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Spin dynamics and the Haldane gap in the spin-1 quasi-one-dimensional antiferromagnet CsNiC13
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A full description of a series of spin-wave measurements in CsNiC13 in the three-dimensional (3D)
and one-dimensional (1D) phases and their analysis to provide the first experimental evidence for
the Haldane gap is presented. Neutron scattering experiments were performed on a single crystal of
CsNiC13 with both (h, O, I) and (h, h, l) as the scattering plane. The order parameter in both 3D
phases was measured and the spin-wave dispersion determined in the lower phase. The spin-wave

spectrum calculated from a dynamic susceptibility method was compared with the experimental
response in the lower 3D phase to obtain the following values for the exchange and anisotropy con-
stants: J =0.345+0.008 THz, J'=0.0060+0.005 THz, and D = —0.0130+0.0015 THz. These pa-
rameters confirm that CsNiC13 in its disordered phase is a good approximation to a one-dimensional

Heisenberg antiferromagnet. In the 1D phase the gap frequency for an isolated chain of Ni + ions
is found to be 0.32 THz close to the gap estimated in finite-chain calculations. The results consti-
tute experimental support for the Haldane conjecture that the excitations of integer-spin chains, un-

like half-integer-spin chains, exhibit an apparent anisotropy that arises not from the underlying iso-

tropic Hamiltonian, but from many-body effects.

I. INTRODUCTION

Haldane has conjectured that integer-spin chains with
isotropic coupling would have properties that are in-

herently diff'erent from those of half-integer —spin chains.
He predicted that an integer-spin chain would exhibit a

gap in its excitation spectrum, while all half-integer —spin
chains would be gapless. This conjecture has stimulated
considerable interest and controversy.

Finite-size scaling methods have been used to deter-
mine the excitation spectrum of a spin-1 Heisenberg anti-
ferromagnetic chain. Botet and Jullien and Botet, Jul-
lien, and Kolb have estimated the size of the gap for a
chain with Hamiltonian

H =g(S ";S;+,+S«S «+, +AS;S ', +, )+Dg(S;)

Their calculations are for finite rings of N =4, 6, 8, 10,
and 12 spins using the Lanzcos algorithm; they then ex-
trapolate their results to infinite N. The gap between the
two lowest-lying states was nonzero, with a maximum
value -0.25 at the Heisenberg point (D =O, A. =1). As a
function of D, the gap decreased to zero near D = 1 and
D & 1, the gap increased as D increased. Analytic solu-
tions of the plane-rotation model (D )0) have been ob-

tained for spin 1 by Mattis for a restricted set of parame-
ters. The results are in agreement with the work of
Botet, Jullien, and Kolb but have not been obtained for
the Heisenberg point.

Solyom and Ziman have argued that finite-lattice-
extrapolation techniques lead to ambiguous results for
the S=1 antiferromagnet chain at the Heisenberg point.
Bonner and Muller initially rejected the existence of the
gap since a similar analysis for finite S= —,

' chains also ap-
peared to predict a gap. However, Botet, Jullien, and
Kolb and Kolb, Botet, and Jullien have shown some
similarities in the convergence of finite-chain results to
infinite N for S= —,', S= =,

' chains, and differences between
the convergence for these chains and the convergence for
S=1 chains. More recent calculations using Lanzcos,
Bethe Ansatz, and Monte Carlo techniques by Parkinson
et al. ' agree with those of Botet, Jullien, and Kolb but
predict an even larger gap of 0.40 at the Heisenberg
point.

The first experimental evidence" for the Haldane gap
was found in CswiC13, a good example of a spin-1 one-
dimensional antiferromagnet near the Heisenberg point.
Here we present the full description of the spin waves and
interaction parameters that underlie this earlier result.
The second known example of the Haldane gap has been
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reported' in the organic crystal Ni(C2HsN~)zNOzC104.
The significance of our confirmation of the Haldane con-
jecture as an example of a general tendency for lowering
of a classical symmetry in physical systems has been dis-
cussed' in terms of quantum effects creating a spin-wave
mass.

The properties of CsNiC13 are summarized in Sec. II.
The calculation of the spin-wave spectrum is discussed in
Sec. III. The experimental results and their analysis are
presented in Sec. IV for the three-dimensional (3D) phase
and in Sec. V for the one-dimensional (1D) phase. Final-
ly, in Sec. VI the results of this study are discussed in re-
lation to other experimental work.

