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Electron-hole pair excitation in multilayered conducting heterostructures
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We obtain a general expression for the optical transfer matrix of spatially dispersive conducting

films surrounded by a local material in terms of their odd and even surface impedance. This matrix

simplifies the calculation of the optical properties of multilayered conducting heterostructures. As

an application we calculate, within the semiclassical infinite-barrier model, the absorptance of a
semi-infinite conductor-insulator superlattice, taking into account the excitation of plasma waves

and electron-hole pairs at the conductor s boundaries within the semiclassical infinite-barrier model.

The results are interpreted in terms of the normal modes of the system which include coupled sur-

face plasmons, guided bulk plasmons, and transverse waves. The presence of electron-hole pairs in-

creases the absorptance and cause a sizable shift and damping of the guided plasmon resonances.

I. INTRODUCTION

Multilayered conducting heterostructures have been
recently produced they exhibit several interesting phe-
nomena. Their optical properties have been studied
mainly from a theoretical point of view. ' In a previous
paper a transfer-matrix formalism was developed to in-
clude in a simple way nonlocal effects in the calculation
of the optical response of conductor-insulator superlat-
tices. This formalism was further extended to study
conductor-conductor superlattices. ' The spatial disper-
sion of the metallic layers was incorporated within the
hydrodynamic model, with the imposition of additional
boundary conditions at sharp interfaces, and the effects of
electron-hole pair excitations and of a smooth electron-
density profile were neglected.

In this paper we argue that a 2)&2 transfer matrix can
be constructed for the metal layers whenever they are
separated by a local material. This transfer matrix can be
written in terms of the surface impedances of one layer in

a model-independent way, and so the calculation of the
optical properties of a conducting superlattice can be
easily performed going beyond the hydrodynamic model.
As an application, we calculate the absorptance of a
semi-infinite conductor-insulator superlattice using the
semiclassical infinite-barrier (SCIB) model' with several
choices of the metal's nonlocal response.

As is well known, the SCIB model is insuScient for a

proper description of pure surface effects such as those
arising from its smooth electron-density profile. Never-
theless, with an appropriate choice of the bulk dielectric
function, it provides an adequate description of surface-
induced bulk effects, "' such as bulk electron-hole pair

excitation by the spatially varying surface electric field.
It has been shown experimentally' and theoretically' '
that surface-induced bulk effects predominate sometimes
over pure surface effects.

II. THEORY

We consider first the system shown in Fig. 1, consisting
of one spatially dispersive conducting layer parallel to the
x-y plane and bounded on both sides by a local medium.
Since the system has translational symmetry along the
x-y plane, we can consider an electromagnetic field whose
dependence on x, y, and time t is of the form e' "
As is well known, the field within each local region is
completely determined at all positions by the projections
onto the x-y plane of the electric and magnetic fields at
just one arbitrary position inside that region. Therefore,
choosing p-polarized light for concreteness, the fields at
the right of the conducting layer are determined by
E„(za ) and B (zz ), and those at the left by E„(zL ) and

B~(zL ), where zz and zL are the positions of the right and
left boundaries of the nonlocal layer. If the electron den-
sity decays smoothly to zero, z~ and zL can be set to
those positions at which the electron density becomes
negligible. Then, since the field equations are linear
everywhere, there must be a linear relation between the
fields at z~ and zI, no matter how complex the fields are
within the conducting slab. We write this relation as

E E
—I (l)

R P L

where M is the 2)&2 transfer matrix that we proceed to
determine.
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LOCAL NOH)LOCAL LOCAL
that they can be characterized by a 2)(2 matrix. For
concreteness, we consider a periodic superlattice made up
of nonlocal conductors of width a alternating with local
insulators of width d —a, where d is the superlattice
period. The transfer matrix of one period can be simply
written as

M=M M (4)

Z, Z, Zp ZR

X
where M is the transfer matrix of a local layer, ' and the
optical properties can be obtained from M as discussed in

Ref. 5: The wave vector p of the bulk normal modes is

given by

cos(pd) = (M» +M22 )/2,FIG. 1. Nonlocal layer of width a bounded by two local

media. The positions of its left (zL ) and right (z& ) boundaries,

and those of two arbitrary internal points (z& and z2) are indi-

cated, as well as the wave vectors of the two incoming and out-

going waves with a given projection Q unto the x-y plane.

the surface impedance of a semi-infinite superlattice is

Z = —(M22 —e '
) /M2),

its reflectance R and absorptance A obey

z =1—~ =
[
z —z„/ 2/

~
z+z„[2,

and its surface modes are obtained from

Z+Z„=O,
where Z„= cos0 is the surface impedance of vacuum and
8 is the angle of incidence.

