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Wavelength dependence of cells of finite depth in directional solidification
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Finite-element calculations are presented for the two-dimensional cellular interface shapes in a

spatially periodic microstructure that occurs during the directional solidification of a dilute binary

alloy. The transition from small-amplitude sinusoidal shapes to cells separated by deep grooves as

the growth rate is increased is computed as a function of spatial wavelength. The flatness of the
neutral stability curve of growth rate versus spatial wavelength is responsible for secondary bifurca-

tions that lead to tip splitting of the cells and to an apparent decrease in the wavelength of the pat-
tern. Deep cells with round tips, long linear grooves, and pendant-shaped bottoms are computed
for continuous ranges of wavelength and growth rate. A wavelength corresponding to the cell with

maximum aspect ratio is computed as a function of the growth rate.

I. INTRODUCTION

The analysis of the formation of cellular and dendritic
patterns in solidification microstructures is receiving in-
creasing attention. Some of this interest results from the
importance of the microstructure in determining the elec-
trical and mechanical properties of the solid. The forma-
tion of microstructure during solidification also is an ex-
ample of pattern formation in a system controlled by bulk
and interfacial transport mechanisms. Furthermore, be-
cause the length scale for the structure is small compared
to the sample size, it is improbable that the boundaries of
the system play any role in selection of the morphology.
Several differing viewpoints have been taken in searches
for mechanisms of spatial pattern selection in such sys-
tems. A critical issue is whether or not there is a single
mechanism for selecting a particular spatial pattern or
whether the resulting pattern is a result of nonlinear dy-
namic, and most likely chaotic, interactions of the pat-
tern over a range of time and length scales. Both ap-
proaches seem to have credibility for specific mathemati-
cal models of solidification.

We consider these issues for the formation of cellular
interfaces during the directional solidification of a thin,
two-dimensional sample. Here a dilute binary alloy is
solidified by moving the melt and solid trapped between
two bounding surfaces through a unidirectional constant
temperature gradient. For set alloy composition in the
bulk melt and a specified temperature gradient, a planar
interface morphology becomes unstable at a critical value
of the growth rate to small-scale deformations of the in-
terface which lead to cellular and dendritic patterns for
larger growth rates. As V is increased the cells deepen
and the wavelength of the pattern evolves, as has been
observed in the many elucidating experiments based on
thin-film solidification systems. '

The linear stability analysis of Mullins and Sekerka
first described the onset of these transitions as the appear-
ance of a small amplitude sinusoidal deformation of the
interface. This onset appears at a specific wavelength

X(V, ) which corresponds to the lowest value of the
growth rate V= V, for the instability. For V) V, the
planar interface is linearly unstable to a range of wave-
lengths, as is shown in Fig. 1 for the set of physical prop-
erties used in the simulations described here. The non-
linear cell shapes that exist for V) V, select between
these values in experiment.

The lower portion of the neutral stability curve shown
in Fig. l is qualitatiuely similar to ones corresponding to
other mathematical problems governing transitions in
other transport systems, such as natural convection in
layers heated from below and the onset of secondary vor-
tices in Taylor-Couette flow. However, there is an impor-
tant quantitative difference between the stability of these
fluid mechanical systems and the solidification problem.
The small-surface free energy that is typical for the
meltlcrystal interface in solidification systems is
ineffective as a mechanism for stabilizing perturbations to
the interface, except for spatial wavelengths that are
much smaller than the critical value A, This scaling
causes the neutral stability curve predicted by linear
theory to be extremely flat for wavelengths near X, .
Qualitatively, the flatness results in a fairly large band of
wavelengths becoming unstable at nearly the same value
of growth rate. This result impacts the nonlinear interac-
tions for finite amplitude cells, as is brought out below.

