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We consider the diagonalization of quasiperiodic operators on generalizations of the Fibonacci
lattice defined recursively by (A, B) (A "B,A). The inflation symmetry of these lattices induces
a three-dimensional nonlinear dynamical map on the traces of associated transfer matrices. We
find the invariant manifolds for these trace maps to be twisted and pinched versions of the Fi-
bonacci manifold. We investigate the effect of these pinches on the spectrum of a tight-binding
Hamiltonian and consider the limit of weak incommensurability: n

In recent years much effort has been devoted to the
study of quasicrystals in one dimension. Particularly well
investigated is the Fibonacci lattice for which Kohmoto,
Kadanoff, and Tang' developed the mathematical frame-
work known as the KKT renormalization scheme. In this
paper we extend the KKT scheme to the simplest class of
recent generalizations of the Fibonacci lattice: the pre-
cious mean (PM) lattices. (This nomenclature is con-
sistent with the traditional assignment of the first few irra-
tionals of this class to precious metals. ) The PM lattices
are labeled by an integer n and have the interesting prop-
erty that their quasicrystallinity becomes arbitrarily weak,
in the sense that their incommensurability approaches n,
as n ~. Previous work2 showed that the inflation sym-
metry of the PM lattices induces, for all n, a three-
dimensional (3D) nonlinear dynamical map on the traces
of 2x2 unimodular transfer matrices defined on these lat-
tices. Encouraged by the results of Gumbs and Ali, 3 we
find the invariant manifold of these maps for all n, and
identify their important cycles. Linearizing about these,
we obtain the scaling indices for subsets of the zero Lebes-
gue measure multifractal spectrum of a simple diagonal
tight-binding Hamiltonian. We then compare with nu-
merical results and consider the limit n

The PM lattices are, like the Fibonacci lattice, two-tile
Penrose tilings of the line and can be defined recursively
by the inflation rule

Mk+ i Mk —)Mp . (2)

As shown in Ref. 2, Eq. (2) implies a recursion relation
for the traces of the transfer matrices which can be
expressed as a 3D dynamical map. Defining x= 2

xTr(Mk t), y= —,
' Tr(Mk), and z„=—,

' Tr(Mk~t),

—,
' (n+vn2+4). We call these irrationals the pre-

cious means. The number of A's in the kth iterate of (1)
is Fk, the number of 8's, Fk t, where Fk nFk 1+Fk —2—
are the PM numbers with Fo 1 and Fi n Ex.plicitly,
F ~ [ k+1+ ( 1)k —(k+1)]/Qtt 2+4

Rather than considering physics in the world of the
infinite PM lattice directly, it is natural to consider the
same physics on a sequence of periodic lattices. The kth
element of this sequence has the kth iteration of (1) as its
unit cell and we call it the kth periodic approximation
(PA). As k~ ~ the sequence of PA's converges to the
PM lattices. We restrict our discussion to problems re-
ducible to the diagonalization of quasiperiodic operators
whose eigenvalue equation can be cast in transfer matrix
form with 2x2 transfer matrices of unit determinant.
This includes a wide range of physical problems. s If Mk
denotes the transfer matrix which takes us across a unit
cell of the kth PA, then these transfer matrices obey, by
virtue of infiation symmetry (1), the renormalization-
group equation

where A" denotes a string of n A' s. For n 1 this is the
Fibonacci rule. The incommensurability of these lattices
[the ratio of A's to 8's in the infinite iterate of (1)] is

I
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z„' g 2(TrMg —b„t)+xg 2(TrMg+I —b„t)

1~ 1

y
T
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z„'(x,y,z„)
where z„'(x,y, z) is given by Eq. (A13) of Ref. 2 as

(3)

R

TrMg+1 TrMg+ g [TrMg+1 TrMg '+TrMg TrMg+| —b„„(TrMg+~+TrMg)], (4)
eleven

with L:n —[(n+ 1)m—od2] and R =n —(n mod2). The traces of powers of matrices in (4) can be expressed as powers of
traces of matrices as a simple consequence of the binomial theorem. Denoting the sum multiplying z„in (4) by t)„(y),we
discover, using the property of 2x 2 unimodular matrices Tr[M& (Mq+M& ")] TrM~ TrM&, that

(5)
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with g~(g) 2 and ri2(g) 4(. We recognize (5) as the
recursion relation for Chebyshev polynomials; in fact
ri„(g) 2U„~(g)where U„is the nth Chebyshev polyno-
mial of the second kind. With this knowledge some alge-
bra shows that (4) can be written succinctly as

9 (z)z„'- "
[zri„+)(y)—2x] —

—,
' yri„-)(z). (6)

2gn y

2x —1

1 0 and M)

To find the invariants of (3) for arbitrary n, consider
the simplest possible nontrivial unimodular 2 x 2 matrices

2y —1

Mo 1 0 (7)

0.5

0-

With 2x E —Vz and 2y E —Vz, these are the transfer
matrices for the eigenvalue equation of the diagonal
tight-binding Hamiltonian

+~YJ+ & &i + &/ &i+ &+ i &I&i ) ~ (8)
J

where V, V~ or Vq depending on whether the jth site of
the PM lattice is of type A or 8. From (7) we obtain the
third initial condition for the trace map

z„—,' Tr(MQM/ ) —,
' [xr/„/$(y) —rl, (y)l .

