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A distinctive feature of multilayered semiconductor structures lies in the fact that their
reflectance and absorption spectra are strongly influenced by their stratified geometry. With use of
a standard Green's-function technique, the concept of a local density of polariton modes is exam-
ined and its formulation in terms of planar impedances is carried out. This scattering-theoretic ap-
proach appears to be valid for materials with any graded dielectric response and allows detailed
description of the spatial distribution of the electromagnetic energy in nonradiative or radiative po-
lariton modes at a given frequency and wavelength. In a multilayered material, the influence of the
interfacial structure of the sample on the spectral properties such as the reflectance and attenuated
total reflection is depicted. Various semiconductor layered structures are considered and their spec-
tral properties in both polarizations, transverse electric and transverse magnetic, are analyzed in

terms of local density of polariton modes. This paper basically describes complex states built from
interacting interfaces or confined states and accounts for their localization. In the transverse-
magnetic polarization, the spatial distribution of modes demonstrates that multilayered structures
are able to absorb electromagnetic energy by a process involving interfacial polaritons. Finally, the
long-wavelength limit of our formalism will be developed further to explicitly show its connection
with the well-known effective-medium theory and to discuss the importance of the form anisotropy
of the superlattice structure.

I. INTRODUCTION

Semiconducting multilayered structures, including syn-
thesized semiconductor superlattices are basic to the de-
velopment of many new electronic and optical devices. '

Considerable efforts are devoted to the improvement of
growth techniques and sample quality of these hetero-
geneous structures, while concurrently their physical
properties, mainly electronic and vibrational, are actively
investigated. Recent works report experimental and
theoretical results on the application of several spectros-
copies to such multilayer structures, demonstrating some
of the consequences of the accumulation of interfaces on
their response to electromagnetic probes.

This paper considers these multilayered materials from
the point of view of their long-wavelength dielectric
response. It emphasizes the relationship between the
electromagnetic excitations and the results of several
types of spectroscopies which deal with the retarded
dielectric response of the synthetic material. The appli-
cation of infrared reflectance spectroscopy in transverse-
electric (TE) or transverse-magnetic (TM) polarizations,
and the measurement of attenuated total internal
reflection spectra are considered as possible probes of the
influence of the stratification on collective excitations,
such as long-wavelength phonons or plasmons in mul-
tilayered systems.

The theory reported in this paper is that of polariton
modes of a general stratified medium. We first reexamine
the electrodynamics of a crystalline material presenting a
spatial variation of its dielectric function in the direction
of growth (Fig. 1) to describe in detail the radiative and
nonradiative states generated in this geometry. The

definition of an electromagnetic Green's function based
on the concept of planar impedance allows one to study
the continuous parts of the spectrum, complementing
earlier descriptions of the discrete electromagnetic sur-
face modes. In particular, the local density of polariton
states introduced in this paper proves to be a powerful
tool for investigating the effect of stratification on various
material response functions, by illustrating the spatial
distribution of collective modes along the growth axis.
Moreover, this quantity can directly be related to the
spectral properties of heterostructures as it takes account
not only of the normal modes but also of the virtual or
resonant modes influenced by finite lifetime effects.

Since the planar impedance emerges as the basic in-
gredient for a combined study of the polariton structure
and the various related spectroscopies, we next show that
this quantity can be obtained in a simple way for complex
multilayered system, avoiding the cumbersome algebra
implied by the usual transfer matrix approach. In our
treatment, the dielectric function needs not take the
shape of an histogram: it is equally applicable to any
graded dielectric medium, provided that the definition of
a local dielectric function remains acceptable on the scale
of the system inhomogeneities.

Infrared optical properties of structures made of thin
layers of polar materials directly depend on the polariton
structure, in the radiative regime, and, to some extent,
the nonradiative regime as well. In this paper, simulated
spectra are interpreted in terms of local densities of po-
lariton modes and provide illustrations of vibrational
properties for multilayered semiconductors whose com-
plexity ranges from a simple homogeneous crystal to a
semi-infinite superlat tice.
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i coeoe(z) Bz
(2.1b)

E(z) p(z) (2. 1c)

1(z
where W~(z) satisfies the one-dimensional wave equation

dW~(z)
e(z)

dz e(z) dz
—k (z)W (z)=0. (2.2)

For a TE mode (s-polarized: H„=O, E =E,=O), one
finds in the same way
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FIG. 1. Geometry of interest for (a) general stratified media

and (b) multilayered structures.
H, =

i cop(p(z) By
(2.3c)

with

II. POLARITON MODES

dW, (z)
tu(z)

dz p(z) dz
—k (z)W, (z)=0. (2.4)

The stratified dielectric material considered in this pa-
per consists of a semi-infinite medium characterized by a
long-wavelength dielectric, isotropic constant e(z), and a
magnetic permittivity p(z) which vary only in a direction
perpendicular to its surface (Fig. 1), that is the direction
of the material growth. Due to the stratification, the ap-
plication of an electric field to such a material results in a
macroscopic polarization involving induced charges asso-
ciated with the dielectric function gradients. The polari-
ton modes can easily be predicted from classical electro-
dynamics. In fact, most of the physics of the electromag-
netic wave propagation in a stratified medium is already
known from previous works in optics. ' ' It has long
been shown that the electric and the magnetic fields (E
and H) can both be extracted from the solution of a one-
dimensional equation, different for transverse-electric
modes (TE, or s-polarized) and transverse-magnetic
modes (TM, or p-polarized): for electric and magnetic
fields oscillating at the angular frequency co and for the
geometry described in Fig. 1, Maxwell's equations lead to
simple solutions, invariant under a translation in the x
direction. For a TM mode (E„=O,H =H, =O), the
fields are explicitly given by

In these equations, k (z)=k —(ro/c) e(z)p(z) where k
is the radiation wave vector parallel to the sample sur-
face, and c denotes the velocity of light in vacuum. The
functions Wz(z) and W, (z) are continuous functions of z,
even if e(z) or p(z) experience finite discontinuities. This
is also true for [1/p(z) ][dW, (z) /dz] and
[1/e(z)][d W~(z)/dz], as can be seen from the usual elec-
tromagnetic field matching conditions.