Several approaches to the analysis of wavelength selec-
tion have been applied to directional solidification mod-
els. These are loosely separated into three categories: (l)
dynamic analysis of models for a nonlinear moving-
boundary problem assuming specific sample sizes for the
system; (2) asymptotic analysis that explicitly decouples
long- and short-length scale interactions for a 1arge col-
lection of similar cells; and (3) selection mechanisms
based on the existence of a singular limit which can only
be reached for a particular value of the wavelength. A
review of these perspectives is relevant to the discussion
of the calculations presented here.

Bifurcation analysis has been used to compute families
of weakly nonlinear cell shapes that evolve from the pla-
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FIG. 1. Neutral stability diagram for two-dimensional direc-
tional solidification computed using thermophysical properties
used in calculations reported here.

nar form for the range of spatial wavelengths allowed by
linear theory. ' Whether the bifurcation is initially sub-
critical or supercritical with respect to increasing V was
shown by numerical calculations ' to be unimportant in
terms of the transitions to deep cells, because nonlinear
folds in the solution families always seem to lead to
finite-amplitude cellular forms for V& V, (K). A subcriti-
cal transition for

~

V —V,
~

&&1 to V& V, only affects
the experimental observability of the onset growth rate. '

Ungar and Brown have shown that secondary bifurca-
tions occur between families of cells with distinct and
spatially resonant wavelengths. These bifurcations are
the result of a codimension-two bifurcation point at
V= V* which results when the wavelength X=X' is
selected so that the linear theory predicts simultaneous
bifurcation of shapes with the wavelengths X ' and X '/2.
Haug carried out the perturbation analysis about this
codimension-two bifurcation and Bennett et al. showed
qualitative agreement between the structure of the solu-
tion families predicted by Haug and numerical calcula-
tions.

An important feature of the directional solidification
system is that the flatness of the neutral stability curve
causes these nonlinear transitions to appear within an ex-
tremely small range of growth rate, i.e.,

i
V —V, i/V, & i

V' —V, i/V, «1.
Because of this feature, finite-amplitude cells with the
most unstable wavelength predicted by linear theory only
exist for a sma11 range of V and are difficult to observe.
%'e do not believe they have been successfully seen in any
experiment.

The flatness of the neutral stability curve also places
restrictions on the range of validity of asymptotic

analysis for the evolution of long wavelength interactions
between shallow cells. ' Because the classical perturba-
tion techniques pioneered by Newell and Whitehead"
neglect interactions between spatially resonant modes on
the length scale of the characteristic wavelength, results
of these calculations are restricted to growth rates that
satisfy (1.1). The calculations in Sec. III A demonstrate
the secondary bifurcation between families of cells and
set the range of validity of perturbation methods which
neglect these nonlinear interactions.

Recently, much research has focused on the related
problem of pattern selection in the solidification of
needle-shaped crystals growing into a pure undercooled
metal, the free-dendrite problem. Here the problem is to
determine the relationship between the shape of the nee-
dle and the solidification rate. Langer' and others (see
Refs. 13 and 14) have taken advantage of the exact family
of parabolic crystal shapes that extend infinitely far back
from the tip without surface free energy to construct
asymptotic analyses which lead to a soluability condition
for small-surface energies. In the asymptotic framework,
this condition amounts to the requirement that the shape
at the tip be symmetric so that no discontinuity is intro-
duced. Meiron' and Kessler et al. ' have shown that a
boundary integral numerical calculation of the crystal
shape will select the same value of the tip radius for a
given velocity when the condition for a symmetric tip is
used as a solvability condition.

Karma' carried over the numerical analysis of Mei-
ron' to a model of cellular solidification by assuming
that the shape of the groove separating adjacent cells is
described by the approximate relationship first developed
by Scheil' in which the groove is assumed to be slender
and the effect of surface energy is neglected. In this ap-
proximation, the thickness of the melt layer between two
cells goes smoothly to zero leaving a cusp between them
at infinite depth. Boundary integral calculations using
the symmetry of the cell at the tip as a solvability condi-
tion and the leading order approximation to the shape of
cusplike sidewall as a far-field boundary condition pre-
dicted discrete values of the wavelength for existence of
the steady-state cell shape as a function of the growth
rate.

