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Renormalized polarizability in the Maxwell Garnett theory
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We develop a simple theory for the macroscopic dielectric function of a system of identical
spheres embedded in a homogeneous matrix within the dipolar long-wavelength approximation.
We obtained a relationship similar to the Clausius-Mossotti relation, but with a renormalized polar-
izability for the spheres instead of the bare polarizability. This renormalized polarizability obeys a
second-order algebraic equation and it is given in terms of the bare polarizability, the volume frac-
tion, and a functional of the two-particle correlation function of the spheres. We calculate the opti-
cal properties of metallic spheres within an insulating matrix and we compare our results with pre-
vious theories and with experiment.

I. INTRODUCTION

The study of the optical properties of composite ma-
terials made of small metallic particles embedded in an
insulating matrix continues to attract the attention of
many investigators both theoretically' ' and experimen-
tally. Although the problem is very old and
significant advances have been achieved a definite solu-
tion has still not been found. It has been recognized '

that part of its complexity is the strong dependence of the
optical properties of the system on the geometry and to-
pology of its microstructure. Even for the apparently
simple geometry of isolated and evenly distributed identi-
cal spherical particles of radius much smaller than the
wavelength of light, the solution of the problem is far
from being settled. In this case the theoretical problem is
that of finding the effective dielectric response of the sys-
tem in terms of the dielectric functions of the metallic
sphere and the insulating matrix and the statistical prop-
erties of the distribution of particles which are deter-
mined by the sample preparation process. This is the
problem that will be analyzed in this paper.

One of the first and most fruitful solutions to this prob-
lem was obtained by Maxwell Garnett and it is known
nowadays as the Maxwell Garnett theory (MGT). In this
theory the fluctuations of the local field are completely
neglected. Most of the work done thereafter has attempt-
ed to take into account the effects of these fluctuations.
A number of theories have been formulated in the
language of multiple-scattering theory. It has been
shown that MGT corresponds to the quasistatic dipolar
limit of either the average-t-matrix approximation (ATA)
used in the electronic theory of alloys or the quasicrys-
talline approximation (QCA) used in the scattering
theory of disordered systems. These approximation
have been extended to include retardation and higher
multipoles, the nonlocal response of the metal, and

by proposing more elaborate approximation
schemes. ' ' ' ' ' ' ' ' ' Other approaches to the
problem include cluster expansions, ' '" spectral repre-
sentations, ' or the replacement of spatial disorder by
substitutional disorder.

The main results obtained so far in the long-
wavelength limit for isolated metallic spheres embedded
in a dispersionless insulating matrix are that the surface-
plasmon resonance in the imaginary part of the effective
dielectric response as a function of frequency becomes
redshifted and asymmetrically broadened with respect to
the one predicted by MGT. ' ' While in MGT the posi-
tion of the resonance depends only on the volume frac-
tion of the spheres and its width on the relaxation time of
the Drude contribution to the dielectric function, more
elaborate theories' show that they also depend on the
two-particle distribution function of the spheres. This is
due to their multiple-scattering character and their
dependence on the local-field fluctuations.

An accurate comparison between theory and experi-
ment is still open to question due to the fact that the
models used until now do not incorporate all the features
of the actual experimental systems. Nevertheless, experi-
mental measurements ' on systems of noble-metal
small particles in insulating matrices show a redshift and
an asymmetric broadening of the surface-plasmon reso-
nance in reasonable agreement with recent theoretical re-
sults. ' '

In Sec. II of this paper we develop a theory, within the
quasistatic dipolar approximation, for the effective dielec-
tric function of a system of identical spheres of radius ao
with polarizability e embedded in a medium with dielec-
tric function eb. We show that by using a simple approx-
imation for the contribution of the local-field fluctuations
we obtain a relation of the Clausius-Mossotti type, but
with a renormalized polarizability u* instead of e. This
renormalized polarizability obeys an algebraic quadratic
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equation with coefficients which depend on the polariza-
bility a, the volume fraction of the spheres, and a func-
tional of the two-particle distribution function of the sys-
tem. Our theory could also be useful in a closely related
problem: that of the calculation of the macroscopic
(effective) dielectric function of liquids and dense gases in
thermal equilibrium. In that case a would be the
molecular polarizability which could be obtained quan-
tum mechanically and the distribution functions could be
calculated using statistical mechanics. As additional
complications one would have the correlations due to the
quantum nature of the molecular polarizabilit. This
problem is also very old and a vast amount of different
calculation procedures have been devised which involve
polarizability or density expansions, cluster expan-
sions, ' integral equations, ' and their extensions to in-
clude the dependence of the molecular polarizability on
density, etc.