Since W (z) or W, (z) describe the electromagnetic
fields propagating inside the crystal, they characterize the
coupling between polarization waves in the crystal and
the external electromagnetic probe. In the energy range
considered in this paper, these coupled modes are phonon
polaritons arising from the coupling of lattice vibrations
and the electromagnetic radiation. The various spectros-
copies we shall deal with later can be interpreted in terms
of polariton excitations, and more precisely, are connect-
ed to the local polariton density of states. The local den-

sity of states of polaritons at any depth along the z axis of
the multilayered crystal is deduced from the Green's
functions G (z,z';k ) and G, (z,z';k ) associated with the
wave equations governing the spatial variations W (z)
and W, (z). These Green's functions satisfy
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BG (z,z';k )

Bz e(z) i}z

~ p(z) G»(z, z', k» ) =5(z —z') (2.5)
e(z) c~

also continuous functions of z, except at z =z'. However,
the following matching conditions hold:

r)G»(z'+L, z', k )
lirn
r.-o e(z'+ L ) i}z

and

BG, (z,z';k )

az p, (z) az
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= 1 , (2.7}

e(z) G, (z,z';k )=5(z —z') . (2.6)
tuz c

Both solutions G»(z, z', k») and G, (z,z', k») are continu-
ous functions of z, even when z =z'.
e(z) 'r}G (z,z';k )/Bz and p(z) 'BG, (z, z', k )/i}z are

1

iM(z' L)—
r}G,(z' —L,z', k 2)

= 1 . (2.8)
az

In this one-dimensional problem, the Green's function
G»(z, z', k» ) and G, (z,z', k» ) can be formulated as follows:

W, (z )Wz(z )
G» (z,z'; k» ) =

Wi»(z')/e(z')[dWz»(z)/dz], , —W2»(z')/e(z')[dWi (z)/dz],

Wi, (z ) W~, (z )
G, (z,z'; k» ) =

W„(z')/Ir(z')[dWz, (z)/dz]. ..—W2, (z')/Ir(z')[d W„(z)/dz].

(2.9)

(2.10)

and

p (z;k )= —Im[G (z,z;k )]/~ (2.11)

p, (z;k )= —Im[G, (z,z;k»)]/m . (2.12)

The diagonal elements obtained from the above Green's-
functions expressions are

c /ro
(2.13)

and

G (z,z;k )=
I i

g, +(z) —g, '(z}
(2.14)

where we have defined

dW~ (z)/dz

W~ (z)

dW, (z)/dz

W, (z)

g»+(z)= lim
c /co

L-o e(z+L} Z=Z+L

(z)= lim
C /CO

r-o e(z L). —Z=Z —L

(2.15)

(2.16)

d Wz, (z)/dz
g, +(z)= lim (2.17)r-o p(z+L) . W2, (z} z z

where z is, as usual, the infimum of z and z' and z
their supremum. In these equations, W,»(z) and W2»(z)
are the regular solutions of Eq. (2.2) which vanish, re-
spectively, when z approaches —00 or +ao as k as-
sumes a (vanishingly small) positive imaginary part.
Wi, (z) and W2, (z) are similarly defined as regular solu-
tions of Eq. (2.4).

Following standard results of the Green's-function
theory, the local densities of modes are defined by

d W„(z)/dz

Wi, (z)g, '(z)= lim
r, o p(z L)— Z=Z —L

(2.18)

The quantities g (z) and g, (z), appearing in the denomi-
nators of G (z,z;k ) and G, (z,z;k ), can be identified as
dimensionless planar impedances computed at depth z for
the corresponding s and p polarizations: g»+(z) and

g, +(z) are the values of the planar impedances encoun-
tered at point z by waves propagating in the crystal
growth direction, while g» (z) and g, (z) are the values
encountered at the same point by waves propagating
away from the surface. Stated in this way, the polariton
structure of rnultilayers can be constructed in detail for
both isolated surface modes and resonant scattering
modes, by following the standard prescriptions of a
scattering-theoretic approach.

III. PLANAR IMPEDANCE
OF A STRATIFIED MEDIUM

All the spectral densities that will be discussed below
are based on the description of the planar impedance
function at depth z, a scalar quantity which relates to the
tangentia1 components of the electric and magnetic fields.
The concept of a planar impedance, defined at any plane
parallel to the surface, should be recognized as a key in-
gredient in the calculation of the polariton structure of
the complex systems described here. It generalizes the
concept of a surface impedance' ' introduced in earlier
studies of the electromagnetic response of surfaces. For a
TM wave, the planar impedance at depth z is defined as
the ratio
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& (y, z)
Z (z)= (3.1}

while, for a TE wave, it is given by

E (y, z)
Z, (z) =— (3.2)

0s co 2 c k (z)
dz c '

ro p(z)
+—p(z}g, (3.4)

for the transverse-electric polarization. In these equa-
tions,

The usefulness of this concept lies in the fact that, for
stratified materials, the planar impedance satisfies a sim-
ple, first-order Riccati differential equation which pro-
vides a general scheme for the calculation of the polari-
ton structure, reflectance and attenuated-total-reflection
(ATR) spectra. By using the basic substitution
Zz(z) = [i /cocoa(z)]( Wz/W& ) for a TM wave and

Z, '(z)=[i/copnp(z)](W, '/W, ) for a TE wave, we are led
to similar Riccati equations

dip co 2 c k (z)+ e(z}g—=— (3.3)
dz c ~ co e(z)

for the transverse-magnetic polarization, and

This provides an appropriate initial condition to in-
tegrate the Riccati equation from the substrate towards
the surface. However, the computation of the density of
polariton modes also requires the knowledge of planar
impedances encountered by waves propagating in the op-
posite growth direction. In this case, the initial condi-
tions are provided at z =0 by the planar impedances
characterizing the external medium:

g~+(0+)=—
[(ck /co) —e„p„)'i

(3.9)

g, +(0+)=—[(ck /co) —e„p, ]'~
(3.10)

with

Re[(ck /co) —e,p„]'~2)0 .

e„and p, are the electric and magnetic response func-
tions of the external medium.

