
PHYSICAL REVIEW B VOLUME 38, NUMBER 9 15 SEPTEMBER 1988-II
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A method is discussed to analyze multifractal properties of spectra and wave functions by means

of an entropy function. The method is exemplified on a model for lattice vibrations in an incom-

mensurate crystal phase. It is shown that the model has a spectrum with scaling properties. More-

over, it is probably singular continuous, which is a rather exceptional case. This is even true when

the spectrum becomes a fat fractal. The scaling properties of the mode wave functions are dis-

cussed.

I. INTRODUCTION

It is well known that systems with a quasiperiodic
structure may show an interesting behavior in the spectra
of their elementary excitations and in their electron spec-
tra. These properties have been studied on a number of
models. Most of them are linear-chain models, either
tight-binding models of the form

tJc) )+lJ+)cJ+)+EJcJ=Ec)

or Schrodinger equations of the type

d + V(x) %(x)=Eqt(x),
2trt

(1.2)

where t are hopping matrix elements, e site energies,
and V(x) a quasiperiodic potential.

One of the best studied examples is the Harper or
almost-Mathieu equation which is of type (1) with t's that
do not depend on the site (t =1) and on-site potentials

Fibonacci sequence of two values. The model behaves
very similarly to the almost-Mathieu model at A, =A,„but
has difFerent scaling indices which vary continuously with
respect to the coupling constant (difference between the
two values for e„}.

In general there are for a given value of Q both extend-
ed pnd localized states, but generally no critical states.
This has been found, for example in the modulated
Kronig-Penney (KP) model' which is of type (2) with

V(x) =.g 5(x ja f co—s(2'—Qj +8)}, (1.4)

V(x) =g [1—A, cos(2m Qj+ 8)]5(x ja ), —

By numerical methods de Lange and Janssen have shown
that for given Q the character of the states depends on
the energy and that one may have simultaneously extend-
ed and localized states. This behavior may well be seen
in a two-dimensional superspace description. " The same
properties are not found in the mass-modulated KP mod-
el with

sJ
=}(,cos(2m Qj +8), (1.3)

which give a quasiperiodic problem if Q is irrational. For
this model Hofstadter' has calculated numerically the
spectrum for commensurate approximations to an incom-
mensurate Q. The model is self-dual, which means that
its Fourier transform has the same form, only with a
different value for the coupling parameter A, . This al-
lowed statements about the spectrum (some of them
rigorous) to be proved by Aubry and Andre, Avron and
Simon, Bellissard, Lima, and Scoppola, and Gordon.
For almost all incommensurate values of Q (with the ex-
ception of the set of Liouville numbers which is of mea-
sure zero) the spectrum is absolutely continuous and the
states are extended for k&A, ,=2, one has a point spec-
trum and localized states for A, &A,„and for A, =A,, the
spectrum is singular continuous and the states are criti-
cal. ' So the last case is an exception. Also the model is
exceptional in the sense that the sharp transition disap-
pears if one changes the cosine into another periodic
function.

Another exceptional model is proposed by Kohmoto,
Kadanoff, and Tang and Ostlund et al. in which c.„ is a

since Bellissard et al. ' have shown that this model may
be mapped on the almost-Mathieu equation.

A tight-binding model may be regarded as a lattice-
vibration model with nearest-neighbor coupling. If u„
are the displacements from an equilibrium array, and if
only nearest-neighbor interactions are taken into ac-
count, the potential energy may be written as

V= —,
' g [k, (u, —u, , } +k, +,(u, —u, +, )~+s, u 2] .

J

If we take all the masses to be identical and set to unity,
the equations of motion are given by

to uj =k (uj —ul. , )+kj+,(uj uj+, )+—sju . (1.7)

For the choice k = 1 and sI =A, cos(2m Qj+8)—2 one ob-
tains the almost-Mathieu equation.

