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A simple scheme based upon a cross between the molecular clusters and the tight-binding
theory has been developed to calculate the electronic structure of a large class of systems ranging
from molecules to solids. The method is applied to study the variations in the magnetic moments
of Fe and Ni forming clusters, bulk, surfaces, thin films, and voids. The results are in good
agreement with state-of-the-art theoretical techniques and available experimental data. The
present method has the additional advantage that it can be applied to imperfect systems with

equal ease.

In this Rapid Communication, we report the develop-
ment of a new first-principles a~proach based upon a com-
bination of molecular cluster and tight-binding formu-
lation that is capable of describing accurately the elec-
tronic structure of a vast class of systems ranging from
molecules and clusters to solids, surfaces, interfaces, and
thin films. The method does not make use of the Bloch's
theorem. Consequently, it can be applied to systems con-
taining point defects or defects with complex composition
and morphology just as easily as it can be applied to sys-
tems with long-range order. The results of the magnetic
moments of Fe and Ni in clusters, bulk solids, surfaces,
and thin films obtained using this method agree very well
with the systematics derived from the state-of-the-art
theoretical techniques. 3

The last decade has witnessed a remarkable develop-
ment of theoretical methods for describing the electronic
structure of complex systems. This has been possible be-
cause of the advent of high-speed computers and the for-
mulation of the density-functional theory. Of all the im-
portant advances in theoretical methods, two stand out as
being quantitative and versatile. These are the full-
potential linearized augmented plane-wave method
(FLAPW) and the molecular cluster approach based
upon the self-consistent-field linear-combination-of-
atomic-orbitals molecular-orbital (SCF LCAO MO)
theory. s The former exploits the Bloch's theorem and is
suitable for systems with long-range periodic order. Al-
though it is, in principle, possible to treat point defects in
this method by creating an artificial superlattice contain-
ing periodic arrays of supercells of defect and host atoms,
computational limitations only permit the use of small su-
percells. As a result, one introduces a large defect
concentration —a clearly undesirable feature. The cluster
technique, on the other hand, is based upon the real space
analysis. While it does not share the aforementioned
difficulty with the FLAPW method, it also has serious
limitations. Only about 30 atoms per cluster can be treat-
ed satisfactorily in the SCF method and it often takes
hundreds of atoms for certain properties to converge to
bulk values. For example, the magnetic moments at the
central atoms are quite different from those in the outer
shells and do not converge to the bulk value until the clus-
ter is large.

Semiempirical and approximate methods based upon

the tight-binding' and effective-medium theories, s respec-
tively, have been developed to circumvent the difficulties
alluded to previously. These methods, by their very na-
ture, are not quantitative and can only be used for qualita-
tive analyses. They also have some inherent limitations.
For example, in the tight-binding model, the matrix ele-
ments of the tight-binding Hamiltonian are pitted to some
known band-structure data. With these parameters, one
then explores the electronic density of states and proper-
ties of the system. A serious question concerns the
transferability of these parameters to different systems.
For example, can the tight-binding parameters obtained
from bulk-band structure be applicable for systems with
reduced dimensionality such as surfaces and linear
chains? Common experience 3 points to the contrary.

Here we describe a method that overcomes this

difhculty. We calculate the various overlap matrix ele-
ments appearing in the tight-binding method from SCF-
LCAO-MO studies of diatomic molecules. We then use
these matrix elements in a wide class of systems such as
bulk solids, surfaces of varying crystallographic orienta-
tions, slabs of varying thickness, linear chains, and defects
in Fe and Ni. The density of states for majority and
minority spins and the magnetic moments per atom have
been calculated. The agreement we have achieved with
the state-of-the-art theories bears testimony to the fact
that our tight-binding parameters are transferable to sys-
tems with different environments. In this regard, our
method resembles the pseudopotential procedure, where
pseudopotentials obtained from atomic calculations are
used in systems with different environments. It is also
similar to the approach taken by Chadi and Robertson in
treating semiconductor systems. In the following, we pro-
vide details of our procedure and results.

Consider a system of N particles described by a one-
electron Hamiltonian 0 in atomic units

Here j is the atomic site index. The second and the third
terms represent, respectively, the electronic and nuclear
contribution to the electrostatic energy. The last term is
the exchange correlation contribution to the potential for
spin o and is approximated by the von Barth-Hedin ap-
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proximation ' to the local-spin-density (LSD) functional.
The wave function y for the system is expressed in terms
of a linear combination of atomic orbitals (LCAO) l j,a&

localized at the site j.a represents the spin-orbital index.