The reflection coefficients R and R, at the surface of a
stratified material are expressible in terms of the surface
impedance' ' or equivalently the functions g~(z) and

g, (z) evaluated at the surface of the sample (z =0). If the
angle of incidence of the impinging radiation is 0, the sur-
face wave vector is forced to be

g~(z) = i(col—po)' Z~(z) (3.5)
k = (e„p, )'~ (co/c ) sinH

and

g, (z)=i(eo/po)' Z, (z)' (3.6)

are dimensionless planar impedances and coincide with
the quantities (2.15)—(2.18) we used in the previous sec-
tion to express the polariton density of states at depth z.
For the most complex systems, the Riccati equations can
easily be solved by standard Runge-Kutta procedures' if
an appropriate initial condition is provided. This initial
value of the planar impedance can easily be constructed
in the case of stratified structures deposited on an
infinitely thick substrate. In order to assess the planar
impedances encountered by waves propagating from out-
side the sample towards the substrate interface, we con-
sider the evanescent solutions W (z) and W, (z) that de-
velop in the homogeneous substrate described by a con-
stant dielectric response e,„& and permeability p,„&. %'e

note that the only acceptable solution of the Riccati
equations within the substrate are constants, so that, at
the interface with the substrate, z =z,„&,

and

[(ck& /co ) —e bii, zzb j
(z,„b)=

&sub

[(ck /co) —e,„bii,,„b]'~
g, '(z,„b)=

Psub

(3.7)

(3.8)

In these expressions, the determination of the complex
square root should be chosen to verify

Re[(ck /co) —e,„ys,„b]'~ )0 .

and

RP

R =
S

(0 )+i (p„/e„)'~ cosH

(0 } i (p, /e—„)' cos8

(0 )+ l (E„/p„) cosH

g, '(0 ) i(e„/p„)'—~'cosH

(3.11)

(3.12}

It can be seen that the reflectance spectrum calculation
explicitly reduces to an initial value problem which re-
quires solving the first-order Riccati equations (3.3) or
(3.4) where g or g,

' obviously correspond to the elec-
tromagnetic waves propagating from the external medi-
um towards the sample. Note that when g (0 ) [re-
spectively, g, '(0 )] turns out to be real, the refiection
becomes total and the incident radiation is unable to
propagate into the stratified structure.

IV. PLANAR IMPEDANCE
OF MULTILAYERED STRUCTURES

Sharply defined multilayered structures are a special
case of stratified media. They consist of a stack of thin

and we can calculate the surface impedance at the im-
posed external radiation frequency. For reflectivity mea-
surements performed in vacuum, we have e„=p„=1
while for ATR measurements, e, and p„describe the
electromagnetic response of the prism material which is
generally independent of the incident radiation frequen-
cy. In ATR using Otto's configuration, the air gap can
be incorporated in the response functions e(z) and p(z) of
the stratified medium. For TM and TE polarizations, one
finds, respectively,
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layers with thicknesses d&, d2, . . . ,d;, . . . , deposited on
a semi-infinite substrate. Within each layer, the dielectric
and magnetic response functions e&, e2, . . . ,e;, . . . , and

p, ,p2, . . . ,p,-, . . . , are considered to be constant, pro-
viding an histogramlike shape of the local dielectric func-
tion and magnetic permeability (see Fig. 2). Such ideal
multilayer systems adequately model the sharp hetero-
structures grown from semiconducting materials using
molecular beam or metal-organic chemical vapor deposi-
tion, when the thickness of each layer is much larger than
the atomic lattice spacing. In this case, the basic Riccati
equations have constant coefficients within the same
homogeneous layer, and provide exact connections be-
tween the impedance values g (z) and g, '(z) at two
successive boundaries:

k; =(a)/c)[(ck Ice) e—;p;]'

and the coefficients g; and g, ; are given by

c
gp, ] = (4.3)

and

for TE waves. The wave vector k; (Rek; &0) is the con-
stant value taken by k (z) within the layer [Eq. (2.4)]:

(z, , ) =g; coth(k, d, )
c Ec

gs, i
=

N P;
(4.4)

for TM modes, and

gp;/sinh (k, d, )

g, coth(k;d;)+g (z, )

g,
' (z;, ) =g, , coth(k;d;)

g, ;/sinh (k;d;)

g, , coth(k;d;)+g, '(z;)

(4.1)

(4.2)

The explicit solution (4.1) or (4.2) of the Riccati equation
yields a recurrence relation which can be used to express
the surface value of the planar impedance in the form of a
continued fraction. If we introduce the notation
a, =g, coth(k, d, ) [a, , =g, , coth(k, d;)] and bp, =g, I
sinh(k;d;) [b, ; =g, ; I sinh(k;d;)] we obtain the following
explicit relations:

(0 )=ap, —
b2

b
(4.5)

a &+a2—
2

bp3
a +a

a +ap3 p4

for the transverse-magnetic polarization, and

(0—)=a, ,
—

a, &+a, 2—

2b, )

2
bs, 2

Q2

(4.6)

a +a
a +as3 s4

for transverse-electric modes. These continued fractions terminate for a finite number of layers deposited onto an
infinitely thick substrate. In that case, as d, „& becomes infinite, the coefficient bp, „l,[b, ,„&] vanishes while

ap, „l,——g,„&[a,,„l,=g, ,„l,]. The continued-fraction expansion of the surface impedance is particularly useful, as it al-
lows one to investigate in a simple way both finite or infinite systems, using response functions which do or do not in-
corporate electromagnetic wave absorption.

One particular class of systems giving rise to an infinite continued fraction is the ideal semi-infinite superlattice. In
this important case, we are led to a periodic continued fraction which, when convergent, can further be evaluated in
closed form. ' The periodic structure of the continued fraction is implied by the periodicity of the planar impedance.
This can be adequately expressed as

and

(z+L) =gp (z)

g, '(z+L)=g, '(z),

(4.7)

(4.8)

where L is the superlattice period. If one considers a pattern consisting of two layers of thicknesses d, and d2 periodi-
cally repeated towards the sample volume, the value of the periodic continued fraction is one of the solutions of a quad-
ratic equation. For the TM mode, this equation is written

p, l+ p, 2)kp, —+(gp, 2 gp, l Cp, — ( p, lgp, 2+ p, 2gp, l ) (4.9)
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and, for the TE mode, one has

(a, 1++,2)k, —+(g,2 g, I )4, — (,lg, 2 +,2g, 1 ) (4.10)

In general, the response functions have an imaginary part, expressing the damping of the electromagnetic radiation. In
that case, the coefficients of the quadratic equations are complex and the continued fractions converge towards that
solution:

2 2

2(ap, +ap 2)

22 2 2 1/2a, 1g,2+a,zg, 1

p, 1+ p 2) +p, l++p, 2

(4.11)

or
2 2

g, '(0 )= ' ' +
2(a, 1+a, 2)

2 2 2

gs, 1 gs2

2(a, 1+a, 2)

2 1/2
s, lgs, 2 + s, 2gs, 1

Os, 1+as 2

(4.12)

0. 8

~ 0. 6

~ 0.4

0. 2

0. 0 I [ I l I

0. 6

="-0.4

closest to their first approximants ap, bp, /(—a 1+a 2)
[respectively, a, 1

—b, 1/(a, , +a, 2)]. If damping is

neglected, the continued fraction will converge when the
above roots are real, and will diverge when the roots are
complex. The convergence or divergence of the contin-
ued fraction is of central importance in the description of
the surface-interface polariton structure of semi-infinite
superlattices.