Another lattice-vibration model is the modulated-
spring model, which has

kj =g(Qj), sj =0; g(x)=g(x+1) .
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The potential energy in this model depends only on
difterences of u's and the model has, consequently, a
zero-frequency mode. For the choice

g (x)= 1 —b, cos(2nx+0} (1.9)

this model has been analyzed by de Lange and Janssen. '

They find that the spectrum behaves like a Cantor set and
that the spectra have scaling behavior as a function of q
and co. Numerical calculations showed that the spectrum
has a very intricate structure, which may be described in
terms of the continued-fraction expression of Q. This re-
sult was similar to that of Hofstadter for the almost-
Mathieu model.

A version of the modulated-spring model with a
discontinuous modulation function,

(1.10)
A for —P & x & 1 —2((}g(x)= .
8 for 1 —2(t} &x & 1 —P .

was studied. '4 ' . Here p=(v'5 —1)/2 is the inverse of
the golden ratio. The sequence of spring constants forms
then a Fibonacci sequence. It can be shown' ' that this
model has the renormalization-group type equation
which is analogous to that of the electronic tight-binding
model on the Fibonacci chain. ' Therefore again it
shows a singular continuous spectrum and critical states.

The spectra and wave functions or eigenvectors of the
various models show a large variety in behavior. The
problem is to characterize this numerically. For a spec-
trum with scaling properties one number that gives a cer-
tain characterization is its Hausdor8' dimension. For the
degree of localization several ways have been proposed
for that purpose. A method which generalizes all these
approaches and which uses the full information contained
in the multifractals is by means of a spectrum of scaling
indices which is a function of the scale exponents present
in the problem. Usually this function is denoted by f (a).
A generalization of this concept has been given by Halsey
et al. ' Kohmoto' has introduced a formulation analo-
gous to the formalism of statistical mechanics with an en-
tropy function and a free energy with which the scaling
properties of multifractals fully may be described. In the
latter formalism the f (a) function has a natural interpre-
tation. There are previous papers which try to use the
multifractal analysis to the incommensurate electronic
problem, ' but an interpretation of the spectrum of
scaling indices in terms of the entropy function is not
given.

In the present paper we discuss a particular model, the
modulated-spring model, because of its interesting prop-
erties and to study the application of the entropy func-
tion method to the scaling properties of a physical sys-
tem.

The organization of the paper is as follows. In Sec. II,
the formalism and its application to spectra and wave
functions (or vibration eigenvectors) are discussed. In
Sec. III we discuss the spectra of the modulated-spring
model, for the case that the wave vector of the rnodula-
tion is the inverse of the golden mean and that the ampli-
tude of the modulation is maximal (i.e., b, = 1). In Sec.
IV the eigenvectors of the same system are studied, in
Sec. V the spectra for 6 & 1, and in Sec. VI the eigenvec-

tors for the latter case. In Sec. VII, a nonsinusoidal
modulation is considered. Final remarks are given in Sec.
VIII.

As discussed above there is a direct relation between
electron models in the tight-binding approximation and
vibration models. In the former case wave functions are
given by the numbers c., in the latter displacements are
given by u. exp(idiot )+c.c., where for a periodic system
with period N one has uj+ z ——exp(ikm )uj (0 & n & N
+1) and uj is an eigenvector of the dynamical matrix.
Because our discussion applies equally well to the elec-
tron as to the phonon problem we shall always talk about
wave functions instead of wave functions or eigenvectors.

II. SCALING ANALYSIS OF THE SPECTRUM
AND WAVE FUNCTIONS

In a scaling analysis of a fractal set with measure (mul-
tifractal}, we consider a systematic partition of the set.
The nth level of the partition consists of a number of
bars with length l;. A scaling index for l; is given by

l;-e '. We consider a situation where a probability
measure p; is associated with each bar. The scaling index

of singularity is given by p, - I, Now distributions of e
and a specify the scaling properties of the multifractal.
Here one can use a formalism equivalent to statistical
mechanics to obtain the distributions. The analysis of the
spectrum is a special case where we have a distribution of
l;, but where p; is constant. On the other hand, the wave
function has a distribution of p;, but l, is constant. For a
more detailed discussion on the statistical-mechanics of
multifractals, see Ref. 18.