II. PROPERTIES OF CsNiC13

The 1D properties of CsNiC13 have been studied by
several experimental techniques. Near 30 K, magnetic-
susceptibility, ' specific-heat, ' and acoustic-attenuation'
measurements all show a broad maximum characteristic
of short-range 1D ordering. The spin-lattice relaxation
rate for the ' Cs nuclei' is dominated by diffusive be-
havior associated with spin fluctuations in isotropic
chains. The elastic modulus C33 shows the effect of 1D
spin-spin ordering near 30 K. '

The quasi-1D nature of the spin exchange in CsNiC13
may be understood by considering its crystallographic
structure. The space group is D6& with lattice constants
a =7.14 A and c =5.96 A. There are two formula units
per unit cell. The coordinates for the two Ni + ions are
(0,0,0}, (0,0,—,'), for the six Cl ions are +(x,2x, —,

' ),

+(2x,X, —,'), +(x,X, —,') with x =0. 156, and for the two
Cs+ ions, +( —'„—', , —,'}. The Ni +-Cl -Ni + superexchange
path along the c axis results in a strong intrachain ex-
change coupling J, while the Ni +-Cl -Cl -Ni + path in
the basal plane results in a weaker interchain coupling J'.

The lowest 3F term of a free Ni + ion in the approxi-
mately cubic octahedral field gives the ground orbital
state Az (S =1). This state is separated by about
8-10000 cm ' from the first triplet excited state. Be-
cause the orbital angular momentum of the ground state
is quenched, the spin exchange between Ni + ions is of
the isotropic Heisenberg form. The trigonal distortion
and spin-orbit coupling should combine" to produce a
planar single-site anisotropy, since the distortion from
cubic is in the same sense as that for the strongly XY fer-
romagnet CsNiF3. However, the susceptibility gives z as
the easy axis so that the anisotropy has taken on Ising-
like character. This is perhaps the earliest evidence for a
Haldane gap effect. The spin Hamiltonian is therefore of
the form

H =JgS, S, +J'gS, .S, +Dg(S,')', -

I7 J

where the first two sums are over nearest-neighbor pairs
along the chain and in the basal plane, respectively.
Since the exchange coupling is antiferromagnetic,
J,J &0; since the anisotropy of the susceptibility is easy
axis, D &0. Estimates for the parameters' '' ' are
listed in Table I.

Because of the weak-interchain exchange, CsNiC1~ un-

TABLE I. Estimates for the exchange and anisotropy param-
eters of CsNiC13.

J
(THz)

D
(THz)

J/

(THz) Ref.

0.33
0.28
0.34

0.345

—0.12
—0.014
—0.008
—0.015

—0.002
—0.013

0.042

0.006

7X10-'

2 y 10-'

12
13
17
18
19
20

This work

F. = —
—,
' I24J —2D 4D cos 8—

+24J'[2 cos8 —cos(28)] IS
is minimized to obtain the equilibrium condition for 0:

FIG. 1. Magnetic structure of CsNiC13 below 4.4 K shown

for canting in the (x,y) plane.

dergoes two magnetic phase transitions, at T„.~=4.84 K
and T&2 ——4.40 K as evidenced by NMR and specific-heat
measurements. The transitions are also seen in the elas-
tic modulus C33 which has a small dip at 4.85 K and a
sharp anomalous dip at 4.4 K. ' Kadowaki, Ubukoshi,
and Hirakawa have shown that the upper transition
corresponds to ordering of the z components of the mo-
ments and the lower to the additional ordering of the xy
components. The magnetic structure below 4.4 K (Fig. 1)
has been studied by neutron diffraction both on a powder
sample and on a single crystal. ' " The ordered spins
lie in a plane which includes the c axis. On one-third of
the chains, the spins are antiferromagnetically ordered
and aligned along the c axis. The spins are also antifer-
romagnetically ordered along the other chains, but cant-
ed at an angle +0 away from the c axis. In the classical
approximation, the energy per spin at 0 K
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1
for —D &6J',

cos8= 2(1+D/12J')
1, for —D) 6J' .

As the temperature was lowered, the angle 0 was found
to increase rapidly from -38' at 4.4 K and level off at 59'
at 1.6 K. The moment for Ni + extrapolated to 0 K is
1.05p, s (Ref. 25) which is considerably smaller than the
free-ion value 2pz as discussed by Montano, Cohen, and
Shechter. '

Cl and ' Cs NMR measurements' in the intermedi-
ate phase of CsNiC13 show that there is no magnetic mo-
ment in the basal plane. This suggests that the structure
is partially dynamic; that is, the longitudinal spin com-
ponents are ordered as below 4.4 K but the transverse
components are disordered. This is confirmed by the re-
cent neutron measurements of Kadowaki, Ubukoshi, and
Hirakawa. The low-temperature coefficients of expan-
sion support the partially dynamic model, since at 4.84
K, a~~ has a sharp maximum, and at 4.4 K, a~ has a sharp
maximum, while a~~ has a small negative cusp. The dy-
namic structure is also supported by specific-heat mea-
surements which show spikes of approximately equal area
at 4.4 and 4.85 K indicating that at each phase transition
the number of magnetic degrees of freedom involved
must be about the same.