The explicit expressions obtained in this section show
that the planar impedances at any depth in a material,
and in particular their limiting values at the surface, can
be obtained in closed form even in the most complex lay-
ered medium as soon as the bulk dielectric functions of
the constituant materials are known from experiment or
from model calculations. The reflectivities for both po-
larizations are obtained by straightforward application of
Eqs. (4.5) and (3.11) or (4.6) and (3.12). The ATR spectra
are accessible by identification of the air gap with the lay-
er i = 1 in the calculation of R . As mentioned in Sec. II,
the calculation of the local density of states at any depth
requires the values at the depth coordinate z of the planar
impedances encountered by waves propagating in the
crystal growth direction [g +(z) and g, +(z)] and en-
countered by waves propagating opposite to this direc-
tion [gp (z) and g, '(z)]. When facing the growth's
axis, the recurrence scheme developed above to compute
the TE and TM planar impedances at the surface can nat-
urally be applied to the determination of these im-
pedances at any depth in the multilayered material. One
easily sees that the extension of the procedure to find the
planar impedances values as seen from the other direc-
tion is provided by changing the sign of the coefficients
a, ; and a, in the corresponding continued fractions and
by considering the external medium as a "substrate. "

0. 2

I1
l
I

] l J I I [ &~[
~ V

250 260 270 280 290 300
Frequency (cm j

FIG. 2. (a) Calculated infrared TM reflectance (solid curve)
and simulated ATR scan (dashed curve) of a semi-infinite GaAs
sample. Oscillator parameters of GaAs: ~To ——269.2 cm
co[ Q —293.0 cm ', eo = 12.9, e„=10.9, and y /~To =0.009. The
angle of incidence 0 is 60' in each experiment. A 0.5 pm vacu-
um gap separates a Ge prism (e„=16) and the GaAs substrate
for the ATR simulation. (1) Surface local densities

(co/c)p~(z =0;k~) of the modes involved in these spectra for
k» = ice/c) sin8 (solid line) and k» = [co(e„l' /c] sin8 (dashed
line).

V. POLARITON DISPERSION RELATIONS
IN STRATIFIED MEDIA

The electromagnetic eigenmodes of any semi-infinite
sample can be grouped into radiative and nonradiative
modes. Radiative modes have a long-range wavelike be-
havior in the medium outside the sample and are basic
for understanding reAectivity measurements. Nonradia-
tive modes have an evanescent amplitude outside the
sample. Surface polariton modes are characterized by
exponentially-decaying amplitudes, both inside and out-
side the sample.

Polariton modes of a semi-infinite medium can be de-
scribed by matching the value of the planar impedance as
calculated at the surface from the inside and the outside
of the sample. The surface impedances gp+ (0+) and

g, +(0+) just outside the sample are given by Eq. (3.9)
and (3.10). The polariton modes exist when
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g» +(O) =g» (O)

for a TM wave and

(5.1)

(5.2)

In the following sections, we will illustrate phonon-
polariton structures of layered ionic or polar materials,
such as the multilayered systems considered in Fig. 5 to
14, which consists of ideal alternation of GaAs and A1As

for a TE wave. Each of these conditions involves only
the projection k of k along the y axis and thus implicitly
gives the polariton dispersion relations cd =cd(k» ). Wave-
like excitations are usually described by their dispersion
relations which are generally calculated in the ideal situa-
tion where damping is neglected in the dielectric func-
tion. All damping effects being ignored in the local
response functions, the existence of true surface excita-
tions requires that the quantities on both sides of the
above equations be real. This means that an evanescent
mode of wave number k can only be found at a frequen-
cy lower than (ck )/(e„p, ), '», that is, in the (k, cd) dia-
gram, in the region below the dispersion line describing
the light propagation in the medium outside the sample.
At frequencies above the light dispersion line, the exter-
nal medium radiates electromagnetic energy and does not
allow to sustain localized modes. The same argument
can be used for the propagation of energy towards the
sample: when g, or g are cotnplex, the sample al-
lows energy transport and this is not compatible with the
formation of a strictly localized polariton mode. Howev-
er neglecting the various damping mechanisms is
equivalent to considering excitations of infinite lifetime
and provides only qualitative agreement with experi-
ments, particularly in radiative regions. If complex
dielectric functions were introduced into the implicit
dispersion relations to include phenomenologically finite
lifetime effects, solutions for both co and k~ real would
not exist. This means that true normal modes are absent
when decay processes are taken into account. ' Conse-
quently, the energy levels of the excitations spectrum are
no longer discrete but have some width which allows the
study of excitations by experimental methods (ATR is a
well-known example of spectroscopy which is applicable
thanks to the various dissipative effects. ) However, the
broadening of true normal modes is not the only
phenomenon which result from decay processes. The ex-
istence of virtual radiative modes of finite lifetime even in
the absence of corresponding ideal normal modes is
necessary to explain refiectance data in Reststrahlen re-
gions. ' ' A common way to assess situations where the
knowledge of ideal eigenrnodes is not satisfactory is to de-
scribe excitations via their local density of states in the
system. Using the treatment developed in Sec. II, we
propose to relate the local density of polariton modes to
dispersions relations in various cases of multilayered rna-
terials. This discussion will lead to more complete inter-
pretations of optical experiments.

VI. DENSITY OF POLARITON MODES
AND SPECTRAL PROPERTIES

OF FINITE MULTILAYERED MATERIALS

layers with a first layer of GaAs exposed to vacuum. The
frequency dependence of the relevant dielectric function
e(cd) in the infrared region is then dominated by the con-
tributions of the transverse-optical-phonon oscillators.
More specifically, for a cubic material with two atoms per
unit cell, e(cd) is given by the well-known expression

( ep —e )cdTo
2

e(cd) =e„+
CANTO

—N —1 /co
(6.1)

where eo and e„are the static and high-frequency dielec-
tric constants, respectively. In Eq. (6.1), cd To denotes the
transverse-optical-vibration frequency and y is a phe-
nomenological damping factor.

