
PHYSICAL REVIEW B VOLUME 38, NUMBER 8 15 SEPTEMBER 1988-I

Inelastic electron scattering in amorphous silicon nitride and aluminum oxide
with multiple-scattering corrections
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Electron-energy-loss measurements for an amorphous chemical-vapor-deposited silicon nitride
film and evaporated sapphire in the broad energy range 1-200 eV are investigated. A method, not
requiring the zero-loss peak, to remove the multiple scattering is discussed, applied, and the optical
constants obtained. An Elliot-type model used with aluminum oxide gives a valence-exciton bind-
ing energy of 1.36+0.2 eV with a band gap of 9.8+0.2 eV. The unexpected strength of the nitrogen
2s transition is noted in silicon nitride.

I. INTRODUCTION

Inelastic electron scattering (IES) measurements pro-
vide information on electronic excitations over a wide en-
ergy range. Using such data to determine absolute values
of the optical constants, however, is hindered by the mul-
tiple scattering effects. Although the recent access to
synchrotron radiation has answered some of the needs for
tunable sources, optical experiments are typically con-
strained to a limited spectral region. Also, optical-
absorption measurements can easily be contaminated by
pinholes in the films being studied, and multiple orders.
Reflection experiments require clean and smooth sur-
faces. Removal of the multiple scattering in inelastic
electron scattering is thus very desirable.

Techniques to remove multiple scattering in IES have
previously been discussed and applied to the analysis of
data. These techniques are either based on iterative
deconvolution' or Fourier transform methods. All
such previous techniques rely on knowing the relative
strength of the elastic peak in determining the strength of
the multiple scattering. However, due to the large dy-
namic range needed in the signal between the elastic peak
and the inelastically scattered data, any nonlinearity can
introduce an error in the multiple scattering removal.
This is particularly so in the Fourier transform methods,
where even the large differences in the signal within the
inelastically scattered data can produce difficulties when
any small nonlinearity in the measurement apparatus ex-
ists. Often the simultaneous determination of the elastic
peak and the inelastic data is not possible due to other
technical reasons, and another approach is therefore
necessary.

The multiple-scattering-removal technique that will be
used here is based on a method developed by Fields,
where it was used to remove the double and triple scatter-
ing in the analysis of LiF data. It is an iterative method
which, starting with energy convolutions of the data, esti-
mates the multiple scattering and subtracts it, leaving an
estimate of the single scattering spectrum. It will not re-
quire knowledge of the strength of the elastic peak and is
therefore less susceptible to nonlinearities in the measur-
ing apparatus. It is, however, necessary to know the os-

cillator strength in the f-sum rule for the transitions of
concern, which can often be easily estimated to within
5/o, or in principle calculated using atomic wave func-
tions. Here we discuss the algorithm from a point of
view which systematically allows its extension to any or-
der of multiple scattering desired, and analyze IES mea-
surements over a 200-eV range for amorphous films of
chemical-vapor-deposited (CVD) silicon nitride and
electron-beam-evaporated sapphire.

II. INELASTIC ELECTRON SCATTERING

where v is the incoming electron velocity. With highly
energetic beams, the perpendicular component is far
greater than the parallel component and thus the momen-
tum transfer is dominated by the perpendicular com-
ponent and essentially decoupled from the energy loss.

The aim of electron scattering is to obtain the
differential cross section d X/dco d q~ for scattering at en-

ergy loss %co, at some perpendicular momentum transfer
Aq~, and per unit sample thickness, which is given by

2
dX e

dco d q~

—1
Im

q2 e(q, co)
(3)

where e(q, co } is the complex dielectric constant. It is the
loss function Im[ —I /e(q, co)] in the long-wavelength lim-
it (q=0) which provides the optical constants through a
Kramers-Kronig analysis.