W QCj'gII jg .
ga

(2)

We assume that ItIj, = l j,a) forms a complete orthonormal
set (the orthogonality condition can be easily relaxed).
Cj, are variational parameters to be determined from a
solution of the Rayleigh-Ritz equation

(H —ES)C-0. (3)

Sij gnI (rk )pi~a(rk )tl'ja(rk ) .

(4)

The matrix equations are solved self-consistently to deter-
mine Cj,.

The electronic structure of the system is described in

terms of local density of states nj (E) with jas the site and
A, as the orbital index. We express n~(E) using the mo-
ment and continued fraction approach

nj (E) ——ImGj (E+i0+), (sa)

where G(E) is the Green's function. It is related to the
moments jt„of the density of states by

oo j&
G,"(E)-g "''

p-0 E&+'

(Sb)

E —a'—
1

E —af—

Here H and S are the Hamiltonian and overlap matrices
and E is the eigenvalue. The Hamiltonian and overlap
matrix elements are evaluated as weighted sums over a set
of points rk with weight functions nI(rk), namely6

Hij gnI (rk )p,'(rk )Hpj, (rk ),

&i,A, I H l j,ji& explicitly from the SCF-LCAO-MO
method described in Eqs. (1)-(4). Thus, there are no ad-
justable parameters. We have used the discrete variation-
al method (DVM) to calculate the matrix elements from
a self-consistent study of the dimer with bond length set
equal to the interatomic distance in the bulk. The DVM
is particularly suited for this grafting, since both the
DVM and the moment approach require an orthonormal
set l i,X& of orbitals. We demonstrate that the parameters
calculated from the spin-polarized study of Fe2 and Ni2
dimers are transferable to a wide range of systems with

varying environments.
For the moment calculation, 4s and 31 orbitals of Fe

and Ni were used, and the continued fraction was con-
structed from 22 moments. The density of states for each
spin was obtained by averaging over the partial densities
of states [Eq. (Sa)] for each orbital, namely

M

n, (E)- g n,'(E), (7)
Mg-)

where M is the number of orbitals. The density of states
for electrons of both spins was constructed in a number of
systems: linear chain, (100& and (111&surfaces, slabs con-
taining 5, 7, and 9 layers of atoms, bulk, and vacancy
complexes in Fe and Ni. The magnetic moment, p per
atom is constructed by integrating over the density of
states. The reason for choosing such a wide variety of sys-

tems is because accurate FLAPW (Refs. 3 and 4) results

of magnetic moments are available for comparison. In ad-

dition, these systems represent rather diverse environ-

ments where the coordination numbers (number of atoms
in the nearest-neighbor shell) vary from 2 in the linear
chain to as many as 12 in the bulk.

The change in the magnetic moments from their calcu-
lated bulk value (@II)

is plotted as a function of the coordination number in Fe
and Ni in Figs. 1(a) and 1(b), respectively. The decrease

Here aj and bj are continued fraction coefficients. The
moments pz' are given by the relation

jip'- —g &i,zIHl j,p&
1

N jk, .. .

x&j,jt IH I k, v&&k, v )H H l i,X&.

Given a set of orbitals I i,A, &, a calculation of p„requires
a knowledge of the matrix elements &i,A, l H l j,ji&. In the
conventional applications of the moment method, the di-
agonal elements are usually chosen as zero while the off-
diagonal elements are regarded as adjustable parameters
(Slater-Koster parameters) to be fitted to some known
band structure. Depending on the band structure chosen,
one obtains differing sets of parameters with no
knowledge of sites to which orbitals I i,k&belong. ,

In our present work, we put the moment approach on an
ab initio basis. We calculate the matrix elements
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FIG. 1. Deviation from the bulk magnetic moment p in Fe
and Ni as a function of nearest coordination number (in various
structures). (a) and (b) correspond to Fe and Ni, respectively.
The triangles are actual calculated points. The smooth lines are
drawn simply to guide the eye. (jIP~li 0.59jis', pl~I 2 53iuiI )
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FIG. 2. Density of electronic states for majority and minority
spins in (a) linear chain, (b) (111& surface plane, and (c) bulk
Ni. The Fermi energy is at E 0. Scale for the density of states
in (a) is double of that in (b) and (c).