In Sec. III we apply our theory to spheres with a
Drude-type dielectric function embedded in gelatin. We
analyze the dependence of the position and the line shape
of the surface-plasmon resonance on the two-particle dis-
tribution function by comparing results for the hole
correction (HC), Percus-Yevick (PY), and molten copper
(MCu) two-site distribution functions. We also compare
our results with those derived from other theories and
with experiment. Finally, Sec. IV is devoted to con-
clusions.

The main merit of our theory is its simplicity and a
clear physical picture of the main approximation. Our
results are similar to ones obtained with more complicat-
ed calculations' ' and they are in reasonable agreement
with experiment.

GM ( co ) = 1im e M ( q, co ) = 1im est (q, co )
q~O q~o

(4)

Since in our case the collection of polarizable spheres is
embedded in a medium with local dielectric function
eb(co), it can be shown that

&D &'(q, co)=e (co)[&E&'(q, co)+4~n &P &'(q, co)1

where n & P &(q, co) is the Fourier transform of the average
polarization field

(Sb)

and n is the number density of spheres. Now using Eq.
(5), the symmetry properties of the ensemble, and taking
into account that &D &' is equal to the longitudinal pro-
tection E'"' of the external field, we obtain

where D and E are the displacement and electric field, re-
spectively, and & & means average. Here we will use an
ensemble average over the collection of positions I R; I of
the spheres. We assume that the ensemble is homogene-
ous, isotropic, and invariant under inversions. Then eM
is a function of

~

r —r'
~

and its Fourier transform in

space and time VM(q, co) can be written as

VM(q co) =EM(q co)qq+e'M(q, co)(1—qq),

where q is the wave vector and q=q/q. Here and in the
following the superscripts l and t denote longitudinal and
transverse projections, respectively. For example,
eM=q-eM q and E'=q E. Our purpose is the calcula-
tion of the local macroscopic dielectric response eM(co)
defined by

II. THEORY

eb(co) = 1 47reb (co)[ lim—X'"'(q, co)],q~o
(6a)

We consider an ensemble of N &g1 identical spheres of
radius ao with polarizability a=ao(6 —6 )b/(e, +2@ ),b
which is the polarizability of an isolated sphere with
dielectric function e, within a medium with dielectric
function eb. The centers of the spheres are located at po-
sitions R „R2, . . . , Rz and the system is in the presence
of an external electric field E'" oscillating with frequency
co. We assume ao &&co/c, where c is the speed of light, so
that the dipole moment p; induced on the ith sphere
obeys

p, (co}=a(co) 'E, + g t,, p, (co)
J

(la)

is the dipole-dipole interaction tensor in the quasistatic
limit. Here R;,.= ~

R, —RJ
~

and 5,J is the Kronecker 5
function.

The effective or macroscopic dielectric response t.M of
the system is defined by

where E,- is the electric field induced within the medium
at R; in the absence of the spheres and

(lb)

where X'"(q, co) is the external susceptibility defined by

n & P &(q, co) =X'"(q,co)E'"(q, co) .

Thus the relationship between cM(co) and the microscop-
ic parameters of our system can be obtained by calculat-
ing X'"'(q ~0, co).

The main advantage of Eq. (6), in comparison with oth-
er approaches, " ' is that it provides a well-defined
procedure for the calculation of eM(co) directly in terms
of a response to the external field. This removes the need
of identifying the macroscopic electric field & E & during
the calculation. Also, the introductiog of the supplemen-
tary length 1/q eliminates the appearance of shape-
dependent or conditionally convergent integrals.