Since the total momentum transfer is not completely

In inelastic electron scattering an energetic (here 300
keV} electron passes through a thin film of the material
being studied. The electron conveys a momentum
transfer fiq and energy loss Ace. For relatively large in-
coming momentum Rko and scattering at small angles 8,
the perpendicular and parallel components corresponding
to the momentum transfer are given to excellent approxi-
mation by

I qiI =
I koI ~
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1 1

q qj +(co/v)
(4)

decoupled from the energy loss, the factor 1/q does pro-
vide a weak energy dependence. We can write it as

or the absorption coefficient

p(co) =2' Im
n (co)

C
(12)

This factor, the kinematic factor, can provide a
significant energy dependence for small q. At finite qi it
might be thought that this dependence is negligible, but
due to finite instrumental resolution, momentum
transfers corresponding to small values of q~ always con-
tribute to some degree. Therefore the effective kinematic
factor E(co) is some weighted combination of kinematic
factors for different qi. If one assumes that the loss func-
tion is q independent over a momentum resolution width,
then a resolution weighted factor that gives the effective
energy dependence can be calculated with

&()= f R(qI)d qI,
(q, —qj ) +(a)/v)'

where R (qi) is the shape of the wave-vector resolution
function. A knowledge of E(co) is required if the loss
function is to be determined from the data. We calculate
this function numerically using a two-dimensional Gauss-
ian for R (qj ). The instrumental resolutions I'full width at
half maximum (FWHM}] here are 0.06 A ' for the
wave-vector resolution and 140 meV for the energy reso-
lution.

The information gained through electron scattering is
compared to optical data through the Kramers-Kronig
dispersion relations,

r

Re
1

e(q, a) )

oo 1 1—1=—P Im

dt's

e(q, co' } co' —co

(6)

and

1
dN

e) 1
Im = ——P Re

&(q, co ) n — e(q, co') co' —co

Writing

a=1+ 1 —1/e
1/e

(8)

the real and imaginary parts of the dielectric constant are
obtained with

Re(1/E)Re(e) =e, =
Re(1/e) +1m(1/e}

may be obtained.
An important relation to be used here is the f-sum

rule,

2neff
2

f colm, dco =
o e(q co') m

(13)

where n, ff is the density of electrons that contribute to
the energy absorbing transitions and m is the electron
mass. Of course, in integrating to infinity, all electrons in
the solid should contribute, and more properly no
qualification on what electron density to use should exist;
it should be the total electron density. However, measur-
ing data out to infinity asks too much of the experimen-
talist. Instead we note that the contribution to the ener-

gy absorption from a core state does not contribute
significantly below that core's threshold. Typically such
a threshold occurs high enough in energy that the
response of the less bound contributing electrons is free-
electron-like. Here, the data can be artificially extended
with the free-electron response that a Drude model would
predict, which is 1/rv, and n, fr would only include those
electrons contributing up to the onset of the new core
threshold.

Still, such a partitioning of the sum rule for certain
groups of electrons is not rigorously correct. First of all,
due to interactions, deep levels can still contribute to
small energy losses in some higher-order virtual transi-
tion, although these effects are assumed to be quite negli-
gible. More importantly, the effects of exclusion can
significantly enhance the oscillator strengths from what
one may estimate from simple counting of electrons.
For example, the simple counting of valence electrons in
aluminum that contribute to the oscillator strength below
the 2p core threshold gives three electrons per atom. The
effects of exclusion enhance this number, and a self-
consistent study of aluminum by Smith and Shiles, using
many sources of data, indicates that a more correct num-
ber of electrons per atom is 3.2. Since this number is usu-
ally not accurately known a priori (except possibly
through calculation}, the f-sum rule by itself may not ac-
curately determine the scale of the loss function.

Another approach to scaling the data, which is used
here, uses Eq. (6) and assumes that the electronic contri-
bution to the loss function is relatively negligible and
smooth as co~0, in which case we expect that

and

—Im(1/e)
Im(e) =e2 ——

Re(1/e) +1m(1/e)
(10)

1

e(q, O}

1 1—1=—f Im, , de',
vr o e(q, co') co'

(14)

A Kramers-Kronig analysis then provides the full
dielectric constant, from which quantities such as the
complex refractive index

n(co) = [e(co)]'

where e(q, O) corresponds to e at optical frequencies. For
e(0) in insulators, we use the square of the index of re-
fraction, or for metals we use infinity. Together the rela-
tions of Eqs. (13) and (14) help check results over a wide
energy range, since the frequency factor emphasizes the
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high-energy loss in the f-sum rule, and in Eq. (14) it em-
phasizes the low-energy loss.