We note that multilayered materials naturally involve
the presence of interfaces, which dramatically
differentiate the p and s polarizations. It has long been
proved that modes localized at interfaces can only be of
TM nature (p modes), due to nonzero component of their
electric field perpendicular to the interfaces. '

A. TM Polarization

Let us first emphasize that the general equation (5.1)
that governs interface TM polariton modes enables us to
recover at first glance famous results already obtained in
the simplest systems: (i) surface modes arising from the
termination of a homogeneous medium

1 1 co

~(cd) k c
+ (6.2)

and (ii) the ionic-slab polaritons described by Fuchs and
Kliewer. ' Also, more complicated multilayered struc-
tures can be investigated by the formalism just outlined,
for instance: plasmon-polariton structure of a finite alter-
nation of metal-insulator layers; polariton properties in
either finite, ' semi-infinite, or quasiperiodic super-
lattices.

In order to clarify the usefulness of the concept of po-
lariton density of modes, let us first deal with an ideal,
semi-infinite homogeneous sample. The polariton struc-
ture of this elementary system is well known. Continua
of transverse tnodes are found outside the Reststrahlen
region, defined by the interval [CdTo, CdLo], by a surface
projection of the bulk dispersion cd(

~

k
~

) curves. In ad-
dition, a single surface branch splits off these continua
and, for short wavelengths, approaches the frequency of
the macroscopic surface phonon co„, given by
e(cd„ ) = —l.

Various spectroscopies can be applied to investigate
this excitation spectrum. ReAectance experiments, where
light is impinging the surface at an angle 0, with a wave-
vector component along the surface given by k
=(cd/c )sin8, probe the region of the (cd, k ) plane above
the line co=k c, which contains radiative modes. This
means that at any frequency, reAectivity will sample po-
lariton modes at wave vectors shorter than those of the
incident light. The domain below m=k c is that of non-
radiative modes. ' By introducing a supplementary inter-
face, the prism coupling technique (ATR) (Ref. 27) ex-
tends the radiative region and allows observing modes
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FIG. 3. Density function (m/c)pp{z ky) as function of the
depth z in a thick GaAs sample for (a) k~=[co(e„l' lc]sine
with e„=16 relevant for an ATR experiment and {b)
ky ={co/c) sinO (ir-reflectance measurements). Two frequencies
are considered: co, =291 cm ' {dashed lines) and co=265 cm
{solid lines). The dashed curves have been magnified five times,
for clarity.

which closely model nonradiative excitations. In other
words, ATR probes somewhat larger wave vectors, trans-
forming nonradiative modes into radiative resonances.
The region of still larger k is the nonretarded limit ex-

plored by Raman and electron-energy-loss-spectroscopy
(EELS) experiments.

Calculated reflectance and ATR spectra of a semi-
infinite GaAs material are depicted in Fig. 2(a). In the
tunable-frequency version of the experiment, the prism
coupling technique probes the line ~=k c i
[sin8(e„ju„)]'~ For a thick homogeneous sample, the
nonradiative surface mode is excited by a tunneling effect
across the air gap between the prism and the sample,
leading to a dip in the ATR spectrum [Fig. 2(a)]. The
thickness of the gap affects the position of this dip; the
prism perturbation of the dispersion relations has been
largely detailed elsewhere ' and can only be explained
by a response function including all damping effects. The
occurrence of the ATR dip can be directly related to the
density of polariton modes p(z;k„) computed at the sur-

face with k =(co/c)sin8(e„p, )'~. Indeed, p(z=0;k )

assumes important values when co is close to esp=291
cm ' [Fig. 2(b)]. The local density p computed from Eq.
(2.11) at the frequency ioso is represented as a function of
depth z in Fig. 3(a) (dashed line). The local density of this
surface mode takes significant values in the vicinity of
z =0 only.

~, (co) = —e2(co) . (6.3)

In the case of the two infrared active materials, Eq. (6.3)
has solutions in the two Reststrahlen regions. Bending of
the three branches co(k ) becomes significant when the
wavelength is of the order of the layer thickness. At still
larger wavelengths, retardation effects also induce disper-

Polariton local densities of states of volume transverse
modes have typical behavior depicted in Fig. 3(a) (solid
curve). Their oscillatory character close to z =0 is due to
interference generated by the surface that reflects internal
polariton modes. As the coordinate z increases within
the sample, this effect decreases and the density of states
converges towards a constant value typical of that of the
bulk crystal. This phenomenon is a general consequence
of the presence of a surface, which locally modifies the
density of modes p as compared to that of an unbounded
medium. For volume transverse modes, the local density
of polariton modes as a function of depth enables one to
clarify the differences between radiative and nonradiative
eigenmodes. Indeed, local densities of nonradiative
modes take very small values at the surface [Fig. 3(a)]
which explains why they have no signature in ATR spec-
tra: the incident light cannot find an adequate relay to be
transmitted deeper into the medium. On the contrary, lo-
cal density of a radiative mode at the same frequency ex-
hibits large values at the surface: impinging light can en-
counter possible supports that will propagate a certain
amount of incident energy into the crystal, which causes
a decrease of reflectance.

Similar considerations also apply to reflectance data in
the Reststrahlen region where no true normal modes, oth-
er than the surface ones, are expected. At a given fre-
quency in this domain, nonradiative modes have nearly
zero local densities at the surface. At the same frequen-
cy, radiative-polariton densities of modes exhibit impor-
tant values just below the surface and take very small
values deeper in the crystal, allowing some absorption of
energy which accounts for less than total reflectance.

%e now turn to a self-supported GaAs film, a
geometry first studied by Fuchs and Kliewer. ' ' In this
system, the two GaAs-vacuum interfaces yield two
branches of, respectively, odd and even symmetries. ' In
this respect, the two peaks in the density of states com-
puted at the location of one of these interfaces [Fig. 4(a)]
are associated with the corresponding slab eigenmodes.
It is interesting to notice the strong difference between
the amplitudes of these two peaks. In addition, the be-
havior of the related densities of states as a function of z
[Fig. 4(b)] drastically differ as well: the symmetric mode
(solid curve) is characterized by a strong localization at
the surfaces, whereas the antisymmetric mode assumes
nearly constant p(z) values inside the slab.