in the moment with increasing coordination is apparent.
To understand the latter trend, we plot in Fig. 2 the densi-

ty of states for majority and minority spin bands for Ni in

linear chain, (111) surface plane, and bulk. These have
coordination numbers of 2, 6, and 12, respectively. The
Fermi energies are at E 0. Note that the bands are nar-
row in smaller coordination systems due to poor overlap
between electronic states at adjoining sites. As this num-
ber increases, the overlap continues to rise and the bands
broaden. There is a concomitant promotion of electrons
from majority spin band to minority spins. Consequently,
it results in a systematic decrease of the magnetic moment
as one goes from linear chain to bulk as shown in Fig. 1.
It is instructive to compare the results in Fig. 1 with the
experimental bulk value and the FLAPW calculations of
Freeman and his group. 3 Our calculated moments for
bulk Fe and Ni are 2.53ptt and 0.59ptt, respectively.
These agree well with the experimental values of 2.2ptt
and 0.6ptt, respectively. We obtain 1.0ptt for linear chain
in Ni and 3.2@a for linear chain in Fe, in good agreement
with the corresponding FLAPW values of I.lptt and
3.3lttt. The surface layer of a five-layer slab of Ni(100)
has a magnetic moment that is enhanced by 4.3% over the
central layer. This agrees well with FLAPW results of
5.2% by Jepsen, Madsen, and Anderson and 5.8% of
Krakauer, Freeman, and Wimmer.

A similar trend is also visible in magnetic moments at
various layers in thin slabs. We plot in Figs. 3(a) and
3(b) the change in the magnetic moments as one goes
from the surface layer to the middle layer in nine-layer
slabs of Ni (111)and (100) planes. Note that the surface
layer is more magnetic than the inner layers. The middle
layer of the nine-layer slab has a magnetic moment that is
identical to its bulk value. This trend is also consistent
with the variation in the coordination numbers. An addi-
tional feature is also noticed in Fig. 3(b)—that of an os-
cillatory dependence of the magnetic moment as one ap-
proaches the surface from within the bulk. Such a trend is
less prominent for the more compact (111) slab. These
subtle features are also in agreement with FI.APW re-
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FIG. 3. Variation in the magnetic moments p of sites in vari-
ous layers of nine-layer slabs of Ni. (a) and (b) correspond to
(100) and (111)planes, respectively. Here, p is measured with
respect to the central layer. (@center 0 59ps' pmnter 0 57pB )

suits. 3

To demonstrate the versatility of the method, we have
applied it to the study of the magnetic moments of atoms
surrounding voids of varying sizes successively from the
bulk, since a void of infinite radius mimics a planar sur-
face. To understand how big a void has to be for the mo-
ment at its innermost shell to converge, we have calculat-
ed magnetic moments of atoms around a monovacancy,
and voids of 9, 15, 27, and 51 atoms in Fe. The voids cor-
respond, respectively, to the removal of first, second, third,
and fourth shells of atoms. The magnetic moments at the
inner layer of atoms surrounding the void center is given
as a function of void size in Table I.

It is interesting to note that these moments also oscilate
with void size. In order to understand the source of such
an oscillatory behavior, we have given in Table I the num-
ber of nearest and next-nearest neighbors of the atoms on
the inner shell for various voids. In the case of Fe, the dis-
tances of the nearest and next nearest-neighbor atoms are
close to each other. So we identify the coordination num-
ber in Fe as the sum of these two numbers. It is clearly
seen that the change in moment is related to the changes
in the local environment. Sites having greater coordina-
tion number show lower moments. Note that for a 51-
atoms void, the magnetic moment has approached its
asymptotic value. No other theoretical studies are avail-
able to compare with our results in Table I.

Thus, we have demonstrated that the continued fraction
method with parameters calculated from ab initio SCF-
LCAO-MO theory of dimers can explain, systematically,
the variation in the electronic and magnetic structure of
Fe and Ni in a wide variety of systems. Our method
demonstrates that the tight-binding parameters obtained
in the above manner are transferable much in the same
spirit as pseudopotentials The strength of our method lies
not only in the simplicity of its construction and tran-
sparency, but its wide applicability to imperfect systems
and modest demand on computer time. For example, the
calculation of a 25000-atom cluster using the IBM 3081D
computer requires only twenty minutes of central process-
ing unit time. It is an order of magnitude faster than
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TABLE I. Magnetic moments at the inner layer of atoms surrounding the void center in Fe.

Size of void

Monovacancy
9

15
27
51

Nearest
neighbor

Next-nearest
neighbor

Coordination
number

13
9

10
10
7

Moment (itB )

2.55
2.70
2.61
2.64
2.75

competing first-principles methods. We are presently try-
ing to extend the calculations for systems involving
heteroatomic atoms. This will enable us to treat over-
layers and modulated structures. Unlike the FLAPW
method, we can here introduce the surface defects in the
calculation of our electronic structure. Results will be
published in due course.

In spite of the optimism expressed here, the reader
should be cautioned that our starting point is a diatomic

molecule. Consequently, the method does not account for
three-body terms such as effects associated with crystal
fields. These problems may be of a lesser significance for
transition metals due to the localized nature of d elec-
trons.
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