Since there is no macroscopic 1-t coupling due to the
symmetry properties of the ensemble, the calculation of
X'"'(q, co) can be most easily done by exciting the micro-
scopic system with an external longitudinal electric field
with a single Fourier component,

E'"(r)=qE'"e'q'

In this case

&D&(r, t)= f f7 (brc, r', t —t') &E&(r', t')d r'dt', &P;(q)&—= &p;e '&=&P&(q) (Sa)
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P,.(q)=a qE'"/eb+ QT,,(q) P, (q) ', (8b)

is independent of i due to the translational invariance of—iq R,.
the ensemble and P;(q) =p;e ' satisfies

where we have used the definition of E,' given by Eq. (9),
the translation invariance of the ensemble, and the fact
that the ensemble average and the longitudinal projection
commute. Then we solve for (P )' and we get

where
—iq.(R,.—R. )

T;J(q)=e ' ' t; (8c)

(E'"/, ) .
1 —a' yT, ',

J

(13)

—:a E,'+ gT," hP. (9b)
J

where b,PJ—:PJ —(P ) is the fluctuation of the jth dipolar
moment. Here we have written the local field at R; as the
superposition of two fields: the fluctuating field E,' gen-
erated by a system made up of average dipoles located at
random positions ( R I plus the field generated by the di-

polar fluctuations b P located at these same positions.
We define the renormalized polarizability tensor a,'

through the equation

P;=a,* E,', (10)

where the effects produced by the dipolar fluctuations in
the local field are now contained within a,*, which de-
pends on i and on the member of the ensemble and is
therefore a fluctuating quantity. Its complete determina-
tion requires the dipolar moments ( P I for each member
of the ensemble for three linearly independent directions
of the external field. Thus the reformulation of the prob-
lem in terms of the renormalized polarizability will not be
useful unless we are able to propose a suitable approxima-
tion scheme. Here we investigate the consequences of the
following approximation:

a,*=a*l,
where I is the unit tensor and a' is independent of i and
is constant throughout the ensemble. This amounts to
consider, according to Eq. (10), that the dipole moments
P; are directly proportional to the fluctuating field E,'.

It can be seen that setting a*=a corresponds to a
complete disregard of the field generated by the dipolar
fluctuations hP . This would only be appropriate for a
perfect crystal since the dipolar fluctuations arise from
spatial disorder. Our aim is then to determine the renor-
malized polarizability a' including, in the best possible
way, the contribution of these fluctuations. But before
that we will derive the relationship between a* and the
macroscopic dielectric function e~.

First we substitute Eq. (11) into Eq. (10), then we take
an ensemble average and the longitudinal projection of
the resulting equation in order to obtain

(P)'=a* P'*le, +(gr, )(P)'
J

(12)

and we have omitted the argument co. In that follows we
will also omit the argument q unless it leads to confusion.

We now rewrite Eq. (8) as

P;=a qE'"/eb+ gT;, .(P)+ &TiJ (P, —(P))
I J

(9a)

Since

lim gT (q) = — n,
q~O j

(14)

then Eqs. (6) and (13) yield a relationship between a' and

eM of the Clausius-Mossotti (CM) type,

(1&)
+2mb

but with the unitless renormalized polarizability
a '—:a'/ao instead of a:—a/ao. Here f=n(4vta—0l3) is
the volume fraction of the spheres. We remark that
several approximations to the macroscopic response can
be written in a similar way but with different interpreta-
tions for the renormalized polarizability.

Obviously the choice a'=a will bring us back to the
usual CM relation or to the equivalent Maxwell-Garnett
theory when a is substituted by (e, —e& )/(e, +2e& ). This
means that MGT neglects completely the contribution of
the field generated by the dipolar fluctuations.

Now we proceed to calculate o.*. In other aproaches a
series expansion for a* in terms of a or n is generated by
successive iterations of Eq. (9). Here, instead, we close
this system of equations by demanding self-consistency
between Eqs. (10) and (11)with (8b), which becomes

a

P, =a qE'"/e, +a' g T,, qE'"/», + g T,„(P)
J k

(16)

=1+(a*) lim hT (q),
q~0

(18a)

which gives u* in terms of a and the longitudinal projec-
tion of the fluctuation of the dipolar interaction

aP'(q)=(gq V, (q) V,„(q) q)
—(gq V,, (q) q)' .

j,k J

(18b)

The calculation of the dipolar fluctuation can be per-

where the definition of E given by Eq. (9) has been used.
An ensemble average and the longitudinal projection of
this equation yields

( )'=Pa (+u"(g T;, (E'*lE~)
J

+a' gq 7,, T,„q (P)' . (17)
j,k

Finally, we substitute Eq. (13) in both sides of Eq. (17)
and then take the q ~0 limit, obtaining the second-order
algebraic equation
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formed in terms of distribution functions.
The first term in the right-hand side (rhs) of Eq. (18b) is

given by

q'T;j 'Tjk

=n q.T,z- Tz3.q p' ' R&, Rz, R3 d R zd R 3

+rr fq T» T».qp"'(R„Rr)d Rr, (19)

where the p' ' are the m site distribution functions of the
system obeying the normalization condition

f fp' '(R„. . . , R )d R, d R =1 (20)

and V is the volume of the system. All the integrals in

Eq. (19) are well behaved because the singularities in the
dipole-dipole interaction tensors are taken care of by the
correlation functions which vanish when two spheres ap-
proach each other at a distance smaller than their diame-
ter.