In the more general situation of a thin film (dielectric
function e, ) deposited onto a thick substrate (dielectric
function e2), three branches of polariton modes are ex-
pected. One is akin to the surface mode already de-
scribed, and the two other modes result from the inter-
face between two dispersive media. When k approaches
infinity indeed, the frequencies of the latter branches con-
verge towards those characteristic of interface modes:
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supported GaAs slab. (b) Spatial repartition of modes as a func-
tion of depth of the symmetric (solid line) and antisymmetric
(dashed line) modes excited in the ATR frequency scan on the
same GaAs slab.
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FIG. 5. Polariton dispersion relation of a three-period

GaAs-A1As superlattice deposited on a semi-infinite GaAs sub-

strate. Layer thicknesses: d
&

——0.3333 pm (GaAs) and

d2 ——0.6667 pm (A1As). The A1As Reststrahlen extends from
364 cm '

(coTo) to 403 cm ' (co«). The ATR spectrum of Fig.
6 samples the line P.

sion in the surface and interface modes, due to the admix-
ture of photon states.

In multilayered structures, increasing the number of
interfaces causes supplementary branches to appear (two
branches per additional interface}. As an illustrative ex-
ample, Fig. 5 shows the polariton dispersion curves for a
threefold alternation of two layers (GaAs and AIAs,
d, /dz ——0.5) deposited onto a thick GaAs substrate.
Thirteen polariton branches arise here.

The simulated ATR spectrum of this heterostructure
depicted in Fig. 6(a) corresponds to a frequency scan
along the P line co=k c/[(e„)'~ sin8] drawn in the
dispersion relations (Fig. 5). Modes with extremely small
local densities at the surface do not contribute to the
ATR spectrum, whereas dips due to a long-range mode in
the substrate (SUB1 in Fig. 5) or an isolated branch ( A in
Fig. 5) are clearly detectable at 280 and 389 cm ', re-
spectively. Clustered branches, including the surface
mode (S in Fig. 5) are not separated for this value of the
space layer: they appear together in a broad dip.

The too-short decay distance in AlAs of the evanescent
modes associated with the substrate interface prevents
the observation of the related branch (SUB2 in Fig. 5}. In
the ATR scan, the detection of interface modes related to
the substrate can be understood by considering the polar-
iton local density of states as a function of depth [(Fig.

6(b)]: whereas the SUB2 mode is characterized by van-
ishingly small amplitudes near the surface (solid curve},
the SUB1 mode possesses a surface amplitude which, al-
though small is sufficient to allow for a coupling with the
prism and thus, for the presence of a dip in the ATR
spectrum. Notice that such calculation enables to identi-
fy each branch of Fig. 5 in terms of the location where
their localizations dominate. Such study of the localiza-
tion and finite-size effects of collective modes in finite lay-
ered structures has been performed in the electrostatic
limit by Johnson, Weiler, and Camley. ' These authors
identify localized plasmon modes by investigating the as-
sociated electrostatic potentials. However, in order to in-
terpret optical properties, the electrostatic approximation
is not sufficient. Using the density of polariton modes,
i.e., the density of those excitations involved in optical
experiments, the approach presented here extends the
study of localized modes to the fully-retarded spectrum.

B. TE polarization

s-polarized spectral properties in relation with their
dispersion relations can also be investigated using polari-
ton local densities of states. As explained above, isotro-
pic materials do not sustain any TE-polarized interface
modes (no ATR signatures), so that it is only worth con-
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ton local densities of states are much smaller to TM den-
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FIG. 6. (a) ATR experiment (e„=16,8=60, space layer is
1 pm) on the multilayered material whose polariton structure
was considered in Fig. 5. (See text for details. ) (b) The polariton
local densities of modes of the SUB1 (dashed line) and SU82
(solid line) modes involved in the ATR experiment show that
both modes are associated with the substrate interface (depth
3.0 pm).

Retarded dispersion relations of plasmon-polaritons in
superlattices have been computed by Szenics et al. and
recently detailed by Haupt and Wendler. The case of
phonon polaritons follows the same qualitative scheme:
when the number of interfaces is increased in such a way
as to approach the geometry of a semi-infinite superlat-
tice of period L, many new interface modes group into
continuum regions, leaving a few isolated branches. As
an example, Fig. 7 shows the polariton dispersion rela-
tions computed for an idealized GaAs/A1As superlattice.
The various polariton modes can easily be identified by
considering the short-wavelength limit (k» &&2m/L) of
their frequencies. The continuum regions converge to-
wards the isolated GaAs/A1As interface frequencies [Eq.
(6.3)j. The narrowing of the continuum regions and their
convergence towards the isolated interface frequencies in-
dicate the dominance of pure interface modes in these
short-wavelength excitations and the progressive disap-
pearance of the overlap of the interface mode when the
wavelength is reduced well below the layer thicknesses.
On the other hand, for wavelengths large enough to ap-
proach the light line, retardation effects start to show up.
As indicated in Fig. 7, the layer thicknesses determine
the amount of overlap between the interface modes and
control the width of the continua. An interface mode ex-
tending preferentially in a thin layer has a frequency
much more sensitive to any variation of its wavelength,
which is intimately connected with the penetration depth
away from the interface. For d, /dz ——0.5, the GaAs lay-
er is thinner than the AlAs layer; the continua in the
A1As Reststrahlen region (364—403 cm ') are relatively
narrow and well separated. By contrast, in the GaAs
Reststrahlen region (269—293 crn '), the overlap between
interacting interface modes is much more effective and
the continuum bands tends to be wider. This results also
in a band scheme radically different from that of the
former Reststrahlen Similar .observations can be done
for the opposite situation d, /d2 ——2.