The crucial step in finding the invariants of (3) is to real-
ize that we can now map the flow of (3) onto the Fibonac-
ci invariant manifold if we can make the transformationz„~z„z~. Solving (9) for z ~, we see that this is indeed
possible with

—0.5

0.5
(b )

F
'E

8

0.5

z„- [xrt„ i(y)+2z„].1

rln y
(10) I'

v,'V

In terms of z„,the invariant of (3) is then given by

n +y+n yn

which is independent of the choice (7) as can easily be
proved by direct substitution of (3) into (11). We note
that for model (8) I„(x—y) —,

' (V~ —Va) for all n

We may consider I„»(x,y,z„)to have the same topol-

ogy as I~ (Refs. 7 and 8) in the sense that for I„&0 the
manifold consists of a central compact part and four
infinite sheets (the compact part shrinks to a point atI„—1; for x,y, z real I„~—1). When I„Othese
sheets join the central part through four bottle necks
which widen with increasing I„&0. However, I„~~ is a
twisted version I~ and may be visualized as follows: imag-
ine twisting the two in6nite sheets of I~ in the half-space

y & 0 by (n —1)x/2 about the y axis. This twisting then

results in pinching the central part of I„offalong line seg-
ments z ( —1) x, at the n —1 roots r„~of rt„(y)given

by r„~ c s( o/mn)x, m C (1,2, . . . , n —1]. The pinches
extend from —xm» to xm», where xm» [(a —r„~)/
(1 —r )]' and a —=I +1

—0.5 0.5

For I„&0 all the cycles of the PM trace map (3) ap-

pear to be unstable. For I„&0,some cycles are elliptic,
but become hyperbolic via bifurcation before I„reaches
zero. The cycles dominating the flow of (3) close toI„—1 on the compact part of I„are(see Fig. 1), for n

odd, the six-cycles

FIG. 1. Flow of the PM trace map on the compact part of
I, —0.8 projected onto the xy plane. (a) n 2: 18 selected

seeds have been iterated 10000 times. The How about the four-

cycle (figure eights) and zero-root-cycle (stochastic bands) is

apparent. The four-cycle at (0, +' 40.2,0) is elliptic. (b) n 5:
23 seeds have been iterated 2500 times. Elliptic satellites of the
six-cycle and r5, 2 and r5, 3 root cycles are clearly visible.
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and, for n even the four-cycles (two-cycles if n/2 is even)

x 0 ( 1)e/2+

0
0
a

,0,
(i3)

N6 +
2

N6 —1 (i4)

with

2
2 + 4+gn
g„ g„ 42 2

g4
ro +g (is)

4gn2 2

where /, —=a(n —1)21„+ri„y~,and the argument of the
Chebyshev polynomials is a. The nonanalyticity of l„on
its pinches causes trace map orbits to cross there (as they
flow on interpenetrating sheets of I„)and gives rise to a
class of cycles, which we call root cycles, lying entirely on
the pinches (see Fig. 1). While the four-cycle (13) is not
a root-cycle, it lies partly on the y 0 pinch of I,„„and
linearization about it must, as in the case of the root cy-
cles, deal with the technical subtleties arising from the
nonanalyticity of the pinches. This difficulty is most easily
handled by mapping (3) onto the analytic Fibonacci man-

I

The six-cycle lies entirely on analytic patches of I~d and
we calculate the eigenvalues of Ts linearized about (12)
to

.
&/2

y 2 [zrl. (y) —xr/„-((y)] (i6)
T

,z, —,
' [zrl„~,(y) —xri„(y)]

Because x and y remain unchanged, this map has the ad-
vantage of being analytic while preserving the cycles and
linear eigenvalues of (3). Writing the four-cycles (13) in

terms of (16) and linearizing, we find
' 2 1/2

with

N4 N4"' 2- . 2.

e24 4 [2rl, —~(a) —a(n+2)ri„(a)]2 —2.

(i7)

The general two-cycle of (3), x y x, is deter-
mined by the condition 2 —g(y) g(x), with g(g)
=—[q. &(g)+2]/[gq. (g)].

The root cycles for n odd are

ifold using transformation (10). The thus transformed
map may be written

~ &nm

y ~r„+( —1) r„
,z, , ~b, (—I)~b

and the root cycles for n even are

~ ( 1)mr

~nm

~ ( I)mb

~nm

. +b.
(i9)

Inm

y +r
. +b.