III. MULTIPLE SCATTERING

The most problematic of the approximations made in
the multiple scattering method used here is the assump-
tion that the energy-loss function is weakly dependent on
the wave vector. This of course is not the case for those
materials where the plasmon loss or any other strong
feature disperses rapidly with momentum transfer. It is
this inability to deal with dispersion that unfortunately
makes this technique less useful for many interesting ma-
terials that exhibit strong dispersion of narrow features.
For those that do not, however, it provides an adequate
solution to the multiple scattering dilemma.

With a thin film of some finite thickness t, the observed
cross section dI/dcod qj for scattering with energy loss
Ace and momentum transfer Aq~ includes multiple scatter-
ing events that may be expressed by

sample film is also necessary, since any beam drifts over
many measurements might then penetrate different film
thicknesses. With available computers, such repetitive
3D integrations are possibly quite feasible, but we have
observed that the dispersion effects on multiple scattering
are quite significant for sharp-featured data (plasmons in
good metals, for instance) even at momentum transfers as

0
low as q~=0. 1 A . This would necessitate acquisition
of data at lower momentum transfers, where the finite
momentum resolution will significantly include the ener-

gy losses associated with Cerenkov radiation. For these
reasons, we feel at present the approximations taken here
are a practical compromise, since for many materials
they will still be generally valid for momentum transfers
near q~=0. 1 A

With the above approximations the cross section
dX/dcod q~ is a separable product of the q~-dependent
and co-dependent factors F, (q~) and Im[ —1/e(co)], re-
spectively. Defining S,(co)=Im[ —1/e(co)], Eq. (15) be-
comes

dI(co, q~) t dX„(co,qj )

dco d qj „ i n ~ 1cod qy

where (n ) 1)

(15) dI T2 T3
TF)S)+ F2S2+ F3S31 cod2qj

1X„(co,qj )

dcod qj

„dX„,(co', q,') d X(co—co', q, —q,')
dco'd q~dco'd qj dco 1 qj

(16)

where

t eT——
mv

2

F4S4+ (20)

(21)

and

~l dX
dco 1 qi dcod qj

(17)

The double scattering term is a convolution of the single
scattering cross section, and higher-order terms are con-
volutions of the next lower term. These are weighted by
a Poisson-like factor which depends on the sample thick-
ness.

For the purposes of the wave-vector convolutions, the
kinematic factor is taken to be energy independent. We
use

1
Fi(qi) =

qg+qp

where qp is given by

Np
(19)

and Scop is the energy of the strongest feature in the spec-
trurn. In this way, the error will be least where the
correction is the greatest.

The need for such approximations arises due to the
otherwise necessary three-dimensional (3D) integrations
over frequency and momentum transfer Aq~. Data would
be needed with many wave-vector values, and then would
have to be properly interpolated. Furthermore, care
would need to be observed that all data are taken with
the same energy and momentum resolution. A uniform

and g is an arbitrary scale factor. S„and F„are given by
(n ) 1)

S„(co)=f S„,(co co')S, (co'—)dco',
0

F„(q~)=fF„&(q jqj )F, (q~)d q' .

We can also write Eq. (20) as

f (co)=f)+a2f2+a3f 3+a4f4

(22)

(23)

(24)

and

fi=f }g~g— (26}

g =f ccrc'g g . — (27)

Here, gog indicates the self-convolution of the function
g (co),

gog(co}=f g (co—co )g (co )dco
0

(28)

where [fo(co)=5(co)]

f„(co)=f f„~(co co')f, (co')d—co'=(gTF, )"S„(co)
0

(25)

and f represents the measured count rate. The constants
a„are to be determined.

With the assumption that quadrupole- and higher-
order multiple scattering is negligible, our goal is to ob-
tain f ~ by removing the components a 2f2 and a 3f3. The
algorithm will use the two equations
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f d~ ~f i(~}«(~} 2~n, e'

f dec fi(co)l[o3E(co)] in [1—I~s(0}]
(29)

Here we have included the effective kinematic correction
so that the proper shape for the loss function is used.
After each iteration, the next value of y is selected to
satisfy Eq. (29), from which the following g is calculated
[Eq. (27)), with which the resultant f, is constructed [Eq.
(26)]. The process proceeds until some level of conver-
gence is satisfied.