Looking at the first integral in the rhs of Eq. (19) one
realizes that the most important correlations are the ones
between particles 1 and 2 and particles 2 and 3 since the
dipolar interaction T; diverges when R; ~0. Therefore
in order to keep our analysis as simple as possible but at
the same time maintaining the main two-particle correla-
tions, we will further assume that

p'"(R»R»R, ) =p'"(R»R, }p"'(R»R,) . (21}

Using this approximation together with Eqs. (18) and (19)
we obtain that a ' obeys the extremely simple equation

—,
' f,a(a ') —a '+a =0,

where we introduced the effective filling fraction

'"(2aoX)
f, =3ff dX .

(22a)

(22b)

The solution of Eq. (22) in terms off, is

1 —(1 f,a—
f,a

f,1+ a
f ~02 4

(23)

where we have chosen the minus sign before the square
root so that a'~a when f,~O. This means that in the
low-density limit we recover the CM relation which
served as our starting point. Here we will not question
the validity of CM in the low density regime. This prob-
lern as well as the possible corrections to Eq. (22) and a
systematic comparison with other theories will be report-
ed elsewhere through the development of a diagrammatic
approach.

Equations (22) and (23) show that a * depends not only
on a but also on f„which has an explicit linear depen-
dence on f and also a nontrivial implicit dependence
through a functional of p' '. However, it can be easily
seen that for a given filling fraction, systems with a ten-
dency towards clustering (when the correlation function
has large values for small distances) have a larger f, than

systems with the opposite tendency due to the X factor
in Eq. (22b).

III. APPLICATIONS

In this section we first analyze the dissipation process
contained in Eq. (23). We do this by studying a system of
Drude spheres embedded in dispersionless gelatin. We
choose for the gelatin eb ——2.37 and for the spheres

e, (co)=1—co /a)(co+ r/ r), (24)

where ~ is the plasma frequency and ~ the relaxation
time.

Let us now look at the limit ~~ 00. In this limit the
imaginary part of the sphere polarizability
a=(e, —eb )l(E, +2mb ) is a fi function located at

co=co~/+ 1+2mb. This corresponds to the existence of
an electromagnetic mode associated with charge accumu-
lation at the interface between a single sphere and the
background. For this reason this mode is called a surface
plasmon mode.

In the many-sphere system within the CM approxima-
tion eM is given by Eq. (15) with a ' =a. It can be shown

that in the ~~ ~ limit Ime~ has a 5-function peak locat-
ed at

co~/+1+eb(2+ f)/(1 f) . —

The position of this peak coincides, in the extreme low-

density limit (f~0), with the frequency of the surface-
plasmon mode of an isolated sphere and it becomes red
shifted with increasing f. The interpretation of this 5-
function peak is the existence of a single optically active
(q~0) surface-plasmon mode associated with the system
as a whole in which the charge accumulates at the inter-
face between the spheres and the background. The
reason for this is that in the CM approximation the di-

poles induced in all the spheres are the same and equal to
the average dipole, and since in the long-wavelength limit
(q~0) all the dipoles are in phase and the system is iso-
tropic then only one longitudinal mode is possible.
Therefore the system within the CM approximation is
more similar to an ordered crystal than to a disordered
system.

The effect of the relaxation time (finite r) in the Drude
dielectric function is the broadening of the 5-function
surface-plasmon peak and it can be easily shown that this
broadening is independent of f within the CM approxi-
mation. On the other hand, in Eq. (23), even in the
~~00 limit, a will acquire an imaginary part in the
continuous frequency region in which a (co) ) 1/f, .
Since eb is real, Eq. (15) tells us that e~ has an imaginary
part whenever a* does. This indicates the presence in
the system of optically active (q~0) surface-plasmon
modes with frequencies distributed in a continuous range.
The presence of those modes is directly related to the fact
that one is dealing with a disordered system which allows
dipolar fluctuations in a continuous fashion. It also
shows that our approximation for a* takes into account
the occurrence of those fluctuations. As a consequence
one will obtain a broad surface-plasmon peak in Ime~(co)
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within the frequency region defined by a (co) ) 1/f, .
In order to examine the dependence of our results on

t e two-site distribution function, we calculate f, for
three different choices of p' '(X): th h 1

