v)=O(q )(1+4v'q + ) (B1)

APPENDIX B: FERMI SURFACES
IN THE LIMIT q ~~

It is of interest to consider the asymptotic forms of the
FS s in the limit q ~ 00, since exact results are available.

For large q, the first-order proper polarization propa-
gator of Sec. IIIA has the form' Ilyt(q, O)=O(q ).
(The numerical factor is unimportant for our purposes. )

Since7 IIo(q, O) =O(q },Eq. (29) becomes

where F1,(r) is the exchange term of fk(r) [i.e., the shift
in gk(r) involving the second term in Eq. (34)]. Were it
not for the first term in Eq. (B6), the same arguments as
in the preceding paragraph would lead to a kF „' (v) of
order q . But (k

I
X

I
k & behaves like q, and induces

a nonuniform shift to the same order in Z„(k), hence Eq.
(B4).

The orders of magnitude in q
' discrepancy between

the KS and physical FS's is a patently nonlocal effect.
The k-dependent term (k

I
X

I
k& appearing in Eq. (B6)

can have no counterpart in Eq. (B5) from the effective lo-
cal potential, since (k

I
U,s I

k & =0."
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