This prediction seems to be at odds with the numerical
calculations presented by Ungar and Brown' for the
solutal model of solidification with diffusion in the solid
phase. Ungar and Brown used specialized finite-element
methods to compute a continuous family of cell shapes
with given spatial wavelength evolving from the planar
form with increasing growth rate. The interface shapes
for the deep cells had developed three distinct regions: a
rounded tip connected to an almost linear sidewall that
stretched down between adjacent cells to terminate at a
smooth, small-pendant bottom. A schematic of this type
of form is shown in Fig. 2. Although calculations in this
paper focused on cells with wavelengths that were integer
multiples of the critical value A,

„

there is evidence that
these calculations could be repeated with other linearly
unstable wavelengths in a way that would be self-
consistent with the existence of smooth cellular interfaces
described by bifurcation analysis near the onset of cellu-
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MELT
"INNER" TIP —I IMPORTANT

"OUTER" TIP —I' UNIMPORTANT

SLENDER REGION —I' UNIMPORTANT

by changes in the shape of the interface and is consistent
with the thermal conductivities being equal in both
phases and the release of latent heat at the interface being
unimportant. Solute diffusion in both the melt and solid
are included in the model.

The model is written in dimensionless form with the
length scales for the coordinates scaled with a reference
scale A, ', time with the diffusion time scale A,

' /D (D ism m»
the diffusion coefftcient) in the melt, temperature with the
melting temperature of the pure material at a planar in-
terface T', and concentration with the composition of
the melt far in front of the interface c,. The dimension-
less solute balances in melt and crystal are written in a
frame of reference moving with the steady-state
solidification rate V as

P Bc Bc

By Bt

in the melt, and

R V c+P Bc
Bt

(2.1)

(2.2)

TRANSITION REGION —I IMPORTANT

CELL BOTTOM —I DOMINATES

in the solid, where y is the coordinate in the direction of
g owth, R =D, /D is—the ratio of the mass diffusivities
in the solid and melt, and P:A; V/—D is the solutal Pec-
let number. The solute diffusivity in the solid phase is in-
cluded so that the melting and resolidification that occurs
with reentrant cell shapes can be handled in a self-
consistent manner.

The concentrations in the two phases at the melt/solid
interface are related through the phase diagram as

FIG. 2. Regions of deep cellular interface shape.
c, =kc (2.3)

lar growth. Other numerical calculations' ' also have
demonstrated the existence of steadily solidifying shallow
cells for specific values of the wavelength.

The main purpose of this paper is to show that smooth,
steadily-growing cellular interface shapes of finite depth
are possible for a range of wavelengths. Therefore no
mechanism for wavelength selection based solely on the
existence of steady forms is possible when the cell has
finite depth so that the interface joins smoothly between
adjacent cells at the bottom of the groove which
separates them. We show this by calculations using the
finite-element analysis described elsewhere ' to com-
pute these forms as either the growth rate or wavelength
is varied.

II. TWO-SIDED SOLUTAL MODEL
AND NUMERICAL METHODS

A. Formulation

The two-sided solutal model of directional solidifi-
cation is a reduced form of the more general model for
microstructure formation. The temperature field in
both melt and solid is taken to be linear in the direction
of crystal growth and constant in the direction perpendic-
ular to growth. This profile is assumed to be unaffected

where V, (t) is the dimensionless vertical component of
the interfacial velocity in excess of P and e is the unit
vector in the direction of growth.

The interface shape is determined from the Gibbs-
Thomson condition for interfacial equilibrium

(T„,t 1)/m +(6/m)y—=c +2H(I /m ), (2.&)

where 0 is the dimensionless local mean curvature of the
interface, m is the dimensionless slope of the liquidus
curve (scaled with T' /C, ), I is the dimensionless capil-
lary length, and 6 is the dimensionless temperature gra-
dient scaled with T'/A, '. Equation (2.5) expresses the
dependence of the melting temperature on the composi-
tion of the melt at the interface (m. c) and the surface en-

ergy and local curvature (I 2H). The constant T is aref
reference temperature that is set so that the interface is
positioned in the computational domain; the quantity
(T,ef 1)=40.2X 10 for the calculations reported here.