VII. POLARITON DENSITY OF MODES
AND SPECTRAL PROPERTIES

OF SUPERLATTICKS

The ability to build atomically-accurate artificial struc-
tures using advanced crystal growth techniques has
opened a vpide field of research interests. Among those,
the ideal semi-infinite superlat tice consisting of the
periodic alternation of different constituent materials is
already recognized as an important achievement which
promises to reveal many types of new collective excita-
tions. ' ' The general methods developed in this paper
wi11 now be used to visualize the generation of such exci-
tations in superlattices in the domain of retarded phonon
polaritons. The limiting case of nonretarded collective
excitations in superlattices has recently been considered
in connection with results of Raman scattering and
electron-energy loss ' measurements on semiconducting
GaAs-GaA1As superlattices.

ceo-~ 'p
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FIG. 7. Polariton diagram of three semi-infinite GaAs-AlAs

superlattice with various layer thicknesses (d&+d2 ——1 pm).
Blochlike continua of interface modes are described by the
shaded areas, the localized interface modes are indicated by
solid lines. The P line is explored by the ATR experiment
shown in Fig. 12(b), where a Ge prism is used.
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(a) Plot of (co/c)p (z k') with k„
=(4'/c) sinO(0=60 ) for a nonradiative volume mode of fre-
quency 265 cm ' in an unbounded superlattice whose period is
made of 0.3333-pm-thick GaAs layer followed by 0.6667-pm-
thick A1As layer. Solid vertical lines visualize the periods, i.e.,
the A1As-GaAs interfaces whereas dashed lines indicate the
GaAs-A1As interfaces. (b) Local density of polariton modes as
a function of depth of a nonradiative volume mode (co=265
cm ') for the semi-infinite superlattice structure with the same
period characteristics. The pattern of Fig. 8(a) is strongly per-
turbed by the presence of the surface located at depth 0.0 pm.

40

Before analyzing the dispersion relations of semi-
infinite superlattices in terms of polariton local densities
of states, it is worth examining what happens in un-

bounded, truly periodic superlattices. In the region of
volume transverse modes (i.e., any mode in the shaded
areas of Fig. 7 outside the Reststrahlen), the polariton lo-
cal density of modes as a function of depth reflects the
medium inhornogeneity. Depending on wavelength, one
of the superlattice materials can be better suited to sus-
tain the mode than the other constituent. This corre-
sponds to some sort of confinement of polariton modes in
the former layers, as examplified in Fig. 8(a), where maxi-
rna of the polariton density of modes are found inside
the GaAs layers. By contrast, volume modes in a
Reststrahlen domain are more akin to interface modes, as
the related polariton densities peak at the interfaces (Fig.
9). Because penetration depths are large in regard to
the layer thicknesses, densities of these interface modes
keep non-negligible values across the layers. This
phenomenon occurs in the nonradiative regions as well as
in the radiative region, where a similar result is obtained
(Fig. 9), as a consequence of combinations of virtual
modes when darnpings in the e's are included. In both re-

0.45
I I I I I I [ I I

ele

0.40

L

CD It It
IL I) Iy /( Ir, ~ I& I N I I -+0. 35 I xJ' I / I w/

I I ) I K I
/ i I i / I

/ / / /
/ I

I I I I l II I I0. 30
0. 0 2. 0 3.0

Depth (pm)

FIG. 9. For the same unbounded superlattice as in Fig. 8(a)

(co/c)p~(z;k~ ) as a function of z proves that the Bloch combina-
tion of interface modes arises in the radiative region (dashed

line, k~=cosinO/c) and in the nonradiative case (solid line,

k» =co(e„}'~ sin8/c]. Here co=280 cm ' and the prism is made

of Ge (e„=16).

5. 0

gions, the main fact is that the periodicity of interfaces
establish important values of the polariton density of
states, everywhere in the superlattice, at frequencies and
wavelengths where excitation densities of the same mag-
nitude would be impossible in the separate constituents.

Considering now a terminated superlattice, the first ob-
vious fact that can be inferred from the homogeneous
system described above is the appearance of excitations
mainly localized in the vicinity of the surface, which were
absent in infinite superlattices. Closer analysis of the po-
lariton local density of modes shows that these excita-
tions are preferentially distributed at the GaAs-A1As in-
terfaces (Fig. 10). Notice that the only branch associated
with the vacuum-GaAs interface is the upper branch in
the GaAs Reststrahlen (Fig. 7), which is easily probed by
electrons in an EELS experiment. The next consequence
arising from the surface-induced perturbation can be
similarly inferred from the problem of a semi-infinite
homogeneous crystal. Polariton local densities of modes
in the continua undergo modulation in the vicinity of the
free surface and recover the behavior of the unbounded
medium deeper in the sample. This principle applies to
confined modes [Fig. 8(b)] and to interface modes as well

(Fig. 11).
Using information provided by the description of local

densities of modes, we have all the required elements at
hand to interpret TM spectral properties of superlattices.
As shown in Fig. 12(b} (solid curve}, ATR experiments
can reveal continua of interface modes, although the at-
tenuation of the signai is less than for the dips attributed
to isolated modes found in nonradiative regions. The sur-
face branch is excited after radiation has tunneled across
the gap, yielding the dip at 292 cm ' in the spectrum.
The pronounced dip at co=387 cm ' is the signature of
the isolated branch in the A1As Reststrahlen of Fig. 7,
though the density function of this mode (Fig. 10) reaches
a rnaximurn below the first layer and not at the surface.

The interpretation of p refiectance [dashed curve in
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I I I I I I I I I Fig. 12(b)] of a superlattice follows the argumentation
developed for the homogeneous crystal in the preceding
section. Incident light must find excitation relays at the
surface, and deeper in the sample, to propagate into the
medium. In the radiative region, these supports are pro-
vided by confined transverse modes and also by resonant
interface modes [Fig. 11(a)], so that, in the Reststrahlen
frequency domains, transmission of light is allowed at fre-
quencies which should be reflected by the individual con-
stituent materials. Before turning our attention to TE
polarization, we note that both p-reflectance experiments
and ATR scans are convenient to detect continua of in-
terface modes.

B. TE polarization

2 4 6 8

Depth (pm}

10

FIG. 11. Evolution of (co/c)p~(z; k~ ) as a function of z for (a)
radiative (k» =co sing/c) and (b) nonradiative [k„
=co(e„)'~ sing/c and e„=16] interface modes of frequency 395
cm ' (AlAs Reststrahlen) for the same superlattice as in the
previous figure. Both modes have a nonzero local density on
the surface and are therefore detected in reflectance and ATR
experiments.