1c.= ——1nh. . (2.1)

We also define an entropy function S(E) by

S(E)=—InQ(e),1

n
(2.2)

where Q(e)dc is the number of bands whose scaling index
lies between c. and c.+dc.. Here it is important to notice

A. Spectrum

In order to understand the scaling of the spectrum, we
need to define appropriate scaling indices and the entropy
function for them. It is convenient then to consider sys-
ternatic approximations or finite partitions of the
Cantor-set spectrum. This can be done by replacing the
irrational number Q by a series of rational numbers
which are obtained by truncating the continued-fraction
expansion of g. For example, the inverse of the golden
mean [p=(v'5 —1}/2] is approximated by a series of ra-
tional numbers F„&/F„=I —,', —', , —'„—'„—,'„.. . I where F„ is
a Fibonacci number defined recursively as F

~
=F0=1

and I'„+
&

——F„+I'„&.At the nth level of approximation
of the Cantor-set spectrum, we have N bands whose
widths are denoted by b, ; (i =1, . . . ,N). The number of
bands grows exponentially with respect to n as N -a" (in
the example above N =F„and a =r=P ').

Let us define a scaling index for 6; by
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N

z„(p)= y ~I' (2.3)

and

that 6; and Q(s) depend exponentially on n .A band at
the nth level splits into many bands at a higher level and
may thus yield a number of different values of the scaling
indices c. However, we expect that the entropy function
which represents the distribution of c. will converge to a
smooth limiting form as n tends to infinity, and give the
complete information about the scaling behavior.

As in the formalism of statistical mechanics, it is con-
venient to introduce a "partition function" and a "free
energy, "which are defined by

From (2.5), (2.7), and (2.8) we have

S(c,} dS(s}
E de

(2.9)

Thus the Hausdorff dimension DH =p, has a geometrical
interpretation in e —S(e) plot: it is a slope of the line
through the origin tangent to S(E).

The index c which represents scaling of the Lebesgue
measure of the energy spectrum can actually be related to
the singular behavior of the density of states. At the nth
level of approximation, each band carries the same num-
ber of states: p; =1/N =a " (the total number of states
is normalized to unity, i.e., g; p; = 1). An index a; which
represents the singular behavior of the density of states is
defined as

F(P)= lim —lnz„(P) .
1

n~oo n
(2.4)

(2.10}

Once the free energy is calculated (see Fig. 1, for exam-
ple), the entropy function is obtained by a Legendre
transformation,

Since p;=1/N=a "and b, , -e ' [see (2.1)], it is relat-
ed to c. by

ac=lna . (2.11)
S(s)=F(P)+Ps,

dF(P)
d

(2.5)

(2.6)

The spectrum of singularity introduced by Halsey et al. '

is given by

Thus by changing "temperature" p one can pick a value
of s and then the corresponding S(s) is calculated. On
the other hand, p can be written in terms of E as

ds(E)
dc (2.7)

F(DH)=0 . (2.8)

10

4-

Usually S ( s ) is defined on an interval [s;„,s,„] and
there is no scaling behavior corresponding to s which is
outside the interval and S(s)=0. However, F(p) is still
defined there and from (2.5) it is given by F(p) = —s,„p
for P & P;„and F(P)= —s;g for P &P,„. Thus useful
information is only contained in F(P) for the region be-
tween P;„and P,„where it is not linear.

The Hausdorff DH is the zero p, of the free energy [see
(2.3) and (2.4)], i.e.,

Q'(a)-(a)f", (2.12)

f( )
S(s)

(2.13)

This simple relation between f (a) and S(s) holds since
the measure p; is constant in this case. In general the
measure has its own scaling behavior and we do not have
a simple relation like (2.13).