The small influence of the surface energy on selecting

where k is the equilibrium segregation coefficient and the
subscripts s and m denote terms that are evaluated at the
interface from the solid and melt phases, respectively.

Solute conservation at the interface requires

(n Vc) +R. (n Vc), =(n.e )[P+V,(t)](k —1)c

(2.4)
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TABLE I. Values of dimensionless parameters used in the
solutal model.

Dimensionless group

Segregation coefficient k

Diffusivity ratio R —=D/D,

Dimensionless temperature gradient
6 = GA. '/T

Dimensionless liquidus slope
m—:mc, /T'

Dimensionless capillary length
r—= rT. /X

Reference length scale A,
'

Value

0.4

4.5 X 10-'

—1.67 X 10-'

8.2X 10-'

100 pm

the wavelengths for linear stability and the asymptotic
analyses described in Sec. I are results of the appropriate
scales for the dimensionless groups that appear in the
Gibbs-Thomson equation. The values of the parameters
used in the simulations described here are listed in Table
I and are representative of a Pb-Sb alloy, but with the
diffusivity ratio R set to one instead of the small values
(1X10 —1)&10 ) that would be more appropriate.
The reference length scale of A,'= 100 pm is characteristic
of the critical wavelength for the onset of the instability.
The important feature of these parameters is that the
length scale associated with the surface energy O(l /m)
is 2 orders of magnitude smaller than the scales that are
appropriate for the temperature gradient O(G/m) and
the solute diffusion layer O(P ') ahead of the interface.
Because the surface energy is the primary mechanism for
selecting the lateral scale for the interface structure, the
mechanism for determining this dimension can be expect-
ed to be weak.

The neutral stability curve V, (A, ) predicted by linear
stability analysis is shown as Fig. 1 for these parameters.
The variables are given in dimensional form. The dimen-
sional growth rate and wavelength that correspond to the
first cellular form are (V„X,)=5.55 pm/sec, 459 pm).
The flatness of the curve near the critical value is most
evident when it is compared with similar curves that de-
scribe wavelength selection at onset for other instabilities.
For example, when the curve X/X, versus [P, (A, )
—P, (A., )]/P, (A,, ) is compared with the neutral stability
curve for the critical value of the Rayleigh number %(A, )

as a function of wavelength for the analogous two-
dimensional Rayleigh-Benard instability between parallel,
shear-free surfaces (plotted as [%,(A, ) —R, (A,, )]/R, (A,, )]
as a function of X/X, ) the neutral stability curve for the
directional solidification problem is 2 orders of magni-
tude flatter near A,, than the curve for the fluid mechani-
cal system.

Another important difference between the solidification
problem and the fluid systems is that the neutral stability
curves for directional solidification are closed for con-
stant temperature gradient G and composition c, . The
planar interface is restabilized at high growth rates by the
shrinking of the diffusion boundary layer in which pertur-
bations are stabilized by diffusion and surface energy.

This upper bound for instability suggests that cellular
and dendritic morphologies will not be observed for un-
bounded growth rates, although for the physical parame-
ters analyzed here there is a 4 order-of-magnitude
difference in the growth rates between the lower and
upper stability curves. Mullins and Sekerka' coined the
phrase "absolute stability limit" to describe the upper
branch of the neutral stability curve.