(HC) P
e o e correction

), Percus Yevick (PY), and molten copper (MCu).
For the case of the HC, p' '(X)=8(X—1), where 8 is the
unit step function; for PY we used th d fie e e nition given in
Ref. 50; and for MCu we used the distribution function
corresponding to f=0.25 as described in Ref. 1, where a

onte Carlo technique was used to smooth out the ex-
perimental data. ' PY is similar to HC f( . ), but it differs more and more from HC when f in-
creases, as is shown in Fig. 2 of Ref. 10.

In Fig. 1 we show f, as a function of f. As it can be
seen, for HC we get f, =f and for PY we get that f, is
larger than f for all f. The dot shows the value of f for
MCu at „~=„~=0.25. In Fig. 2 we show a plot of a as a

ue o , or

function of co for the system described above in the ~~ 00

imit. T e two arrows indicate the frequencies of the CM
5-function absorption peaks for f=0. 1 and 0
latter o

an .3. The
one is red shifted with respect to the first one. The

HC
orizontal solid (dashed) lines are loc t d t 1/f, f

(PY) distribution function for f=0. 1 and 0 3 Th
'

len th
an . . eir

eng indicates the frequency window in which
a ) /f, . One can see that the bigger f, the wider the
requency region of optically active modes. This region

a =1
lies asymmetrically about the CM 5-f- unction located at
a =1/f . Thus when f and f, decrease the frequency
region shrinks around the CM peak which, at the same
time, moves towards the location of the sin le-s h
onance. The effe e ect of a finite relaxation time in the
Drude dielectric function [Eq. (24)] will be to provide an
a itional broadening of the surface-plasmon peak due to

0,7

12

10—

0 I i I I i

00 01 02 0.3
I I I I

0.6 0,7 08 0.9 1 004 05

&/&p

FIG. 2.. 2. Curves are a as a function of co/co~ for Drude2

(dashed) lines are located at 1/f, for HC (PY) and their length
represents the interval of frequencies for h' h * h

&nary part. The upper (lower) pair of horizontal lines corre-
sponds to =0.1s o.~= . (, =0.3). The arrows indicate the position of
the CM 5-function absorption peaks.

the damping of the modes. The line shape of this k
ained immediately by combining Eqs. (15),

(22b), and (23). It can be seen that it d da i epen s separately
e'

In Fig. 3 we plot ImeM as a function of co for the same
model of Drude spheres described above. We choose a

co an two vo ume fractionsfinite relaxation time r=92/co d t
=0. 1 and 0.3. The solid (dashed) lines corres d t

HC (PY} distribution function. The curves for
f= . are red shifted with respect t th f
~=0.1.. As a reference we also show with arrows the po-
sition of the CM peaks for f=0. 1 and 0.3. It b
that the eak

can e seen
e peaks are considerably broader than the CM

ones and hi hl a'g y symmetric, showing a greater weight for

0.6
35

0.5 30—

0,4
25—

0, $

0, 2

«20—
Ur

E

15—

10-

r,
)

)

I

I

1

0.1

0,0
0.0 0.1 0.2 0,5 0.4

0
01 02 03 0.4 0.5

FIG. 1. VG. 1. Values of f, as a function of f. The dashed (sohd)
line is obtained when one uses the HC {PY) pair distribution
function in Eq. (22b). The dot t f=0.25

'
a = . is the value of f,

when one uses the MCu distribution function.

FIG. 3. Ima inarg' y part of e~ as a function of co for Drude
spheres in elatin e =g b

——2.37) and two different volume fr t'

f= . and 0.3). Here co~x=92. The solid (dashed) lines corre-
spon to HC (PY) correlation function and the arrows indicate
the position of the peaks of MGT Th e curves for f=0.3 are
red shifted with respect to the ones for f=0.1.
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the low-frequency modes. Furthermore, they span over a
frequency region which goes slightly beyond the one
displayed in Fig. 2 due to the finite relaxation time. The
curves corresponding to the PY distribution function un-
dergo a larger red shift than the ones with HC. The
difference between them is more prominent as f in-
creases. This means that for large f our results are more
sensitive to the choice of the distribution function, thus a
detailed comparison with experiment has to take this fact
into account. It also shows that for the same f the effects
of clustering (larger f, ) imply a larger red shift of the
ImeM peak.