An absolute continuous spectrum, for which the states
are extended, has a nonsingular density of states (apart
from possible Van Hove singularities) and a is given by 1

[see (2.10)]. On the other hand, a point spectrum, which
corresponds to localized states, would give a=0. If a is
different from 0 or 1, the spectrum has a nontrivial scal-
ing and probably one can expect a singular continuous
spectrum. The corresponding wave functions are neither
localized nor extended in the standard way and are called
"critical. " Thus the entropy functions S(e) and f(a)
give the essential information on the spectral type and
the nature of the wave functions.

where Q'(a)da is a number of bands whose scaling index
a lies between a and a+ d a, namely
Q'(a)=Q(s)

~

ds/da ~, and (5) is a representative
value of 6 which was not specified clearly in Ref. 17. If
one identifies ( 5 ) =exp( —n s) [see (2.1)],f (a) can be re-
lated to the entropy function by

B. Wave functions

-2-

-4

-5

FIG. 1. The free energy for a spectrum (period 89, 6= 1).

A wave function is defined on lattice sites which are
regular. Therefore the wave function is not singular nor
fractal as it is. However, for the incommensurate prob-
lem there is a consistent way to take a scaling limit of the
lattice which is a continuous interval [0,1]. Then the
wave function defined on the interval can have singulari-
ties and scaling which we shall analyze.
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In the nth approximation the system is periodic with
period N. Consider now the square of the wave function
at site i as a probability measure, namely,

and relates to the entropy function by [see (2.18)]

S'(a)=sf(a) . (2.24)

(2.14)

Here the summation is restricted to sites i with nonvan-
ishing u,-. We normalize p; to unity by

N N

X u;= X lu; I'=1 (2.15)

for a finite system with N sites. Assign a uniform Lebes-
gue measure 1=N ' to all the sites. Then the size of the
system is normalized to unity. In the limit of n tending
to infinity, the probability measure is defined on the inter-
val [0,1] and one can discuss singularities and scaling.
Here the support of the probability measure is nonfractal,
but the distribution of the measure can have scaling.
Note the difference from the previous case of the spec-
trum in which the probability measure is uniformly as-
signed but the support may be a Cantor set or a fractal.

The scaling index for the Lebesgue measure is given by
l =exp( —n s) and is constant:

For an extended wave function we should have a= 1,
and a localized wave function has f(a) consisting of two
points: f =0 at a=0 and f =1 at a going to infinity.
The point a=0 corresponds to the sites with nonzero u

and the point a at infinity all the other sites. For a scal-
ing wave function with one exponent ao, f again consists
of two points: f(0)=0 and f(ao)=1 (an example is
given in the Appendix and illustrated in Fig. 2). For a
critical wave function with a distribution of scaling in-
dices we expect to have a smooth f (a) defined in a finite
region [a;„,a,„].

III. SPECTRA OF THE MODULATED-SPRING
MODEL, h, =1

The modulated-spring model was proposed as a simple
model to mimic the behavior of the lattice vibrations in
an incommensurate system, with the idea that the force
constants would not be constant in the crystal but would
experience an influence of the period of the incommensu-

c, =lna . (2.16)

The scaling index for the probability measure is defined
as

0.5

p, =l;

and the entropy for a is defined as

S'(a ) =—lnQ( a ),1

n

(2.17)

(2.18)

0.4-

where Q(a}da is the number of sites which have index
between a and a+da. As n is increased a single site be-

comes many sites and it is not possible in general to fol-
low a single scaling index. However we expect that the
entropy function S'(a) which represents the distribution
of a converges to a smooth limiting form as n tends to
infinity. Thus the scaling behavior of the wave function
is well represented by S'(a).