B. Finite-element analysis

Full numerical solution of the free- and moving-
boundary problems described by Eqs. (2.1)—(2.7) is an
effective method for determining the structure of steadily
solidifying and dynamically changing deep cellular inter-
faces. We have developed finite-element Newton
methods ' that compute the steadily solidifying cellular
forms with given wavelength and lead to computer-
implemented perturbation methods for determining the
stability of these forms and the existence of bifurcations
to other shape families. These methods are based on us-

ing nonorthogonal transformations to map the shape of
the melt/solid interface and the regions of melt and solid
to a fixed domain where the interface is a coordinate sur-
face. The transformed field equations (1) and (2) are
discretized by a two-dimensional Galerkin finite-element
approximation which incorporates the solute balance at
the interface (2.4) and the symmetry condition (2.5) as
natural boundary conditions. The Gibbs-Thomson con-
dition is written in weak form as a one-dimensional resid-
ual equation for the interface shape with the symmetry
conditions on the shape of the interface (2.7) incorporat-
ed as natural boundary conditions. The resulting set of
algebraic equations for the coeScients in the finite-
element representations of the solute field and the inter-
face shape are solved by Newton's method.

Two different nonorthogonal transformations were
used in the calculations described here. For nearly pla-
nar interfaces, the Monge transformation y =h (x, t) was
used as described in Ref. 24. Deep cells cannot be
represented by this transformation, because the groove
between adjacent cells may be reentrant. Ungar and
Brown ' developed a "deep cell mapping" composed of
cylindrical polar and rectangular Cartesian pieces to ac-
count for this possibility. The details of the implementa-
tion of the finite-element Newton method for this trans-
formation are described in Ref. 22.

The calculations reported here were performed with
different meshes for the two interface representations.
The results for the Monge representation [y =h (x, t)]
had 16 elements along the interface and 20 elements per-
pendicular to it, per half a wavelength of a cell. Results
with the mixed Cartesian/polar interface representation
had 60 elements along the interface and 20 elements in
the perpendicular direction, with the elements distributed
to maximize the accuracy of the calculation in the tip and
bottom regions. As is discussed more fully in Ref. 22,
this mesh size was selected by refining the discretization
until the aspect ratio of the deepest cells changed by less
than one percent on doubling of the number of elements.
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III. FINITE-ELEMENT RESULTS

A. Calculations with fixed wavelength

The transition from the planar interface to deep cells
for a specific spatial wavelength is exemplified by calcula-
tions for the most dangerous dimensionless wavelength
A, =A,, =4.59 predicted by linear stability theory. Calcu-
lations using the Monge representation of the interface
were performed using a sample size of A,, /2=2. 30 so that
cells with wavelength A,, /(n +1) n =0, 1, . . ., are admis-
sible in the computational domain. In this domain, fami-
lies of cellular shapes with wavelengths (A,„A,, /2,
A,, /4, . . .) bifurcate from the planar interface at critical
values [P, (A,, ), P, (A,, /2), P, (A., /4), . . .]. These shapes
are represented in Fig. 3 by the dimensionless amplitude
of the cell depth defined as

(3.1)

where 5 is the dimensional value of the depth.
The three families of shapes that bifurcate from the

planar state with dimensionless wavelengths A,„A,, /2,
and A,, /4 were computed by tracking these solution
curves from the critical points along the planar family.
The solid curves in Fig. 3 were computed using the
Monge interface representation. Two secondary bifurca-
tion points were located that connect two of the solution
families. Each is expected because of a codimension-two
bifurcation point that exists at another wauelength be-
tween the two interacting cell shapes. Cells with wave-

length k, were computed only up to the secondary bifur-
cation point where the family joined one with shapes of
wavelength A,, /2. This shape family evolved with P
through a turning point P =P, =2. 12 and is connected
to the family of A,, /4 shapes at a secondary bifurcation
point. Calculations with the Monge transformation were
stopped near this point because of the possibility that the
interface shape was becoming reentrant. Deep cellular
shapes in the (k, /4) family were computed with the
mixed cylindrical-Cartesian representation and are shown
in Fig. 3 by the dotted curve. The mismatch between the
results for the Monge and mixed cylindrical-Cartesian
representations occurs because of differences in the two
finite-element discretizations.