To obtain a, we will need to expand gog up to orders
including f3. Expanding Eq. (27) once gives

The function ygo g represents the double and triple
scattering. g itself is determined self-consistently from f
by subtracting a fraction a of the multiple scattering. By
leaving some double scattering within g, gog will include
some triple scattering. That the correct strengths and
shapes of the double and triple scattering are removed
will of course depend on a, y, and g.

At this point, we have four unknowns (a, y, g, and f i }
and only two equations [Eqs. (26) and (27)], but as it will

turn out, a is a constant that is determined by the phys-
ics. Thus starting with g =f, Eqs. (26) and (27) can be
solved iteratively if some constraint on the resultant f,
exists. Such a constraint is obtained with the f-sum rule

[Eq. (13}]and the relation of Eq. (14), which require

terms give

TF2S2

2F,S, (38)

With the help of Eq. (25) we arrive at

F
Q2=

2V'i

Similarly,

F~
Q)=

@2F3

F4
a4=

24g3F4

(39}

(40)

(41)

a& 2F&F&

a2 3F2
(42}

a4
3

Q2

F)F4

3F2
(43)

Thus, the above system of equations [Eqs. (36) and (37)]
gives

and so on.
In particular, the ratios a„/az ' will be constants in-

dependent of the thickness or scale factor. For instance,

gog =fof 2ay fogog+—a2y2gogogog .

In including terms up to f3 we only need to consider

gog =fof —2arfofof

(30)

(31) or

a~ 2F)F~
=2(1—a) =

Q2 3F2
(44)

For reference, since we will eventually consider a quadru-
pole scattering, we expand several self-convolutions of f
up to terms including f4.

F)F~a=1—
3F

(45}

fof=f, of, +2a,f, o f2+2a, f, o f, +a2f2o f2+

f'f'f =fi'f i'f i+3a2f i'f i' f2+

fofofof =fiofiofiofi+

(32}

(33)

(34)

Therefore a is indeed a constant independent of the
thickness or the scale. The functions F„are evaluated at
the value q~ at which the data were taken. Numerically

0
obtained values for a at q~=0. 1 A ' are typically near

The self-consistent sample thickness t is obtained by
combining

Now writing ygog up to terms including f3 gives

rgog =rf2+(2ra2 2ay')f3+— (35)
with

F
2(F,

(46)

In equating corresponding terms with Eqs. (24) and (26),
we obtain fi =CTFiSi (47)

a2 ——y,
a3 ——2ya2 —2ay =2y (1—a) .

(36)

(37)

Here we have related a and y for arbitrary a„. How-
ever, the constants a„, relating the relative strengths of
the different multiple scattering contributions, are not ar-
bitrary; their relative strengths are determined with Eq.
(20). For a given overall scale factor g, once a2 is known
so are all the higher-order terms a„. That this is the case
can be seen by considering the ratios of corresponding
terms from Eqs. (20) and (24), which for the first two

giving
2

~U 2rFi fi
t =fg

e F2 S,
(48)

where y and the ratio f, IS, are outputs of the algo-
rithm.

The above algorithm to remove double and triple
scattering works precisely because the parameter a is a
known constant, thus Eqs. (26) and (27) can be solved
iteratively. Extending such a procedure to higher multi-
ple orders then requires that any additional parameters



3S INELASTIC ELECTRON SCATTERING IN AMORPHOUS. . . 5515

can also be determined a priori.
Although tedious, one can correct to any necessary

n + 1 multiple scattering order by considering equations

and

fi=f y—g g y—'g g g (49)

02 =f
a, =y (3—2a, ),
a4 ——y (5a, —12a, +2a2+10),

giving

3 F)F3
ai ————

2 3F

(51)

(52)

(53)

(54)

and

g =f a—iygog —azy gogog — . —a„,y" '(go )",
(50)

where (go )" signifies the (n —1)th self-convolution of g.
Besides the added energy convolution, each added order
requires calculating another convolution over q~ for F„.
Fortunately, the assumption of little dispersion in the loss
function is less troubling in higher orders, since smaller
and smaller values of q~ are strongly weighted in higher
multiple scattering.