III. SPIN-WAVE SPECTRUM FOR THE CANTED
STRUCTURE

The spin-wave spectrum in the low-temperature phase
has been calculated from the dynamic susceptibility

I

method of Buyers, Holden, and Perreault. A molecular
field calculation is first performed that gives the magni-
tude and canting angle of the spin at each of the k=6
sites in the antiferromagnetic unit cell. This calculation
results in a set of single-ion states

~

k, n ),
n = 1, . . . , 2S+1, with energies co&„and yields the ma-

trix elements of the spin component in the a direction

Sk „=(k,m ~S (k)~k, n)

in terms of which of the single-ion susceptibilities are

~p knm kmn fkn fkmS. Si
—I;m+I;n

where the fractional population of state
~

k, n ) is the
Boltzmann factor fk„. Thus gk~(co) contains the molecu-
lar exchange field and the anisotropy DS, . The spin-
wave frequencies and intensities are then given by the
poles and residues of the dynamic susceptibility

Gg(Q, ) =g,. ~( )5kk +2/yg J„j'(Q)G,',~„,(Q, ) .
gi) Qy

The neutron experiment at T=0 measures

S ~(Q, co)= —n 'Im+GPq~(Q, co) .

The sublattice magnetizations are parametrized by the
two variables S and 0 such that for the spin at the origin
S, =S(0,0, 1), for the spin at a, S&

——S( —sin8, 0, —cos8),
for the spin at 2a, S3——S(sin8, 0, —cos8), with spins 4, 2,
and 6 in the adjacent plane at —,'c antiparallel to these.
The nonzero intersublattice exchanges are

J(Q) =J ]4 (Q) =J2~ (Q) =J3b (Q) =2JS cos(]rQ, ),
J'(Q) =J]5 (Q) =Jz& (Q) =J3] (Q) =J42 (Q) =J&3 (Q) =Jb& (Q) =J'

I exp( —2ag, i )+exp( 2mQbi )—

+exp[2~(g. +gb )i ] ]

S= 1

v'6

I I I I I I
I sI s'I —I —sI —s I
I s I sI I s I sI
I I I —I —I —I
I sI 8 I I sI s I
I s I sI —I —s I —sI

s =exp(2vri /3),
where I is the 3 X 3 unit matrix and T, the matrix which
maps S; onto S, +„i=1,2, . . . , 5 and S6 onto S,, is

with J; (Q)=JJ (Q)', for a=x,y, z. At T=O, in the
limit D =0, the canting angle 0 becomes 60', and the sub-
lattice magnetizations are equivalent under rotations of
60' about the normal to the canting plane. In this limit-
ing case, the generalized susceptibility can be solved
analytically. Let R, S be the 18 X 18 matrices

R=diag(I=T, T,T,T,T,T ),

1

2

3

2

0 1 0

2
'

2

Under the transformation A~S R ARS, the 18)&18
matrices g(co), J(Q) are simultaneously block diagonal-
ized such that

where the 3 X 3 matrices g](co),J;(Q) (i = 1,2, . . . , 6) are

g'(co) =S R g(co)RS

=diag[g](co), g](~),g](~),g](~),g](~),g](~)],
S R J(Q)RS=diag[J, (Q), J2(Q),J3(Q),

J4(Q), J,(Q),Jb(Q)],
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cop/( co —Mo ) 1 co/(co —cop )

g, (co) = —ice/(cl) —Np) Np/(co Np)

0 0 0.
J,(Q) =J(Q)T'+ J'(Q) T'+ J'(Q)*T',
J (Q)=J(Q)T +J'(Q)sT +J'(Q)*s T

J3(Q)=J(Q)T +J'(Q)s T +J'(Q)*sT~,

J,(Q) = —J(Q)T'+ J'(Q) T'+ J'(Q)*T',
Js(Q) = J—(Q)T +J'(Q)sT +J'(Q)*s T

J6(Q)= J(Q—)T + J'(Q)s T +J'(Q)'sT

with coo ——4JS+6J'S. The generalized spin susceptibi-
lity in the mean-field approximation is H(Q, ro) = I
—2g( ro )J(Q ). Under the same transformation

H'(Q, co)=S R H(Q, cu)RS

=diag I [I—2g, (~)J,(Q)],[I—2g, (co)J2(Q }],[I—2g, (co)J3(Q)],[I 2gl(~ }J4(Q)],

[I—2gl(ro) Js(Q) ],[I—2g, (co)J6(Q) ] I

The spin-wave frequencies co, (Q) satisfy the equation

det ( H[Q, co, (Q)] j =0

or equivalently

det[I —2gt(co)J;(Q)], i =1,2, . . . , 6 .