Sample interface shapes from each family are shown in
Fig. 4. The shape in the (A,, ) family shows the develop-
ment of an indentation in the tip at very low amplitude as
the beginning of the mechanism for tip splitting and for-
mation of cell shapes in the (A,, /2) family. A similar evo-
lution of the tip shape occurs in the shapes of the (A,, /2)
family. The shapes in the (A,, /4) family become reentrant
for the range of P shown in Fig. 3. For P y2, the cells
have rounded tips, approximately linear sidewalls, and
rounded bottoms. The bottom and the sidewall are con-
nected through a transition regime where the interface
becomes reentrant so that solid melts into the bottom.

An important feature of this diagram is the rapid
change in the apparent spatial wavelength of the cells
with increasing growth rate. Cells with wavelength near
the critical value are only possible for a narrow range of

1.5

1.0

0.5

fa

0.0

I

0/3
I

0/4 0.5

FIG. 3. Families of steady-state cellular shapes with spatial wavelengths that are an integer fraction of k, as computed by the two
finite-element methods. The amplitude of the cell 6 is defined by Eq. (3.1). Solid curves correspond to shapes computed with the
Monge representation; the dashed portion of the (A,, /4) family was computed using the mixed cylindrical-Cartesian representation.
Letters and points (~) correspond to positions for sample interface shapes shown in Fig. 4. Bifurcation points are denoted by (0).
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A family X/2 family P/4 family

FIG. 4. Sample interfaces in each of the three shape families shown in Fig. 3. Letters correspond to points shown in that figure.

P and the wavelength splits to A,, /4 within less than a
50% increase in P. The proximity of the value of P for
these secondary transitions compared to the value of P
for the onset of cellular solidification is a consequence of
the flatness of the neutral stability curve P =P, (A, ). Cal-
culations with the same parameter values, but R =0
show that these transitions occur in even a smaller range
of growth rate.

The calculations shown in Fig. 3 for A. =A,, can be re-
peated for a range of wavelengths with only small
changes in the connectivity of the bifurcation diagram.
The bifurcation diagram computed for A, =1 using both
interface representations is shown in Fig. 5. The family
of cell shapes that evolves with the fundamental wave-
length forms deep cells before any secondary bifurcation
is detected. Cells with dimensionless wavelength X=1
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FIG. 5. Families of steady-state cellular shapes with spatial wavelengths that are an integer fraction of A, =1 as computed by the
two finite-element methods. The amplitude of the cell b is defined by Eq. {3.1). Solid curves correspond to shapes computed with the
Monge representation and the dashed curve signifies calculations with the mixed cylindrical-Cartesian representation. Letters and
points (~} correspond to positions for sample interface shapes shown in Fig. 6. Bifurcation points are denoted by (0).
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exist only up to the turning point shown in this figure.
The shapes in the reverse portion of this family evolve to
lower values of P until a secondary bifurcation occurs
which splits the wavelength to A, =—,'. Sample shapes in

the A, =1 family are shown in Fig. 6. The deep cell repre-
sentation can only be used to compute cell shapes for
which the tip shape is single valued in the cylindrical po-
lar representation used for that region, so the entire pro-
cess of wavelength splitting cannot be calculated. The
cells shown in Fig. 6 calculated along the reverse portion
of the family with A, =1 develop flat tips and become
slightly indented as P is decreased. These cells are still
long and have narrow grooves and reentrant bottoms;
however, the details of the bottom are changing with P.
The sample shapes with wavelength A, = —,

' are similar to
those for the larger wavelength, except that the bottom is
enlarged because of the larger importance of surface en-
ergy. No limit point was detected in this family for the
range of growth rates computed.

The deep cell shapes in Figs. 4 and 6 appear to have a
particular asymptotic structure. The slope of the
sidewall of the groove is approximately independent of P
and only the absolute position of the cell and the length
of the sidewall before the transition to the rounded bot-
tom are changing with growth rate. The shape of the
groove is well approximated by neglecting the influence
of the surface free energy in the Gibbs-Thomson equation
and noting that (6/m)-10 is a small parameter for
these calculations. It is straightforward to show that the
concentration field and interface are approximately

The slope of the concentration fields in melt and solid
and of the interfaces predicted by Eqs. (3.2) closely match
those in the calculations. The shape of this region is in-
dependent of the growth rate for the range of growth rate
before the limit point. Equations (3.2) are the asymptotic
limit for (G/m) &&1 of the expression for the shape of
the groove developed by Scheil' and used by Karma' in
numerical calculations of cells with infinite length.