As in the previous case of the spectrum, it is can-
venient to introduce a partition function

o 0.2-
CI

0.1-

0 ~ 00 0 ~ 25 0.50
site

0.75 1.00

1.2

sL.a L.ala aL ah. ass. aL isla .ala. ,aL a.ls .la .alt. aL .la 'aL

Z'(q) =g pf, (2.19) 1.0-

and a free energy

G(q) =—lnZ'(q) .1

n
(2.20)

S'

0.8-

0.6-

0.4-
The entropy function is given by the Legendre transfor-
mation 0.2-

and

S'(a) =G(q)+qaE, (2.21} 0.0
0.0 1.0 2.0

a~=—dG( )

dg

The function f (a) in this case is defined as'

n(a)-tf",

(2.22)

(2.23)

FIG. 2. (a) The function u (x) for an approximant to a scaling
function: N=2, u(2 '+z2 + )=2 1 for j =1, . . . , m,
z =1, . . . , 2 '. This function has only one scaling exponent:
ao ——2. (b) The entropy function S'(c) for this wave function.
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rate modulation. For small amplitude the modulation
function is almost sinusoidal which leads to the equations
of motion

100 .

co u =kj(u —uj &)+k +,(uj —ui+&),

with spring constants

(3.1) 10-1

kj =1—b, cos(2m.Qj+8) . (3.2)
1 0 2

For 6=1 this leads to a physically extreme situation that
for incommensurate values of Q the spring constants be-
come arbitrarily small. They do not vanish, however, as
long as 8 is not a multiple of Q modulo 2n. The way to
study the spectrum here for an incommensurate value of
Q is to use the continued-fraction expansion for Q. As
the simplest case we take Q to be P the inverse of the
golden ratio. Approximants for Q are then the rational
numbers F„ I /F„, the ratio of two consecutive Fibonacci
numbers. We then determine numerically the eigenval-
ues of the dynamical matrix for given wave vector k. Be-
cause for a commensurate structure and 8=0 springs be-
come zero, we take the case 8=m /N which corresponds
to bands of maximal width for the given Q and b.. For a
commensurate approximation there are F„bands for
which the boundaries are found for k =0 and k =n
When n tends to infinity not only the number of bands
tends to infinity and consequently their widths to zero,
but also the total Lebesgue measure of the spectrum 8
ends to zero as B-N with 5=0.67 (see Fig. 3). This
behavior of the total Lebesgue measure was also found in
the almost-Mathieu equation at A, =A, From the spec-
tra the self-similar properties are conspicuous (see Fig. 4).
If one considers the width of the highest band for increas-
ing values of n, this scales down according to

10

step
10 12

FIG. 3. The Lebesgue measure 8 of the spectrum against n.
The size of the system at step n is F„.

IV. EIGENVECTORS OF THE
MODULATED-SPRING MODEL, h, = 1

(4.1)

To analyze the corresponding wave functions we calcu-
late for the same commensurate approximants the eigen-
vectors of the dynamical matrix and apply to them to
analysis of Sec. II B. So first we calculate for every wave
function the quantity

If

G(q)= —ln g ~
u;

~

n i=1

b„~-exp( —ne) (3.3)
4)
3.0-

with s approximately equal to 0.7 (Fig. 5). Here we want
to analyze these scaling properties in more detail using
the technique formulated in Sec. II.

Therefore, we calculate for increasing values of n the
free energy,

25.

~,

%4, 1 ~ gg ~ 0 ~WI ~

~ ~

~ ~ ~ r
~ hPII OOi& ~ ti '

~ ll' '
~ M

F(p) =—ln
1

n
(3.4)

I

1 0-".
I~

r'
I

~
8

and the values of e and the entropy S(E) as a function of
p. As discussed in Sec. II A the Hausdorff' dimension of
the spectrum is given by p, for which F(p, ) =0. Results
for the entropy function for F„=34, 89, and 144 are
given in Fig. 6. From this it is clear that we are already
in the limiting region, the results do no longer depend on
the size. The Hausdorff dimension is estimated to be
0.38. However, Fig. 6 is an indication that there is more
than one scaling exponent. It proves that the spectrum in
this case is singular continuous. A model with an abso-
lutely continuous spectrum like the almost-Mathieu mod-
el for A. & k, behaves in a completely different way. In
our opinion the present result is a strong support for the
conjecture that the spectrum is singular continuous.

p4

0 q ~ ~ ~

kiXV'w~~~~~~&p w~Qj"~&~~~i&XXI)I

05.