If we define

f(Q„Qb) =cos(2mQ, )+cos(2ngb).
+cos[2m(Q, + Qb)],

u (Q) = —,
'

[~oo—2J(Q) —J'(Q) —J"(Q)]

=4J sin (Q, n /2)+ J'[3—f(Q„gb )],
v(Q) = —,'[cop+2J(Q)+2J'(Q)+2J" (Q)]

=4J cos ( Q, n /2) +I'[3+2f ( Q„Qb )],
Qo= ( —,', —,', 1), Ql = (0,0, 1), Qq

——( —,', —,',0),
the spin wave branches are G(Q, co) =36

,'(8+ +8 ) —0 (8+ 8)—

ro2(Q) =4u(Q+Q, )v(Q+Q, ),
clp5(Q) =4u(Q —Q2)v(Q —Qp),

~',(Q) =4u(Q+Q, }v(Q+Q,),
co6(Q) =4u(Q —Qo)v(Q —Qp} .

This spectrum consisting of six branches is equivalent to
that obtained by extending the first branch over the zone
of the paramagnetic phase and folding it back into the
zone of the ordered phase.

To obtain the intensities of the spin waves, one must
sum

G(Q, co) =RSH' '(Q, ro}g'(co)S R

over the sublattice indices to obtain the generalized sus-
ceptibility:

co,(Q) =4u (Q)v (Q),

co4(Q) =4u (Q+Qo)v(Q+Qo), where

,'(8+ +8 )——(8 8) 0—
4 +

u(Q) 1 u(Q)
co —4u(Q)v(Q) 4 v(Q)

1/2
1

co —2&u(Q)v(Q)
1

co+ 2&u (Q )v (Q)

v(Q+Qo}
8+ ——

4u (Q+Qo) v(Q+Qo

v(Q+Qo }

4 u (Q+Qo)
1 1

co —2+u(Q+Qo)v(Q+Qo) co+2+u(Q+Qo)v(Q+Qo)

1/2

From the generalized susceptibility, it is apparent that only three branches have nonzero intensity, so that the neutron
spin-wave response is

&(Q,~)af'(Q)(1 —Q ')
v(Q)

6[co+co(Q) ]

+ —,
' f '(Q)(1+Q,')

v(Q+Q, )
6[co+co(Q+Qo)]+

u( + o)

v(Q —Qo)
' 1/2

6[co+cu(Q —Qo)]
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where co (Q) =4u(Q)U(Q). For parameters J=0.345
THz, J'=0.0060 THz, D =0, the spin-wave frequencies
for the six branches for symmetry directions (0,0, 1+g),
(g, g, 1), ( —,', —,', 1+g) are shown in Fig. 2 and for direc-
tions (g, 0, 1) and (g+ —,', 0, —,') in Fig. 3. The relative in-

tensities are indicated.
The response for the canted structure in the limit of

zero anisotropy is formally identical to that for an anti-
ferromagnet ABX3 with easy plane anisotropy in which
the spins order in the (x,y) plane at 0, S~

——S(1,0,0); at
a, Sz ——S( ——,', &3/2, 0); at 2a, S3——S(—,', —&3/2, 0), with

antiferromagnetic ordering in the c direction. The calcu-
lated spin-wave response ' ' also yields three branches of
nonzero intensity. Although the anisotropy is believed to
be very small it will become clear that the model with
D=0 cannot describe the data if only linear spin-wave
theory is used.

For nonzero anisotropy, the spectrum for the canted
structure has been calculated numerically for several
values of J,J', D. Since only T=O excitations are of in-
terest, the temperature was set to 1 K, for which popula-
tions of excited molecular field states are negligible. For
each of the six sublattices the mean-field Hamiltonian
was diagonalized to obtain the molecular states and fre-
quencies. The mean-field solution was found to be self-
consistent for the canting angle 8 given by
cos8=[2(1+D/12J')] ' for D&6J—' and was unstable
for —D )6J' and for D & 0.

The frequencies of the branches co~(Q) were found by
scanning det[H(Q, cu)] for zeroes as a function of fre-
quency and refined to an accuracy of 0.0005 THz. The
intensity of the spin wave was the residue of the 3 X 3 ma-

1.5—

1.6 I / ) I & I I I I

1.2-

xz(2), [y(2)]

y, [xz]

(q +1/2, 0, 1/2)

xz(2), [y(2)]

y, [xz]

1.0-

h4

I— 0.8—

LJ
0.6 —

y

c5

(q,0, 1)

trix G(Q, co;(Q)+i@) for each of the polarizations xx, xz,
zz, and yy. The y modes do not couple to the xz modes.

The numerical calculation was checked in the D =0
limit and the results found to agree with the analytical re-
sult. The spin-wave frequencies also agreed with a previ-
ous study where the parameters J=0.300 THz,
J'=0.019 THz, and D = —0.015 THz were used with the

0.2
y

. [xz,y(2)] [xz,y(2)] .