Thus, we have reduced the calculation of the optical
properties of a conductor-insulator superlattice to that of
the odd and even impedances of a single conducting slab.
Similar formulae hold for a single conducting film in

terms of its surface impedance, ' '
Z )Z +Z( )Z +2Z( Z(

V U

Z =
Z(1)+Z(2)+2Z

III. RESULTS

In this section we use the SCIB expressions for the sur-
face impedances of a conducting slab' ' in terms of its
frequency- (ro) and wave-vector- (q) dependent trans-
verse and longitudinal dielectric response, er(~, q) and

er (e2, q), in order to calculate the absorptance of a
semiinfinite superlattice.

In Fig. 2 we show results for p-polarized light incident
at an angle of 8=70' on a system made up alternate lay-
ers of conducting and insulating layers of width
(2=0.25c/n), where co is the plasma frequency of the
conductor, whose density parameter r, =3.01 corre-
sponds to the conduction-electron gas of Au. ' The cal-
culation was performed for three different choices of the
conductor's dielectric function: a Drude (D) local
response, a hydrodynamic (H} dielectric function, and the
random-phase-approximation response, including finite
electronic lifetime effects as first introduced by Mermin
for the longitudinal component and later extended by
Ford and Weber ' (FW) to the transverse component.
The phenomenological lifetime used was ~=10 /co in

the three cases, we neglected the contribution of the
bound electrons to the response of the metals, and the
dielectric function of the insulator was set equal to 1 for

Z +Z
11 22 Z(2) Z(1)

MM 2Z Z
M, =

MM
Z(2) Z(1)

where Z and Z' ' are the odd and even surface im-(1) (2)

pedances of the film defined as

Z(2) E(2)(z )/B(2)(z )

These impedances have been discussed by Fuchs and co-
workers. ' '

With the transfer matrix M of a single nonlocal layer,
we can construct the transfer matrix of any layered sys-
tem by simple multiplication of the layers' transfer ma-
trices. The only restriction is that the spatially dispersive
layers are surrounded on both sides by a local material so

We remark that there might be no simple relation such
as Eq. (1) relating the fields at two positions z, and z2 in-

side the nonlocal layer, where there are other propaga-
tion mechanisms besides the usual transverse electromag-
netic waves. For example, in Refs. 5 and 7 it was shown
that the presence of plasmons require an enlarged 4X4
matrix. However, there can be at most one incoming and
one outgoing wave on each side of the conductor, so the
transfer matrix of the complete slab must be 2)&2. Simi-
lar considerations are commonly made for the S matrix in
dispersion theory. '

Now we write the fields as E„(z)=E„'"(z)+E„' '(z) and

B (z) =By "(z}+B' '(z}, where E„'"and B' ' are antisym-

metric and F. ' ' and B"' are symmetric under reflection
around the middle of the layer, i.e., E„"'(z2( )= E„"'(zL ), —
B"'(z2()=B'"(zr ), etc. The refiection symmetry of the

slab allows us to consider separately both kinds of fields,
so that Eq. (1) yields immediately
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FIG. 2. Absorptance of a semi-infinite superlattice calculated
within the Drude (D), hydrodynamic (H), and Ford and Weber
(FW) models as a function of frequency.
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with n an odd integer is met. Here, vF is the Fermi veloc-
ity. The same peaks can be seen in the FW results, al-
though they are shifted since the bulk plasmons obey
different dispersion relations in the hydrodynamic and
FW models, and they are considerably Landau dampened
by the excitation of electron-hole (e-h ) pairs. Finally,
above 1.75co the coupling among the fields in the insula-
tors through the transverse waves induced at the conduc-
tors is large enough to yield a bulk mode and therefore
there is almost complete absorption of the incident light.
Notice that the threshold is below co„so the fields in the
conductors start up as evanescent.