In order to examine the dependence of the line shape of
the surface-plasmon peak on the relaxation time, in Fig. 4
we plot ImeM as a function of co for the same parameters
as in Fig. 3 but now choosing r=46/~ . The main effect
is a reduction in the size of the peaks and a larger
broadening at half-maximum. Since for a small enough
sphere r is a function of its radius due to surface scatter-
ing, the only dependence on the size of the spheres which
appears in this theory is through r. As in Fig. 3, the posi-
tion of the CM peaks for f=0. 1 and 0.3 are shown with
arrows.

The choice of parameters in Fig. 4 also correspond to
the same parameters chosen in Ref. 9, where a theory
based on the lattice-gas coherent-potential approximation
(LG-CPA) was developed. Thus we can make a direct
comparison between our theory and LG-CPA. In the
latter the spatial disorder is not described by distribution
functions but is replaced by substitutional disorder in a
cubic lattice. In Fig. 4 the open (solid) circles correspond
to the results of LG-CPA for f=0.1 (f=0.3) in a fcc lat-
tice. It can be seen that for f=0.1 the line shape of the
peaks in both theories are quite similar although LG-
CPA shows a slightly larger red shift. For f=0.3 the re-
sults of LG-CPA lie very close to ours for the case of the
HC distribution function, but they differ markedly from
the ones calculated with PY which are now red shifted
with respect to both.

In Fig. 5 we summarize our results for the lineshape of
ImeM by plotting the frequency of the surface-plasmon
peak co~,k/co~ as a function of the volume fraction of

30

25—

20—

E15-

0.5—

0.4

0.3

3

3
0.2—

0,1—

0.0
0.0

I

0.1 0.2 0.3 0.4

FIG. 5. Dotted line is the position of the peak as a function
off predicted by the MGT. The solid (dashed) line is the corre-
sponding position of the peak according to our theory using the
correlation function HC (PY). The vertical lines represent the
full width of the peak at half maximum at some values of f.
The width of MGT is the same for all values of f.

spheres for the HC and PY distribution functions. The
position of the peak in MGT is also shown. The vertical
bars are the full width of the peak at half maximum
(FWHM). We can see that the position of the peaks for
both HC and PY are red shifted with respect to MGT for
all f. Also, for the same f the peak for PY is red shifted
with respect to the one for HC. Since f, is greater for
PY than for HC (for all f), one can say that clustering
(larger f, ) amounts to a larger red shift.

Now we compare the results of our theory with the
effective-medium approximation (EMA) of Davis and
Schwartz. ' In their theory the spatial disorder is de-
scribed through distribution functions and they take into
account the contribution of induced dipoles and also
higher multipoles. They reported results for a system of
silver spheres embedded in gelatin (ez ——2. 37) using

10-
Ez(CO) =ED—

CO& /(Cg +!CO/1 ),
eo ——5.95, Acoz ——9.2 eV, A/r=0. 1 eV .

(25)

0
0.1 0.2 0.3 OA 0,5

FIG. 4. Same as Fig. 3 but with co~~=46. The open (closed)
circles correspond to LG-CPA for f=0.1 (f=0.3).

In Fig. 6 we show their results for Ime~(co) and

f=0.21. The open (solid) dots correspond to the dipolar
contribution for the PY (MCu) distribution function. '

In their calculation the MCu function corresponding to
f=0.25 was rescaled in order to treat the case f=0.21
where recent experimental data are available. The solid
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FIG. 6. Same as Fig. 3 but with f=0.21 and for silver
spheres with e, (co)=5.95 —m~ /(co +i co/~). Here A'/~=0. 1 eV.
The solid (dashed) line is our result corresponding to the PY
(MCu) correlation function. The circles are the dipolar contri-
bution of EMA for the same system. The open (closed) circles
correspond to the PY (MCu) correlation function.

h4U (eV)

(dashed) line is our result for f=0.21 using the same
dielectric functions (Eq. (25) and the same PY (MCu) dis-
tribution function as Davis and Schwartz. ' ' In order to
have a direct comparison of both theories we also used
their same scaling procedure for MCu, although this pro-
cedure might be questionable. As it can be seen, the way
in which the results of the two theories depends on the
choice of the distribution function is appreciably
different. However, our results with PY are similar to the
ones of EMA but with MCu. Also, our results with MCu
(dashed line) do not difFer appreciably from our results
with HC (not show in the figure), because for MCu the
value of f, (0.1996) is very close to the one for HC
(f, =f). Since in our theory the dependence on the distri-
bution function is through the integral of Eq. (22b),
which samples p' ' only around 2ao, two different distri-
bution functions might have similar values of f, .