0.0 0.2 0.4 0.6 0.8 1.0
REDUCED WAVE-VECTOR COMPONENT q

FIG. 3. Spin-wave spectrum for the canted structure with
J=0.345 THz, J'=0.0060 THz, D =0 along symmetry direc-
tions (g+ —,',0, —,'), (g, 0, 1). The line codes and polarization

designations are as in Fig. 2.
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1.0

"X XZ,

0.8
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0.6

0.0

0.2

0.0 I

0.4 0.2 0.0 0.2 0.2 0.&

REDUCEO NAVE-VECTOR COMPONENT q
FIG. 2. Spin-wave spectrum for the canted structure with

J=0.345 THz, J'=0.0060 THz, D =0 along symmetry direc-
tions (0,0, 1+q), (g, g, 1), (3,—', 1+g). Branches of strong inten-

sity are indicated by dark lines, branches of weak intensity by
medium lines, and branches of no intensity by dotted lines. Po-
larizations along x,y, z directions or in the (x,z) plane are also
indicated.

1.0

O. B

LJ

0.6
K

c5

0.4

0.2

0.0
0.4 O.2 O.O 0.2 0.2 0.0

REDUCED WAVE-VECTOR COMPONENT q

FIG. 4. Spin-wave spectrum for the canted structure with
J=0.345 THz, J'=0.0060 THz, D = —0.0130 THz along sym-
metry directions (0,0, 1+g), (g, g, 1), ( —', —,', 1+g). The line

codes and polarization designations are as in Fig. 2.
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1.6

X,g

I 1 I I I I I

X,g

IV. SPIN DYNAMICS IN THE THREE-DIMENSIONAL
PHASE

1.2

z, [y]
X,g (7) +1/2, 0, 1/2)

z, [y]
X,P

1.0—

0.8-

LJ
~ 06-y
C$
LU
CL

0.4-

(q.0, 1)

0.2

Jyl )

0.0 0.2 0.4 0.6 0.8 1.0

REDUCED WAVE-VECTOR COMPONENT 7)

FIG. 5. Spin-wave spectrum for the canted structure with
J=0.345 THz, J'=0.0060 THz, D = —0.0130 THz along sym-
metry directions {g+z, O, z ), (g, 0, 1). The line codes and polar-

ization designations are as in Fig. 2.

matching of matrix elements method. The spin-wave
dispersion for the parameters that describe our experi-
mental results J=0.345 THz, J'=0.0060 THz, and
D= —0.0130 THz is shown in Figs. 4 and 5. Unlike the
spectrum for D =0 (Figs. 2 and 3), the six branches are
now, in general, nondegenerate and of finite intensity, al-
though some branches are weak. For example, at (0,0, 1),
only three modes, one longitudinal and two transverse,
have strong intensities. Of the three modes that have
strong intensity at (—,', —,', 1), one is a Goldstone mode, one
of very low frequency and one a finite-gap mode whose
frequency is given by 1/aJ

~

D ~, 8 &a &9, where a is
very close to the value 8 expected in the absence of inter-
chain coupling. This shows that the gap depends only
weakly on J. The Goldstone mode exists because there is
no interaction in the Hamiltonian that gives preference to
a particular direction in the basal plane for the perpen-
dicular spin components.

Neutron-scattering experiments were performed on a
single crystal of CsNiC13 with a mosaic spread of 0.35' us-

ing triple-axis spectrometers at the NRU reactor, Chalk
River. The crystal was mounted in a temperature-
variable cryostat with (h, O, I) as the scattering plane in
one experiment and (h, h, I) as the scattering plane for two
additional experiments. The spectrometer configurations
are given in Table II. The typical frequency resolution
was 0.13 THz. The hexagonal lattice constants deter-
mined at 2.5 K were a =7.09 A, c =5.88 A. The temper-
ature dependence of the intensity of the magnetic peak
(—,', —,', 1) measured from 3.5 to 5.8 K indicates that there
are two phase transitions at T~, =4.83+0.08 K and
T~~=4.46+0.08 K, agreeing well with the transition
temperatures determined from NMR and specific-heat
data. The Bragg peak relative intensities for g= —,', —', , —', ,
and —', are plotted as a function of temperature in Fig. 6.
Note that the greater strength of the anomaly at Tzz for
small g, ( —,', —,', 1) and ( —,', ='„1), is consistent with this tran-
sition involving y ordering. This corresponds to a freez-
ing in of the rotation of the chirally ordered spin struc-
ture about the z axis. The upper transition at T~, corre-
sponds to the freezing in of the rotation in the (x,z)
plane. These results are consistent with the structure
proposed by Kadowaki, Ubukoshi, and Hirakawa and
with the theory of Xiaodong Zhu and Walker.