The s-reflectance spectrum of the GaAs-AlAs superlat-
tice already considered is depicted in Fig. 12(a). The
dispersion relations, deduced from Eq. (5.2), of a superlat-
tice in TE polarization are shown in Fig. 13. From this
diagram, it transpires that s reflectance also decreases in
both Reststrahlen frequency domains. For s-polarized ex-
citations in a superlattice composed of isotropic semicon-
ductors, transmission of frequencies in the Reststrahlen of
a given component material cannot be due to interface
modes but results from volume polaritons confined in the
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made from the other constituent. At long wavelengths
relevant here, confined excitations can propagate
throughout the superlattice, by tunneling across the
opaque layers (dashed curve, Fig. 14), until a given fre-

quency limit is reached where internal reflections make

any propagation impossible (solid line, Fig. 14). Outside
the Reststrahlen regions, the 1ocal densities of states of s-

polarized excitations in superlattices reflect the inhomo-

K (d)+d2)
FIG. 13. Dispersion relations of the superlattice structure of

Fig. 7 (with d&/d2 ——0.5) in TE polarization. This diagram is

identical to the one obtained for the ordinary wave of an

effective anisotropic medium (see Sec. VII).

geneity of the sample, in the same way as the densities of
p-polarized excitations do (similar to those shown in Fig.
8).

C. ReAectivity of superlattices
and artificial anisotropy

For both TM and TE polarizations, the reflectivity of a
semi-infinite superlattice replicating two different layers
shows two nearly total reflection regions, located just
above the transverse-optical frequencies of the constitu-
ent materials [Figs. 12(a} and 12(b)]. These Reststrahlen
regions do not extend to the corresponding longitudinal-
optical frequency, but are cut off at a frequency which de-
pends on the relative thicknesses of the layers (see disper-
sion relations of Fig. 7).

In the long-wavelength limit, that is for an incident ra-
diation of wavelength much larger than the superlattice
period, these results can be given a simple interpretation,
in agreement with early descriptions of the optical behav-
ior of nonterminated interleaved stacks of transparent
plates. The semi-infinite correspondence can best be
obtained by reconsidering the above Riccati's equations
[Eqs. (3.3) and (3.4}].

At the long-wavelength limit (co/c~O), the Riccati
equations reduce to dg(z)/dz=0, so that their solutions
become constant. This means that, in the case of a thin
heterogeneous film deposited onto a thick substrate, the
reflectance spectrum will be that characterizing the sub-
strate, whatever the structure of the deposited film may
be, provided its thickness is much smaller than the in-
cident radiation wavelength.

For an ideal semi-infinite superlattice with a period L
much smaller than the incident wavelength, g(z) also
tends to a constant, but determining its value requires
some more algebra. The Riccati equations can be written
in the form of an integral equation. For the TM mode,
we have

(z)=(~ (0)+ sin 8f dz
c 0 cz
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whereas, for a TE wave, we obtain

g, '(z)=g, '(0}+ sin Of dz
c 0 tM z

——f 'e(z)dz ——f 'p(z)g,—'(z)dz .
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(7.1)
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FIG. 14. Evolution of (co/c)p, (z;k~ ) as a function of depth
for the semi-infinite superlattice whose dispersion relations are
displayed in the previous figure, for two frequencies situated in

the GaAs Reststrahlen; co=280 cm ' (dashed line); co=272
cm ' (solid line). Both modes are radiative ( k =m sinO/

c, 0=60').

CO
For vanishing values of —,these equations can be solved

c
efficiently by a perturbative iteration technique. The first
approximation in this case is g (z) =g (0) [respec-
tively g, '(z)=g, '(0)], and the next approximation is
obtained by inserting this value in the right-hand side of
the integral equations. Next, expressing that these solu-
tions must be periodic in the case of a general periodic
stratified structure, namely, g~ (L)=g (0), provides
us with an equation that allows computing the first-
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approximation solution. For a TM wave, one obtains

(&~&&e. '&~,p, »n'|) —&e&&JM&)'"
(0)= (7.3)

eii 0 0

0 e(( 0 and

0 0 e,

p)( 0 0

0 p(( 0

0 0 pj

(7.5)

where e~~ and
p~~

are the response function values to be
considered for field components parallel to the surface
while e~ and p~ are the corresponding quantities for field
components perpendicular to the surface. For a nonmag-
netic superlattice made of two layers of thicknesses d,
and d2 and dielectric constants e, and e2 (p, =p2=1),
these reduce to the simple arithmetic means

e~, =&a&= e, +
1+ 2 1+ 2

(7.6)

and

1 ) ~i 1 ~2 1—=&e '&= +
Ei 'di+dz 6i di+dz

(7.7)

At long wavelength, the response of such a superlattice to
an electric field parallel to its surface and interfaces

and, for a TE wave,

( & p & & p
'

& e,p, sin'e —
& e & & p & )

'"
g, '(0)= (7.4)

P
In Eqs. (7.3)—(7.4), expressions & & denote the aver-
age over a superlattice period.

By making the substitution & e & =el and & e '
& =et ',

and similar substitutions for the magnetic permeabilities,
the expressions (7.3) and (7.4) reproduce the surface im-

pedance or admittance of a uniaxial material presenting
its c axis perpendicular to the free surface. In these
notations, the effective dielectric and magnetic tensors
have the form

(dielectric response el) is then analogous to that observed
in an arrangement of two capacitors with plate areas pro-
portional to d, and dz, filled with a material of dielectric
constant e, and e2, respectively, and arranged in a
parallel-type setup. For a field normal to the layers
(dielectric response ei) it is analogous to a series arrange-
ment of capacitors of thicknesses d, and d2.

One finds an anisotropy induced by the geometric
structure of the superlattice even if, as is usually the case,
the multilayer is made from materials that have isotropic
responses. For the TE polarization, the approximation of
the effective uniaxial medium should remain valid until
somewhat large k vector, as the true dispersion relations
of the superlattice obtained from Eq. (5.2) coincide with
the dispersion relation of the ordinary wave in a uniaxial
crystal whose el obeys Eq. (7.6). This is compatible with
the fact that TE waves do not generate any extraordinary
wave in an uniaxial crystal. By contrast, the effective-
medium approximation should be limited to the radiative
region only for the TM polarization. This can be under-
stood by considering that the dispersion relation of the
extraordinary wave of a uniaxial crystal, whose e~ verifies
(7.7), should depend on the direction of propagation of
the collective excitations involved. Clearly, this cannot
hold when these excitations are of interfacial nature. The
detailed study of the role of interfaces developed in this
paper shows that the interpretation in terms of an
effective medium will encounter difBculties when facing
experiments such as attenuated total reflection.
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