For the case n =3 (inclusion of quadrupole scattering)
Eq. (50) can be expanded once, and a similar analysis as
before yields the system of equations

IV. ALUMINUM OXIDE

As an example of this procedure, we first consider the
amorphous aluminum oxide. The sample was produced
with electron beam evaporation of sapphire (crystalline
aluminum oxide), where a crystal thickness monitor mea-
sured a film thickness of 300 A. The sample is therefore
fairly thin and should exhibit weak multiple scattering.
In addition, the thickness is known, so that the reliability
of the multiple scattering subtraction is enhanced. The
substrate was a salt crystal, from which the film was
fl.oated off and picked up on a 50-mm copper mesh.

The density of amorphous anodized aluminum oxide
has been quoted by Swanson as 2.8 g/cm as opposed to
3.96 (Ref. 10) for sapphire. The refractive index for
electron-beam-evaporated aluminum oxide has been mea-
sured by Cox" to be 1.7. In the application of the multi-
ple scattering algorithm we have set the density at 3.0
g/cm and e(0)=2.9, leaving the electron number per
molecular unit (A1203) to vary the ratio parameter. A
self-consistent thickness of 305 A is obtained with 43
electrons per molecular unit. A naive counting of elec-
trons contributing (aluminum 2s, 2p, 3s, 3p and oxygen
2, 2p) gives 40 per molecular unit. As expected the oscil-
lator strength is enhanced, although the meaning of any
of the parameter values must be taken in light of the oth-
er numbers.

The A1203 data (q~ =0. 11 A ') with the multiple
scattering correction and resultant loss function appear
in Fig. 1. Figure 2 gives e, and e2 over various energy

FiF~ F)F3
a2 ——

6F2 3F2

5F)F3
1SF',

(55)

"x l()~-
However, it will be assumed that the quadrupole scatter-
ing is negligible, and only the double and triple scattering
will be removed in the data analysis here.

In this approach the strength of the multiple scattering
hinges on the ratio on the right-hand side of Eq. (29),
which we will refer to as the ratio parameter. This num-

ber depends on n,z, which, as pointed out, is not known
accurately beforehand. Furthermore, this ratio parame-
ter also depends on the sample density and its infrared re-
fractive index, the values of which might not be well doc-
umented for the phase of the particular thin film being
studied, although in principle they can be measured.
This is often the case for amorphous films. However,
even when these parameters are not accurately known,
the ratio parameter is still known to within some plausi-
ble range, and can then be varied slightly to produce the
most "reasonable" result. Unfortunately, this uncertain-
ty introduces some subjectivity in the data analysis. This
leeway might further be reduced by correlation with data
from other techniques.

These uncertainties can be completely avoided if the
sample thickness is known. The ratio parameter is then
varied until the self-consistent thickness is consistent
with the known thickness. This then also provides the
oscillator strength if the density and refractive index are
known. The usefulness of knowing the sample thickness
cannot be understated.
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FIG. l. (a) Electron scattering data for evaporated sapphire
(dots) with the multiple scattering corrected result (upper solid
line) and the subtracted strength (lower solid line). (b) Deter-
mined loss function for evaporated sapphire.



5516 PETERIS LIVINS, T. ATON, AND S. E. SCHNATTERLY 38

regions. The loss function is the multiple scattering
corrected data, which has been modified by the kinematic
correction and normalized to satisfy Eq. (14).

The aluminum oxide exhibits a loss maximum at
22.7+0.05 eV. The signature of a plasmon is a zero
crossing for E'& with a small value for e2. Lacking a
better description, this peak might be viewed as a poor
plasmon, although as can be seen from Fig. 2, e& almost,
but does not cross zero at an energy near the peak of the
data. At =77 eV the aluminum 2p core threshold exhib-
its a strong core exciton. Thresholds for s core transi-
tions are usually very weak. Apparently the symmetry of
the s core and a conduction state is such that the matrix
elements are relatively small compared to the p cores, at
least near threshold. Nevertheless, a weak feature ap-
pears near 125 eV in aluminum oxide and also near 155
eV in silicon nitride, close to the expected s core thresh-
olds. In both aluminum oxide and silicon nitride, data
extend approximately 100 eV above these thresholds so
that the response at these energies should be free-
electron-like.