To determine the spin-wave dispersion in the lower
magnetic phase constant-g measurements were made in
both scattering planes. In the (h, 0, 1) plane, measure-
ments were made at T=2. 1 K with fixed scattered neu-
tron energy E, along the symmetry directions (0,0, 1+g),
(1,0, 1+g), and (g+ —,', 0, —,

'
) using E, =3.3 THz and along

(g, 0, 1) with a slightly lower E, (2.0—3.0 THz). Only one
peak was observed, with a maximum frequency of
1.52+0.02 THz at (0,0, 1 —,'). Along (0,0, 1+t)) the fre-

quency decreased and the intensity of the peak increased
as g decreased until at (0,0, 1) the measured frequency was
0.52~0.02 THz. Along (r1,0, 1), the frequency continued
to fall as the intensity increased to a minimum frequency
0.20+0.01 THz at ( —,', 0, 1). Along (g, O, —,

' ), the peak was

broad and weak with no dispersion. At ( —,', 0, —,') the fre-

quency of the peak was 1.39+0.03 THz and its intensity
was comparable to that of the peak at (0,0, 1 —,

' ).
Constant-Q measurements in the (h, h, l) plane were

Experiment

TABLE II. Spectrometer configurations for experiments.

Scattering plane
Monochromator
Mosaic spread
Analyzer
Mosaic spread
Collimation before specimen
Collimation after specimen
Typical El

'PG: Pyrolytic graphite.

(I].,0, I)
Si(1,1,1)
0.26'
PG'(0,0,2)
0.35'
0.6'
0.6
3.3 THz

(h, h, I)
Si{1,1,1)
0.24
Si(1,1,1)
0.19'
0.4'
0.8
2.5 THz

(A, A, I)
Si(1,1,1)
0.24'
Si(1,1,1)
0 19"
0 4'
0.6
2.5 THz
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80
(2/3 2/3 1) CsNiCl3 E) = B.O THz
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I
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made along the (rj, t), 1) and ( —,', —,', 1+t)) direction with

E, =2.5 THz, at or below 2.7 K. The single peak ob-
served at (0,0, 1) continued to fall in frequency and in-
crease in intensity along (i), r), 1) until at (0.25,0.25, 1) two
overlapping peaks were discernible and at (0.28,0.28, 1)
the peaks were well separated in frequency. The lower
peak was more intense and tended towards zero frequen-
cy while the upper peak had a finite frequency 0.19+0.01
THz at ( —,', —,', 1). Along ( —,', —,', 1+g) two peaks were evi-

dent at g=0.015 and 0.03 but by g=0.08 only one peak
could be seen. The peaks rose in frequency to 1.42+0.02
THz at ( —,', —'„1—,') as the intensity continually decreased.

Examples of the raw data are shown in Figs. 7 and 8.
The frequencies calculated using the linear spin-wave
model are indicated by arrows in Fig. 8.

To compare the theoretical spin-wave response with
experiment, the calculated spectrum of Fig. 4 has been
convoluted with the spectrometer frequency resolution,
resulting in only one peak for all symmetry directions ex-
cept near (—'„—', , 1), where two peaks, one of zero peak fre-
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E) = 2.0 THz

1.8 K

quency, the other with a finite frequency, result. The
response was then averaged over three wave-vector
domains. The peak frequencies observed at (0,0, 1),
0.52+0.02 THz; (—,', —,', 1), 0.19+0.01 THz; and (—', , —,', 1 —,

' ),
1.42+0.03 THz, are necessary and sufhcient to determine
the three parameters J, J', and D. By fitting to the peak
frequencies at these three wave vectors, the following
values for the exchange and anisotropy constants were
obtained: J=0.345+0.008 THz, J' =0.0060+0.0005
THz, and D = —0.0130+0.0015 THz. The resulting
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peak frequencies of the averaged, convoluted response for
these parameters are compared with the neutron-
scattering spin-wave peaks in Fig. 9 for symmetry direc-
tions (0,0, 1+r] ), (g, r], 1 ), ( —,', —,', 1+r] ), in Fig. 10 for

(g, 0, 1), (r]+ —,', 0, —,
' ), and in Fig. 11 for (1,0, 1+g),

(1+g,0, 1). It is evident that the model gives a good
description of the spin waves, although at (0,0, 1 —,') the
predicted peak frequency is too low and at (—,', 0, 1) it is
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FIG. 11. Comparison of the calculated and observed spin-
wave peak frequencies along symmetry directions (1,0, 1+g),
(1+g, 0, 1) in the three-dimensional phase.

too high. The fit is particularly good near ( —,', —,', 1), where
the two branches, one a Goldstone branch and the other
a finite-gap branch, are fitted very well ~ The intensities of
the peaks obtained from the convoluted and averaged
spectrum agreed qualitatively with the intensities of the
measured peaks.

Polarized neutron measurements by Steiner et al. in
a field perpendicular to the (h, O, I) plane have confirmed
that the lowest mode near ( —,', —'„1) is of the y symmetry
predicted for the Goldstone mode by our theory (Fig. 4).
However, the upper mode near 0.2 THz is found in the
polarized measurements to be of xz symmetry. The pa-
rameters of the linear spin-wave model were systematical-
ly varied in order to obtain the correct polarization, but
it was found that the model could not then reproduce the
observed frequencies nor the correct canted structure.
This shows that a linear spin-wave model that gives the
correct canting angle and frequencies cannot give correct
eigenvectors. The results of Kadawaki, Ubukoshi, and
Hirakawa suggest that it is likely that at Tz, an xz
mode goes soft while at T~2 a y mode goes soft as found
experimentally by Steiner et al.