0.0 Wave vector 1.0

FIG. 4. Spectra of the modulated spring model with 6=1 for
a selection of commensurate modulation wave vectors (Ref. 23) ~

These are chosen as consecutive Farey numbers Q(n, j), where
n =1,2, 3, . . . , 7 and j=1, . . . , 2 . These are defined as fol-
lows. Q(1, 1)=0/1, Q(1,2)=1/l. A Farey number at level m
is obtained from two consecutive ones p/q and p'/q' at level
m —1 as (p +p')/(q +q').
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-2-

C: 4-
CL
lD

o -6-

with k =0 (which is equivalent to the periodic boundary
condition) for systems with period 55 and 233. For
N =55 the modes 50 and 51 are given, and for N =233,
the mode 89 is given. The characters of the correspond-
ing modes in the incommensurate limit are not clear from
these pictures. However, the spectra of scaling index for
the two cases are quite different. In Fig. 8 the functions

f(a) are given for the two N =55 modes. These do not
change much for higher N, and we consider that they are

-8

log&& {sizej

1.0

0.8-
{aj

FIG. 5. The log of the width of the top band for 6= 1 against
the log of the size E„+&

of the system.

where the sum is restricted to non-vanishing values of u;.
Then the scaling exponent entropy function is obtained as

04-

0.2-

S'(a) =G(q) =qea

with

1 dG(q)
E,

and

e=ln(I) .

The spectrum of singularity is given by

f(a)=S'(a)/e .

(4.2)

(4.3)

(4 4)

(4.5) I"II

0.0

1.0

0.8-

0.6-

04-

{b)

10 20 30 40
site i

50

The wave function at co =0, which always exists because
the system is translational invariant, has a= 1, f (a) =1
[see Eq. (2.23)], and clearly is an extended state. The oth-
er wave functions, however, are neither localized nor ex-
tended.

In Fig. 7, the wave functions are given for some modes 10 20 30 40 50
site i

0.6
+9- 34~ 89

1.0

0.8-
Icj

04-
0.6-

0.3-

0.2-

0.1-

lI0.0 ~
y

~ ) ~ $ ~
g

~ )

0.4 0.6 0.8 1.0 1.2 1.4 1 ' 6 1.8

0.4-

o.2 -
I

! !
!

LIU

0 100 200
site i

FIG. 6. The entropy function S{c) for the spectra for various
values of n. {SizeF„,6=1.)

FIG. 7. Wave functions for a number of modes in periodic
systems with N =55 [vectors 50(a) and 51(b)] and N =233 [vec-
tor 89(c)].
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1.2

1.0-

08-
r

0.6-

0 4-

0.2-

0.0

Clp

2
cd
E
CLJ

OP

tQ
t

CL

0.0
~

$
~ I '

S
' T

0.2 0.4 0.6 0.8 1.0 1.2

7.
FIG. 8. Functions f(a) for the N =55 wave functions in Fig.

FIG. 9. The measure of the spectrum as a function of the
modulation parameter h.

already close to limiting forms. There is a clear
difference between the odd modes, which are at the bot-
tom of a band, and the even modes, which are at the top.
The points in the picture correspond to equidistant values
of q. Negative values of q correspond to larger values of
a. For wave functions at the bottom of the band the
low-q points go to f =0 for a large value of a and the
high-q points accumulate at a finite value of both a and
S . The limiting value of a is between 0 and 1 which im-
plies that the wave function should be called critical. For
wave functions at the top of the band there are cumula-
tion points for finite values of a and S' at both ends of
the q scale. So although the wave functions look rather
similar, their scaling behavior is different. This difference
is not well described by the fractal dimension which is for
both cases almost the same.