Two features (Fig. 3) near 9 and 14 eV are observed,
and a third has also been mentioned by Swanson a 17.7
eV for sapphire. That the feature near 9 V might corre-
spond to a valence exciton is here investigated by fitting
an Elliott' -type model in the region 5-11 eV. The fitting
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FIG. 3. (a) Low-energy loss for evaporated sapphire and (b)
an Elliot-like model fit to excitonic feature.
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function is the Gaussian convolution of the function
8(x E, )C[a x+—1]+b together with the Gaussian con-
volved hydrogenic series D g„[1/n 3 exp[ —(x —E„)2/
2o ]. E, is the continuum threshold, and
E„=E, E&In whe—re E& is the ls binding energy. C,
D, Iy, a, and b are arbitrary constants and 8(x) is a step
function at the origin with unit height. Thus we use
seven fitting parameters. This fitting function is

0.9-

0.8
120 16080

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

200

f ( ) C
ax + 1

2

ao.
+ —exp

&2m.
+b

x —E,
erf — + 1

cr 2

(x E,)—
2'3:

(c)

as+

2 0 2
I

I
I I I I

I
I I I I

I
I I I I

I
I I I I

I
I I I I

I
I I I I

10 20 30 40

0 0 I
I

I

60 80
I

I
I

I
I

I
I

I

120 160
I

I
I

200

4d (('W )

FIG. 2. Real [(a), (b)] and imaginary [(c), (d)] parts of the
dielectric constants for evaporated sapphire.

(56)+D g (lln ) exp[ —(x E„) l20 ] . —
n

The least-squares fit appears in Fig. 3. The resultant
parameters give a 1s exciton binding energy of 1.36 eV
and a continuum threshold of 9.80 eV; o is 1.0 eV. These
values can be compared to a binding energy of 0.6 eV and
band gap of 8.7 eV, also derived from electron scatter-
ing. ' The latter parameters were determined through a
fitted model dielectric function, which however did not
include the effects of the electron-hole interaction above
the continuum threshold. Such procedure, with smooth-
ly increasing strength above threshold, would naturally
fit with a smaller band gap and binding energy. A true
Elliot model assumes the validity of the Wannier-Mott
limit, which we have not attempted to demonstrate, and
with which the rather large binding energy would be at
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odds. Instead, with C and D as independent parameters,
the model is viewed here simply as a model that includes
effects of the electron-hole interaction on the continuum
levels in order to extract a band gap and exciton binding
energy.

Another interpretation of the low-energy data in
aluminum oxide is an excitonic resonance above the con-
tinuum threshold, as has been discussed regarding Si02. '

In such a case, the matrix elements at threshold are
small, removing the effect of a step function, and the
feature observed is considered to lie within the continu-
um above threshold. To explore such a possibility, we re-
place the step-function term e(x E, )C[—ax +1] with
e(x E, )C[x— E, ],—and the excitonic series with a sin-

gle Gaussian with negative binding energy. Thus we use
a threshold that turns on linearly from zero at E„with a
symmetric resonance added somewhere above the contin-
uum threshold. The corresponding Gaussian broadened
expression is obtained from Eq. (56) by replacing the
coefficient ax +1 by x —E, and the coefficient ao. by o.
The resulting fit gives a continuum threshold at 7.03 eV
and the resonance centered at 8.28 eV; cr is 0.94 eV.
Both fits work equally well, and thus the data are not de-
cisive in choosing either point of view suggested here.

V. SILICON NITRIDE

The silicon nitride sample is a thin film produced
through chemical vapor deposition. The film was grown
on a silicon substrate which was subsequently removed,
thus producing a free-standing silicon nitride film, how-
ever with unknown thickness.

Electron scattering data (qi =0.10 A ') and the mul-
tiple scattering corrected results for silicon nitride appear
in Fig. 4. The plasma resonance is the main feature at
22. 5+0. 1 eV. That this feature does indeed represent a
collective loss is apparent from the Kramers-Kronig
analysis (Fig. 5), which shows a true zero crossing for e'i

The feature in the loss function 45 eV, as we will argue, is
not a failure of the multiple scattering method, but
strength contributed due to the 2s nitrogen transition.
Near 103 eV is a sharp threshold representing the onest
of the silicon 2p core electrons.