In Fig. 2 dissipation was mainly due to electron col-

simplicity.
It can be seen in Fig. 2 that the absorptance of the su-

perlattice is very small in the region co&0.5' where
each conducting film has an extremely high reflectance.
At co=0.5' there is an abrupt increase of the absorp-
tance due to the excitation of a propagating mode. This
mode is the continuation into the light cone of a bulk
band, originated from surface plasmons on the metal-
insulator interfaces, which couple among themselves
through the tails of their evanescent fields. This band
extends up to co, where the absorptance has a steep de-
crease. Notice that up to co=co the three dielectric func-
tions employed yield very similar results.

Between co and 1.75co the Drude model predicts a
very small absorptance, since although the conductor be-
comes transparent, the frequency is below the critical fre-
quency co, =co&/cos8=2. 92coz and therefore total inter-
nal reflection results. In the hydrodynamic calculation
there are a series of peaks superimposed over the Drude
curve. These arise from the excitation of guided plasmon
modes within the conducting films whenever the reso-
nance condition

I I

18 20

FIG. 3. Absorptance of a semi-infinite superlattice (solid) and
a conducting film (dashed) calculated within the H (lower panel)
and FW (upper panel) models as a function of frequency.

lisions. In order to see more clearly the effects of e-h pair
excitation, in Fig. 3 we compare the hydrodynamic and
FW results corresponding to a pure superlattice at low
temperature with a larger electronic lifetime v=10 /co~.
We choose r, =3.93, which corresponds to Na (Ref. 19)
and a =0. 1c/co~. The guided plasmon resonances can be
seen as a series of peaks between co and 1.7' . They are
also apparent in the hydrodynamic calculation as minima
above 1.7' due to the forbidden gaps they induce when
they couple to the propagating transverse waves. Notice
that the absorptance is enhanced by more than an order
of magnitude, and therefore only the first few plasmon
resonances can be seen in the FW calculation, in contrast
to the hydrodynamic case. This is a consequence of the
presence of e-h pairs.

We also plotted in Fig. 3 the absorptance of a single
conducting film, which turns out to be much smaller than
that of the corresponding superlattice. The explanation
is not simply that the superlattice contains more conduct-
ing material than the film; a semi-infinite conductor has
even more material, but its absorptance is again smaller
since in Fig. 3 ~&co„and furthermore, it shows no
plasrnon resonances. Rather than the conductors'
volume, the relevant quantity here is their surface area,
which is greatly enhanced in the superlattice. It can also
be seen that the plasmon resonances are sharper for the
film, since in the superlattice they merge to form broader
plasmon bands.

IV. CONCLUSIONS

In this paper we have developed a transfer-matrix for-
malism with which we were able to calculate the absorp-
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tance of conductor-insulator superlattices taking into ac-
count, within the SCIB approximation, the excitation of
electron-hole pairs and the propagation of plasmons.
Our results show absorptance peaks related to the excita-
tion of the bulk electromagnetic modes of the superlat-
tice. The modes were identified as coupled surface
plasmons, guided plasmons, and transverse waves. The
presence of electron-hole pairs produce a shift and a
damping of the plasmon peaks and a general increase of
the absorptance. The results for the superlattice were
compared to those for a single conducting film, and it was
found that its absorptance is larger and its plasmon reso-
nances are wider.

This results constitute, to our knowledge, the first
quantitative calculation of the optical properties of con-
ducting superlattices that takes electron-hole pairs into
account, although a qualitative estimate of their inAuence
on the pure surface effects can be found in Ref. 3. Our

calculations also show that the transfer-matrix formalism
is useful beyond the local and the hydrodynamic model to
which it was previously applied. Furthermore, we
present formulae which yield the optical properties of a
heterostructure in terms of the surface impedances of
each conducting film, so they are not constrained to the
SCIB approximation and they may be combined with im-
proved calculations of the impedance of a thin layer.
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