The highest point of the wave function corresponds to
the smallest a. The fact that the entropy functions S'(a)
or f (a) has nonzero value has a significant consequence.
The wave function does not decay at all and could be
considered to be extended. However it is not a standard
extended wave function since it has scaling and is critical.
Note that some critical wave functions of the Fibonacci
lattice to decay algebraically, and f(a) vanishes for the
smallest a. ' '

Sometimes the degree of localization of a wave func-
tion is given by the partition ratio,

u4
l

tending to zero the measure goes to 2. Empirically the
Lebesgue measure of the spectrum behaves as

B=2(1—b, )
~ (5.1)

0.5

04~

0.3-

To see whether the fact that the spring constants may be-
come arbitrarily small is determining for the singular
continuous spectrum, or that $uch a spectrum may occur
for a fat fractal as well, we have analyzed the spectrum
for 5 between 0 and 1.

With the same method as in Sec. III we determined the
entropy function for various approximants to P and for
various values of the modulation parameter A. The re-
sult for a number of values of 5 is shown in Fig. 10. Care
has been taken to be sure that the result does no longer
depend strongly on the size: the limiting curves for n

tending to infinity do not differ significantly from the
ones shown here. As soon as 6 differs from unity the
function S(e) starts to shift but its support retnains re-
stricted to a finite interval and is not just a=1 as one
would have for extended states. Only in the limit for

2 2
l

(4.6)
0.2-

which is just the value of Z'(q) at q =2 and thus only
gives very limited information on scaling and localization
of the wave function.

0.1-

0.0

V. SPECTRA FOR 6(1
When the coefficient b, in (3.2) is not unity, the spec-

trum has in the incommensurate limit a finite Lebesgue
measure: the spectrum becomes fat (see Fig. 9). For 6

FIG. 10. The entropy function S(c) of the spectrum for three
different values of the modulation parameter d: H, 6=1.0; 4,
5=0.95; ~, 6=0.5.
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6=0 the interval shrinks to a point. The conclusion is
that also the spectrum in this case has scaling properties
and is, therefore, a fat fractal. The higher-order gaps,
however, tend rapidly to zero.

VI. EIGENVECTORS FOR 5, (1
Because the spectra for the case 5 & 1 still show scaling

behavior it is interesting to look at the character of the
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FIG. 11. The entropy function for a number of eigenvectors at W =89 for various values of the modulation parameter 5. (a)—(d), a
wave function at the bottom of the band; 6=1.0, 0.95, 0.9, and 0.5, respectively. (e)—(h), a wave function at the top of the band;
5= 1.0, 0.95, 0.9, and 0.5, respectively.
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FIG. 11. (Continued)

wave functions. Therefore, we made a preliminary inves-
tigation, using the same techniques as in Sec. IV. We did
this for a number of values of 6: 1.0, 0.95, 0.9, and 0.5.

In Fig. 11 the results are given for two wave functions
for these four values of b. It turns out the same
difference exists between wave functions at the top of a
band and those at the bottom as in the case 6=1. The
14th eigenvector for k =0 is at the bottom of the band
and has a support of S' that is much smaller than that for
the 13th which is at the bottom. A careful analysis of
this change and of the character of wave functions in the
middle of a band still has to be done. The bottom wave
function has points with entropy zero for large values of
a. These values increase to infinity when 5 tends to uni-
ty. On the other hand the support [a;„,a,„]shrinks to
zero when b, goes to zero, in agreement with the fact that
in that case all wave functions are certainly extended.