Since the thickness of the silicon nitride sample was
not known, the determination of the multiple scattering
correction requires some other arguments for the final
choice of the ratio parameter. For valence and n =2 core
states, the simple counting of electrons contributing to
n, ff for the stoichiometry of silicon nitride gives 56 elec-
trons for the unit Si3N4. However, the mass densities of
CVD films for silicon nitride vary (2.6—3.2 g/cm ) in the
literature, ' ' crystalline films naturally being denser
than amorphous films, and in the amorphous case being
sensitive to the deposition conditions. The film density in
this case was not known; we wi11 assume it to be 3.0
g/cm, and use 1.99 for the refractive index. ' ' Since
the number of electrons and the density wi11 enter in n, ff
as a product, the leeway in the multiple scattering remo-
val will involve varying the number of electrons from the
number 56.

e2 will depend sensitively on the multiple scattering re-
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FIG. 5. Real [(a), (b)) and imaginary [(c), (d)] parts of the
dielectric constants for amorphous silicon nitride.

FIG. 4. (a) Electron scattering data for amorphous silicon ni-
tride (dots) with the multiple scattering corrected result (upper
solid line) and the subtracted strength (lower solid line). (b)
Determined loss function for amorphous silicon nitride.
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moval in the region of the plasmon triple scattering ( =67
eV). Here the signal is relatively small compared to the
plasma loss, so removal of the triple plasma loss can be a
significant portion of the signal. Removal of too much or
too little will produce unphysical results for e2. Figure 6
shows resultant e2 for various electron numbers per Si~N4
unit. Having chosen the density at 3.0 g/cm we shall ex-
pect that the electron number be somewhat greater than
56.

Although subjective, it appears that the most reason-
able results occur when the electron number is chosen to
be 65. It is reassuring that in varying the electron num-
ber the value of e2 changes significantly only in the region
50-100 eV. In particular, the strength of the absorption
edge is not modified. This allows an absolute rather than
a relative determination of the absorption coeScient,
which is still a rare event in the literature.

That the multiple scattering removal left strength in
the region near 45 eV was at first troubling, since it oc-
curred near double scattering of the plasmon. The ratio
parameter can be chosen so that the high-energy region
of the plasmon appears smooth and symmetrical, but
then the strength near 50 eV becomes negative. It was
expected that the nitrogen 2s transition would be very

t
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FIG. 6. (a) Several determinations of e2 for n,z corresponding
to 56 (solid), 61 (dashed), and 65 (dots) electrons per Si&N4. (b)
Electron scattering data for boron nitride (with no correction
for multiple scattering).

weak, and could not account for the strength observed.
Furthermore the proximity of the feature at twice the
plasmon energy cast doubt on the multiple scattering re-
moval, although such a gross failure could not be under-
stood.

In the analysis where the resulting e2 was obtained for
different ratio parameters, it is clear that the feature near
45 eV is not an artifact of the multiple scattering remo-
val. This suggests that the 2s nitrogen transition is actu-
ally contributing significantly, and with a strength
stronger than most 2s core transitions. An independent
verification of the strength of this transition also appears
in data for boron nitride, ' where the double plasmon loss
is further separated from the nitrogen 2s core feature. In
boron nitride (Fig. 6), the feature is distinct from the
plasmon double scattering, and uncharacteristically
strong for a 2s core transition. This fact is reassuring.
With it, all the pieces fit together in the interpretation
that our multiple scattering removal is indeed correct. It
points out the importance of a multiple-scattering-
removal algorithm; without such a method, the contribu-
tion of the 2s nitrogen core transition in silicon nitride
could go unnoticed.

As in the case of aluminum oxide, a feature appears
near the conduction-band threshold region in silicon ni-
tride, although much weaker. A similar fitting analysis
was done to investigate it. Again, both the models for a
bound state or an excitonic resonance fit equally well.
Parameters for the bound state give the continuum
threshold at 9.45 eV with a 1s binding energy of 1.53 eV,
and cr =1.31 eV. For an excitonic resonance, the contin-
uum threshold sits at 6.37 eV with the resonance centered
at 7.55 eV, and o.=1.17 eV. Most reported band gaps
for silicon nitride do not exceed 5.3 eV. ' ' However,
these approaches define the band gap as the onset of ab-
sorption without any regard to final-state interactions.
Band-structure calculations place the band gap near 6
eV. Also, the bound-state model, with the large binding
energy together with such a weak feature, would then
seem inconsistent with the bound-state view. Thus it
seems more likely that the low-energy spectra for silicon
nitride reflect either an excitonic resonance or simply a
structure in the joint density of states.
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