B. %'avelength dependence of steady-state cell shape

Calculations were performed with specific values of the
dimensional growth rate V, measured in units of the criti-
cal value V, = V(X, ) and with varying dimensional wave-

length A, . For decreasing wavelength and constant
growth rate, the dimensionless values of the temperature
gradient (6/m) and growth rate (P) decrease proportion-
ally to X and the capillary length (I /m) increases as the
inverse of A, , respectively.

Continuous families of cell shapes were computed for
ranges of growth rate and wavelength. These families of
cells are plotted in Fig. 7 as a function of the cell depth 6
for varying dimensionless wavelength and dimensional
growth rate. For any growth rate, there is a deepest cell
computed by the finite-element algorithm. The wave-
length of this form decreases from the value A,, for V= V,
at the onset of solidification to values corresponding to
the left side of the neutral stability curve.

c(x,y)=c, +c2(6/m)y+O((6/m) ),
h (x,y) =ho+h, (6/m)y+0((6/m)~),

(3.2a)

(3.2b)

where h0, h, , c&, and c2 are constants that are deter-
mined by matching these results to solutions for the cell
tip and bottom.

y = v/v, (z.)

2
C40
A

'P = 2.9
'P = 2.5

2.2

Q'O»III 3P = 1.9

III! (IVIIII

II' ' 'u ') Jill'

A family

(e) (f) (g) (l )

P /2 family
Wavelength A.

FIG. 6. Sample interfaces in each of the two shape families
shown in Fig. 5. Letters correspond to points shown in that
figure.

FIG. 7. Dependence of cell depth on spatial wavelength for
specific values of the dimensionless growth rate V.
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With increasing V, finite amplitude cells are only seen
for wavelengths below a decreasing maximum value. For
the calculations examined here, the termination of the
curves at the largest wavelength corresponds to the limit
points observed for increasing P and constant A, . Near
this limit the cellular form is nonunique; shorter cells ex-
ist on the branch with decreasing A, .

The maximum in the cell depth is more dramatically il-
lustrated by replotting the curves on Fig. 7 as a function
of the aspect ratio (Fig. 8) of the cell for each calculation
as defined as

(3.3)

where A. is the wavelength of the cell in the particular cal-
culation. The peak of the curves A=A(A, ;v) sharpens
with increased V and shifts toward the left boundary of
the neutral stability curve.

The existence of a true asymptotic limit in which P and
b, tend to infinity as A, tends to a limiting value is impossi-
ble because of the closed shape of the neutral stability
curves. Bennett et a/. have shown that the restabiliza-
tion of the planar form for high Peclet numbers leads to
shape families for finite amplitude cells for given A, that
bifurcate from the planar form at the lower critical value
of P and reconnect at the upper one. Then cells with
smooth bottoms will not tend to infinite depth, no matter
what wavelength is considered.

Sample cell shapes computed along the curve for
V=2.9V, are shown in Fig. 9. Cell shapes with the small
wavelengths have bulbous bottoms caused by the increas-
ing value of I . This bottom is connected to the cell tip
through a thin groove. The depth of the cell decreases
with decreasing A, as the thickness and the length of the
groove is adjusted to accommodate the matching of the
tip and enlarging bottom of the cell. Cell shapes comput-
ed for the largest wavelengths have small bottoms con-
nected to a thin groove so as to accommodate the small
value of I . The decreasing length of the cell results from
the increasing value of the temperature gradient (6/m)
with increasing A. which shortens the length of the
sidewall needed to decrease the thickness of the liquid
groove. The shape of the cell tip changes little with the
varying wavelength. The maximum wavelength for cal-
culations with a specific growth rate is caused by the en-
velope of turning points P, =P, (A, ) in the families of deep
cells illustrated in Figs. 3 and 5. When plotted on Fig. 7,
the results illustrated in Figs. 3 and 5 correspond to verti-
cal slices at the specific wavelengths.