The preliminary investigation points to the expectation
that the critical states are not restricted to certain energy
ranges. So, if there is a mobility edge, this probably also
has a fractal character.

when p goes to infinity, one obtains a discrete function
similar to (1.10). To see the properties of the spectrum,
we calculated the spectral L'ebesgue measure for a num-
ber of approximants to the inverse golden mean, in the
case 5=1. The results are shown in Fig. 12. Again, the
limit of the spectral measure is zero, but, what is more,
the scaling exponent is independent of the value of p.
Asymptotically, (this region is reached already for small
values of n) the curves run parallel. This is an indication
that the spectrum will be a fractal for all values of p. The
sinusoidal form of the modulation, therefore, is not im-
portant for having a singular continuous spectrum.

VIII. FINAL REMARKS

We have presented a method to characterize the scal-
ing and fractal properties of a spectrum or of wave func-
tions by means of an entropy function. It uses the full in-
formation and may distinguish therefore better between
different situations than often used quantities as the
Hausdorff dimension or the participation ratio. These

VII. NONSINUSOIDAL MODULATION

The modulation function g (x } in the preceding sec-
tions was chosen as the most simple, sinusoidal, one. If
one changes this into a function with higher harmonics,
the simple description of the spectrum in terms of the
continued-fraction expansion of the modulation wave
vector breaks down. ' The sinusoidal function has the
special property that in k space one has again a discrete
problem with nearest-neighbor interaction only. For a
special choice of the Hamiltonian this even leads to the
almost-Mathieu equation which is a self-dual model.

To see whether the sinusoidal form of the modulation
is at the origin of the special spectral properties we inves-
tigated the modulated-spring model with

CO
CO
Il
E
CI

V
lD
CL
CO

10

10-1

1 0 2

10

104;

10

10-6

step
10 12

g (x)= 1 —5, tanh[p cos(2@x +0)]/tanh(p) . (7.1)

When p goes to zero this gives the sinusoidal form (1.9),

FIG. 12. Spectral Lebesgue measure for the modulated-
spring model with modulation function (7.1), for values @=0.01
(H), 1.0 (4), 5.0 (0), and 10.0 (0), respectively.
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two numbers are contained in the information given by
the entropy function.

We have applied the method to a model for lattice vi-
brations in an incommensurate (or quasiperiodic) crystal
phase, the modulated-spring model. This model has very
interesting properties. We have examined the special
case that the modulation wave vector is the golden ratio.

For the maximal modulation amplitude, 5=1 which
corresponds to the situation that the spring constants be-
come arbitrarily small, the entropy function behaves as
that of a fractal, supporting the conjecture that the spec-
trum is singular continuous, which is one of the few
known examples of such a spectrum.

This situation remains when 6 & 1. In this case there
are fractal properties and the spectrum is a fat fractal.
The wave functions in the case 6= 1 are neither extended
(except for the single co=0 mode) nor localized. They
should be considered as critical, in agreement with the
character of the spectrum. For 6 & 1 one still has critical
states and probably a mobility edge with fractal proper-
ties. The character of the wave functions depends on
their position in the band. This situation requires a fur-
ther analysis.

Only the spectra and wave functions for wave vector
equal to the golden mean have been considered. Scaling
behavior for other wave vectors can in principle be inves-
tigated by the same technique. This does, however, not
explain the special scaling properties in the Q-co plane,
i.e., if one compares different wave vectors.

APPENDIX

An exact calculation of the entropy function can be
made for a simple model for the wave function. Consider
a chain with length normalized to one. Then u( —,')=1,
u( —,')=u( —,')=p, u( —,')=u( —', )=u( —', )=u( —,')=p , etc. For
the nth step in the approximation there are 2"—1 sites.
The function Z„' is

N
1 (2p 2q)n

Z„'(q) = g u; '=
i=1 1 2p

(Al)

Here p is supposed to be unequal to —,'. Then for p
mainly the sites with small values of u contribute and one
has

6——ln(2p q)"=ln2+2q Inp,
n

(A2)

which gives a= —21np/in2 and S'=1. For p qy —,
' one

has

(A3)
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