( —1) r„
( —1) r~~ (—1) r~
g ( 1)mb

~(—1) r.
Pnm

~ ( I)mb . +b.
(20)

where b r~ + (r„~—2r„+a ) '/ . The effect of T on a
point of a root cycle is to merely change the signs of its
coordinates. Furthermore, we find that the maximum ei-
genvalues of the cycles (19) and (20) are powers of A,

&

given below. We may therefore regard the root cycles as
effective one-cycles, or Gxed points, which are, for
sufficiently large I„,hyperbolic with the eigenvalue of the
unstable manifold given by

r i 2 )/2

+1 (2i)l&i I
- '+

2

where

(r.' —2r' +a')' '
n

l rnm
(22)

Consider now, for definiteness, the diagonalization of
Hamiltonian (8). In the kth PA, its spectrum is deter-

I

mined by the condition ~xk(E) ( ~1, ~here xk(E)
—= 2 TrMk(E) with Mo and M& given by (7). xk(E) is a
polynomial of order Fk whose roots are bounded by (E;„,
E „}(min(V~, Va)-2, max(V~, Va)+2) and whose
local extrema exceed 1 in absolute value. As k
xk(E} traverses the strip (xk(E) )

~ 1 increasingly fast
and the spectrum of (8},consisting of Fk bands forming a
hierarchy of band clusters, converges to a zero Lebesgue
measure multifractaL '2 As a consequence of Eq. (2) the
corresponding states are critical, that is, power-law local-
1zed.

A multifractal can be characterized by a spectrum of
fractal dimensions f(a) which has the general proper-
ties as [a;„a ], 8 f/8a (0, 8f/8a(f-, 1, and
max[f(a)] DH, the Hausdorff dimension of the mul-
tifractal. For model (8), a is the scaling index for the set
of bands whose bandwidths A& scale with their integrated
density of states 1/Fk like A&'. Writing xk (E)
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a6

2logna4~ asn
nlog[(a —1)' +a] (24)

We note that this is contrary to the claims of Gumbs and
Ali.

Let the scaling index for sets governed by the root cycle
of root r„bedenoted by a„.From (21) and (22) we
note that a„ is largest for the smallest roots. a,„,ob-
tained numerically using the algorithm of Ref. 9, and
tt„„i2,for n even, are in excellent agreement. For n odd,
a„&„~~&i2 appear to agree well with a,

„
for n & 3. For

example, for n 2, 3,4, 5,(a,„,a„)of the spectrum of

= 2(E E—J.)/~J. , where A& -2/(tlx/8E ) ( EJ and Et is a
root of xk(E) resulting in a band of width &FJ, we see
that the width of a band at energy E goes to zero at the
same rate as xk(E) escapes to infinity. Thus, the scaling
index for the set of bands which puts xk(E) in the vicinity
of a hyperbolic Q-cycle, where xk(E) grows exponentially
with k like Xg ~, is given by ag Qlogz„/logk, g. (A for-
malism for calculating localization exponents of the corre-
sponding states may be found in Ref. 10.)

Numerically we find that the centers of the band clus-
ters of the spectrum of (8), for n odd, scale like the six-
cycles (12). However for n ) 1 the spectrum is no longer
fattest there, that is, the centers no longer scale with am»
as in the Fibonacci case; in fact

3 logn asn~ 0o, (23)
n log[(a' —I) ' '+a]

which goes to zero. The four-cycles (13) do not govern
the scaling of the cluster centers which are the fattest part
of the spectrum for n even. Like a6, a4 asymptotically
goes to zero:

(8), with I„—,', are calculated to be (0.916, 0.9158),
(0.90, 0.8838), (0.935, 0.9347), and (0.93, 0.9295), re-
spectively. (For n-1,2, 3,4, 5, the numerically obtained
DH are 0.7729, 0.7745, 0.7766, 0.7811, and 0.7857.)
Discrepancies for n odd may either be due to another cy-
cle governing the fattest parts of the spectrum or to the
nonuniform convergence of the numerical result observed
for n odd. For fixed m/n =p, a„converges to 1 like

log(co t/n)
an pn 1 1+

logn
as n~ . (25)

During the course of this work I have benefited
from discussions with K. Heiderich, M. Plischke, and
M. Wortis.

For m fixed, a„converges to —,
' like

3+ log[JI/(m 2tt2)]

logn

If Q„(tt„~)dttdenotes the number of ct„~C (a,a+da),
Eqs. (22) and (25) show that Q,(a„)is sharply peaked
close to 1 and approaches nil(a 1)—as n ~. The trend
observed numerically for f(tt ) together with Eqs.
(23)-(25), the convexity of f(c), the boundedness of
f(a) by a from above, and the asymptotic behavior of
Q, (a„~)strongly suggest that f(a)~ a, with a 6 (0, 1),
as z„~n. As we can see from (25), convergence to this
limit is extremely slow. We conjecture that f a may
also be the form of the f(a) curve at criticality for quasi-
crystalline systems which undergo a phase transition. Evi-
dence for this is suggested in the critical f(a) curve of
Ref. 11.
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