Finally, in Fig. 7 we show a comparison of our theoret-
ical results with the experimental absorption coeScient
P=2co im+eM/c of a system of silver spheres in gelatin
at a volume fraction of 0.21. For this calculation we
chose eb ——2.37 and the dielectric function of the spheres
was taken directly from the experimental values of bulk
silver, but with an adjusted relaxation time of A/~=0. 6
eV in the Drude contribution to take into account the
size and the defects in the silver particles. We show re-
sults for HC and PY distribution functions and the exper-
imental results are arbitrarily normalized. We can see
that the comparison with experiment is very sensitive to
the choice of the distribution function and our results
show a slightly better agreement for PY.

IV. CONCLUSIONS

We have developed a simple theory for the macroscop-
ic dielectric function eM of a system of identical spheres
with a local dielectric function e, embedded in a medium

FIG. 7. Absorption coefficient (2'/c )Im+eM of Ag particles
embedded in gelatin with f=0.21. The solid (dashed) line cor-
respond to the PY (HC) correlation function. The dots are the
experimental results arbitrarily normalized.

with a local dielectric function eb within the dipolar,
nonretarded limit. The main approximation of the
theory is the assumption that the polarization of each
sphere is proportional to the sum of the external field and
the fluctuating field produced by average dipoles located
at random positions. The proportionality constant a*
was obtained self-consistently in order to account for the
dipolar fluctuations. The relationship between @sr, e„
and eb is similar to MGT but with the renormalized po-
larizability a* instead of the bare polarizability a of the
spheres. The renormalized polarizability a* obeys a
second-order algebraic equation and is given in terms of
a and a parameter f, which is a functional of the two-
particle distribution function of the spheres.

We applied our theory to a system of Drude spheres
embedded in dispersionless gelatin, and we analyzed the
position and the line shape of the surface-plasmon peak
in ImeM. We conclude that for volume fractions greater
than or equal to 0.2 the position and the shape of the
peak is very sensitive to the choice of the two-particle dis-
tribution function. We also obtained that clustering
(larger f, ) will produce a larger red shift of the peak.

A comparison of our results for Immy(co) with other
theories shows that for f -0.3 they agree rather well
with the ones of LG-CPA (Ref. 9) when we choose HC as
the correlation function. However, the use of PY yields a
larger red shift than LG-CPA. For smaller f our results
are not as sensitive to the choice of distribution function
and LG-CPA shows a larger red shift of the surface-
plasmon peak than our results. Wh|:n we compare our
calculations with the ones of effective-mass approxima-
tion' (EMA), we find that for f=0.21 the dependence



5378 BARRERA, MONSIVAIS, AND MOCHAN 38

of ImeM(co) on the choice of the distribution function has
distinctive differences. Nevertheless, both theories can
achieve a reasonable agreement with experimental re-
sults with an appropriate choice of the distribution
function. Therefore a more meaningful comparison with
experiment will require an experimentally determined
two-site distribution function. A better description of the
dielectric function of the particles, the inclusion of higher
multipoles, and an appropriate average over the distribu-
tion of sizes and shapes of the particles found on the ex-
perimental system are also necessary. The effects of
quadrupole interactions have been already calculated
within the EMA. ' A slightly larger red shift of the
plasmon peak is obtained when the quadrupole interac-
tions are included, especially at high volume fraction
(0.3 —0.4). Some of the consequences of nonuniform size
distribution as well as an extension to two-dimensional
systems have been reported within LG-CPA. ' The
nonuniformity of particle sizes seems to enhance the
broadening of the plasmon peak, while its redshift rela-
tive to the MGT position is slightly reduced.

Due to the simplicity of our theory it will be rather
straightforward to include retardation, higher multipoles,
and to explore the consequences of size distribution as
we11 as its extension to 2D adsorbed monolayers. The
comparison of our theory with others as well as with a
wider variety of experimental results will be also desir-
able. The calculations that we have performed so far are
already promising and we believe they can stimulate fur-
ther research in the field.
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