V. INVESTIGATION OF THE HALDANE
CON JECTURE

To test the conjecture of the existence of a finite gap in

the spectrum of a spin-1 antiferromagnetic Heisenberg
chain, the spin-wave dispersion CsNiC13 above 4.8 K in

the (h, h, /) plane was also investigated. " Constant-Q
scans were made at several temperatures for Q=(0,0, 1)
and Q=(0.2, 0.2, 1) (Fig. 12). As the temperature in-

creases, the spin-wave peaks at both wave vectors remain
constant in frequency while decreasing slightly in intensi-
ty until at 17 K only a very broad and shallow peak
remains at (0,0,1). To investigate the spin-wave disper-
sion in the 1D phase more closely, several of the
constant-Q scans along (t), t), 1) and ( —,', —,', I+t)) were re-

peated at 10 K. The most dramatic effect of the increase
in temperature is seen near ( —,', —,', 1). At (0.25,0.25, 1) and
(0.28,0.28, 1) (Fig. 13) the two peaks of the lower magnetic
phase are replaced by one broad peak with a significant
decrease in intensity. Elsewhere the peak frequencies do
not change while the intensity decreases along ( —,', —,', 1+tI )

(Fig. 14). It is surprising that the high-frequency short-
wavelength spin waves are so heavily damped above Tz„
whereas the low-frequency spin waves, although weak-
ened, remain well defined. If the spectral weight of the
latter (left-hand panel of Fig. 5) were spread over a simi-
lar large range (-0.5 THz) as the high-frequency excita-
tions, the response would reach to zero frequency near
the zone center. Thus it appears as if there is a minimum
energy required to create an excitation.

Along (t), t), 1 ) and ( —,', —,', I + t) ) a peak is obtained at a
finite frequency without any measurable central mode in-
tensity. From the constant-Q measurements along
(tI, t), 1) it is evident that basal plane dispersion, caused by
interchain coupling, exists above T~2 ——4.84 K. This
dispersion is very surprising because 1D correlations
predominate. The temperature is more than twice either
Neel temperature and so is outside the critical region
—T~, /z with z =6, expected for normal 3D short-range
order. The strong anisotropy of the coupling, however,
changes the concept of a critical region. It is possible to
understand the dispersion if a gap exists in the spectrum
of an isolated chain, at frequency coo, say. This gap corre-
sponds to wave vector Q, =(0,0, 1), that is, the antiferro-
magnetic 1D zone center. Suppose the low-frequency
response of each chain is described by a transverse sus-
ceptibility
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g(co)= A/(n~ —neo) .

Then an assembly of such chains weakly coupled above

T~ &
by an effective interchain exchange J ' will have a

response
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{0.28,0.28, 1) at several temperatures.

as shown by Scalapino, Imry, and Pincus, where qb is

the wave-vector component in the basal plane. The spin-
wave frequencies along Q( ri, rl, 1 ), where qb ——( t), g,
0)2tr/a, are

v (qb)=v()+ AJ'(qb) .

This equation, which gives a good fit to the measured
dispersion (Fig. 15), is obtained with model parameters
3J ' =0.028+0.005 THz, vo ——0.32+0.03 THz. Our
best estimate, therefore, of the gap frequency of a single
chain of Ni + ions in CsNiC13 is 0.32 THz, after account
has been taken of the 3D effects.

These parameters are reasonable in that if 3 is taken
from linear spin-wave theory to be -4JS then J' turns
out to be 0.009+0.002 THz, comparable with the inter-
chain coupling determined earlier at low temperature.
Thus our model of a set of weakly coupled oscillators is
substantiated. The existence of dispersion in the 1D
phase therefore results from the presence of a finite reso-
nance frequency for each isolated chain. If there were no

gap the critical scattering would consist of a quasielastic
peak whose width narrowed on approach to the (—,', —,', 1)
ordering wave vector. The finite-gap frequency collects
this critical scattering into the observed finite-frequency
dispersive branch. Thus we would not expect to find
strong quasielastic critical scattering if our interpretation
is correct. Our measurements as a function of qb confirm
that any elastic critical scattering at g= —,

' and —', is very
small. The presence of low-intensity quasielastic scatter-
ing was sought in scans along (ri, rj, 1) for v=0 at a reso-
lution of 0.25 THz but little or none was found. Figure
16 shows the data collected at 10 K as compared to that
at 3 K where strong elastic peaks at 7f 3 3

and —', are
observed. For a frequency offset of v=0. 1 THz, peaks
were observed near ri= —,', —,', and ~4 (Fig. 17) but their in-

tensities were consistent with the edge of the resolution
intersecting the well-defined inelastic peaks. Only as T
approaches 4.4 K was quasielastic scattering observed as
a soft mode develops at ( —,', —,', 1).