Sample cell shapes in the family for V=12.3V, are
shown in Fig. 10 as examples of the deepest cells comput-
ed in this study. The structure of the cells described
above also holds for this growth rate. The greater length
of the cells at higher growth rate is a result of changes in
the structure of the cell bottom, as noted in the calcula-
tions shown in Fig. 6 for changing P with fixed k.
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FIG. 8. Dependence of cell aspect ratio on spatial wave-
length for specific values of the dimensionless growth rate V.

FIG. 9. Cell shapes for representative calculations from Fig.
8 and the growth rate, V=2.9. The letters correspond to the
points shown there. The wavelengths have been normalized so
that the aspect ratio of the cells, as measured by 6, can be com-
pared directly.
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FIG. 10. Cell shapes for representative calculation from Fig.
8 and the highest growth rate V=12.3. The letters correspond
to the points shown there. The wavelengths have been normal-
ized so that the aspect ratio of the cells, as measured by b, can
be compared directly.

IV. DISCUSSION

Our calculations systematically bridge the gap between
asymptotic predictions for small amplitude cells near the
onset of cellular growth and the deep cells separated by
narrow grooves that are seen in experiments. Two points
are worthy of reemphasis. First, the small value of the
surface energy appropriate for a melt/solid system leads
to complex nonlinear transitions near the onset of the
cells and to decreases in the apparent spatial wavelength
caused by secondary bifurcation for small increases in the
growth rate. Tip splitting by secondary bifurcation is not
limited to shallow cells. It is observed for deep cells with
reentrant bottoms; however, the family of shapes passes
though a limit point and evolves to lower values of
growth rate before the splitting takes place.

Most importantly, the calculations show that
spatially-periodic, steadily-growing, two-dimensional
cells with smooth shapes exist for ranges of the growth
rate and wavelength, so that no mechanism for selection
of a particular wavelength is found. The difference be-
tween these results and the analysis of Karma' is the
smooth cell bottom predicted here for cells with finite
depth. The surface energy 1 is paramount in setting the
shape of the bottom and the transition zone between it
and the linear sidewall. Indeed, the small-length scale of
the bottom makes the curvature correction the dominant
term in the Gibbs-Thomson equation (2.5). An asymptot-
ic theory that describes the connection of the sidewall to
the bottom will be presented elsewhere.

The calculations reported here suggest the picture
shown in Fig. 11 for the existence of steady-state cellular

FIG. 11. Region for existence of steadily solidifying cells sug-

gested by calculations and bifurcation analysis.

shapes. Along the neutral stability curve there is a region
of growth rates and spatial wavelengths in which at least
one steadily solidifying cell exists. An enclosed region of
wavelengths and growth rates is excluded. Tip splitting
of shapes at constant wavelength and increasing growth
rate leads to loss of existence of shapes with these wave-
lengths. A portion of the curve separating the regions
has been identified by the calculations presented here to
be associated with limit points in the family of solutions
for the specific wavelength. The form of the bifurcation
diagrams may evolve with changing wavelength so that
the secondary bifurcation from the shapes with a given
wavelength X and its harmonic X/2 sets the bound on the
existence of shapes. We have not attempted to compute
the complete curve because of the amount of calculation
that would be involved.

The connection between the continuous families of
shapes predicted here and the discrete solutions predicted
by Karma is an unanswered question. The answer must
involve understanding of the stability of the shapes with
smooth bottoms. Most probably, the cells with finite
depth are unstable to a mechanism that leads to the
pinching off of droplets of melt, as was first reported ex-
perimentally in Ref. 2. The spatial wavelength of a col-
lection of cells undergoing such dynamics is most prob-
ably a statistical property.
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