According to classical spin-wave theory, an anisotropy
of D = —0.037+0.007 THz would be required to produce
a gap of 0.32+0.03 THz. Our measurements in the 3D
phase, however, revealed that the anisotropy constant is
D= —0.013+0.002 THz which is three times smaller
than the value required. The zone-center frequency of an
isolated chain is significantly larger than would be ex-
pected for a classical chain with the known small anisot-
ropy.

An even stronger argument made independently by
Steiner et al. and Kadowaki, Ubukoshi, and
Hirakawa that the gap is not caused by single-ion an-
isotropy comes from the magnitude (1.92 T) of the spin-
Aop field and the observed anisotropy of the susceptibil-
ity. The argument shows that this leads to a very small
anisotropy paratneter (0 & D & —0.0026 THz). Thus

t
D

~

as determined from the spin-flop field is five times
smaller than

~

D
~

determined from the spin-excitation
spectrum. %e suggest that the dynamic properties lead
to an effective

~

D
~

that is much larger than the bare

~

D
~

because of the inclusion, even in the 3D phase, of
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some of the Haldane gap effect in the effective parameter
D of our linear spin-wave theory. The very low bare
D enhances our conclusion that the gap observed in

the 1D phase arises from the Haldane effect.
These results show that CsNiC13 is indeed a very good

approximation to the class of nearly Heisenberg systems
for which a finite gap in the energy spectrum has been
predicted. According to the most recent Lanzcos esti-
mates by Parkinson et al. ' the gap frequency is 550- 22800

CsNiCls (g,q, ])
E1 = 4.0 THZ.
p ~ 0

0.40&& (2J) or 0.28 THz, while according to Botet, Jullien,
and &olb4 it is 0.25@(2J)=0.17 THz. The first estimate
lies close to the 0.32-THz frequency determined in this
study of CsNiC13. Experiment, therefore, lends support
to the Haldane conjecture that a gap exists in the spin-1
antiferromagnetic chain near the Heisenberg point. The
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comparison between the theoretical predictions and the
present experimental result is illustrated schematically in
Fig. 18.

VI. SUMMARY OF RESULTS

The spin-wave spectrum, both frequencies and intensi-
ties, for the canted structure of the 3D ordered phase, has
been calculated from the generalized spin susceptibility
for an ordered magnetic system consisting of several sub-
lattices. Spin-wave peaks have been measured by neutron
scattering and fitted to the spin-wave model. The ex-
change and anisotropy parameters determined, namely,
J=0.345+0.008 THz, J' =0.0060+0.0005 THz, and
D= —0.0130+0.0015 THz, confirm that CsNiC13 is a
good approximation to a 1D Heisenberg antiferrornagnet.

The gap frequency 0.32 THz for an isolated chain of
Ni + ions has been determined by neutron-scattering
measurements above 4.8 K. The size of the gap cannot
be explained by the small value for the anisotropy D
determined from the 3D data either from the spin-wave
data or a posteriori from the spin-fIop field. The value is,
however, consistent with recent calculations of the gap
frequency for an isotropic spin-1 antiferrornagnetic
Heisenberg chain. The results of this study of the spin
dynamics in CsNiC13 therefore support the Haldane con-
jecture that integer-spin chains have ground-state proper-
ties that are inherently different from those of half-

integer —spin chains.
A ring of half-integer spins has different symmetry

from a ring of integer spins as a result of time-reversal in-
variance. For every Ising component of a wave function
there is an odd or even mixture of the time-reversed com-
ponents. Thus for an even number of atoms the ground
state of the S=—,

' system has odd parity with momentum

Q = n. , while that of the S= I system has even parity with

Q =0. This ties in with the presence of components hav-

ing S =0 only in the ground state of the S=1 system.
Since Q =0 does not break the sytnmetry a gap can per-
sist to T =0 as shown by ANeck et al.

Mattis has also drawn attention to the S,'=0 com-
ponents and suggested by a transformation S'~S+—,

'

that the integer-spin systems feel an effective uniform
field that creates a Zeeman anisotropy in the antifer-
romagnet. However, the argument is only semiclassical,
requires the addition by hand of extra states, and is in-
consistent if the transformation is applied twice or for
higher dimensional systems in the known large-spin limit.

Recently AfBeck on the basis of ideas related to those
of Haldane has produced a series of mappings from two-
dirnensional classical continuum field theories to various
types of quantum-spin chains, including systems with in-
teger spin. The work leads to a number of predic-
tions. ' These developments confirm Haldane's con-
jecture and lead to suggest:ions for additional experi-
ments.
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