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New method for calculation of quantum-mechanical transmittance applied to disordered wires
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We introduce a stable, accurate method for calculating the quantum-mechanical transmittance of
random media. A Hamiltonian is constructed for a system consisting of a sample with a few simple,
semi-infinite leads. This Hamiltonian is transformed into a block-tridiagonal matrix. Three-term
matrix recurrences are then used to find the scattering matrix for electron waves impinging on the
sample from the leads. In calculations for narrow wires described by the Anderson model we ob-
serve nearly transparent resonances in the transmittance as a function of energy in nearly all cases
examined; the mean of the logarithm of the transmittance scales linearly with system length even for
very short length scales, where resonances dominate the distribution. We also find agreement with

previous results, including the statistics of the transmittances of an ensemble of wires and analyti-

cally predicted localization lengths. These methods are easily applicable to two- and three-
dimensional systems, as well as four-lead devices.

I. INTRODUCTION

The purpose of this paper is to introduce a stable, ac-
curate technique' for calculating the transmission proper-
ties of waves propagating in an arbitrary medium, such as
electrons in a disordered solid or electromagnetic waves
in a disordered dielectric. The usefulness of this method
is then demonstrated by application to the statistics of
electron transport in small, narrow wires.

Despite many years of study this problem remains in-
teresting, primarily as a means of investigating Anderson
localization in disordered systems. Even the simplest,
best understood case of disorder, that of a one-
dimensional (1D) system, has received renewed interest
since improvements in etching techniques have made
fabrication of very narrow wires, and hence measure-
ments of their electrical conductance, possible. Related
experiments have also been performed by sending mi-
crowaves down a waveguide filled with randomly posi-
tioned dielectric slabs.

The theory of wave propagation in disordered systems
is far from complete. Analytic work is so difficult that
most descriptions of the properties of a particular disor-
dered medium rely on averages over a statistical ensemble
of systems, obscuring exceptional behavior that can
dominate the characteristics of typical samples. Only the
most general results are universally agreed upon; for ex-
ample, all states in one dimension have probability 1 of
being exponentially localized no matter how weak the dis-
order. Although it is generally accepted that some simi-
lar statement is true in 2D systems, the type of localiza-
tion for states near the center of the band in weak disor-
der remains controversial.

Because of the difficulty in obtaining analytic results,
much of the work in this area has relied on numerical cal-
culations. " However, many techniques used to date
have numerical instabilities, particularly from divergent
recursions or matrix inversions. Most of those of that are
highly stable are not applicable to samples of dimension

higher than 1. Our technique is highly stable and easily
generalized to two or three dimensions.

After introducing our technique and describing its re-
lation to previous work, we apply it to the case of the
statistics of wave propagation in one-dimensional disor-
dered chains. We find the following results: As expected,
such chains, even those much longer than the average lo-
calization length, typically display certain energies which
are nearly transparent to wave propagation. It is shown
that these resonances are not consistent with fluctuations
of the well-known log-normal distribution of the
transmittance. The resonant states carry little probabilis-
tic weight in the weakly transmittive regime, but dom-
inate the statistics for strongly transmittive chains. In
this latter regime the distribution of the transmittance is
significantly skewed from log-normality, yet the mean of
the distribution still scales linearly with chain length. In
addition, we find agreement with other previously report-
ed results, with the exception that we do not observe
size-dependent localization lengths in the strongly
transmittive regime.

G. THE CALCULATION

n=1 n=1

The c.„are randomly distributed between —w/2 and w/2
so that w/v is a parameter which describes the strength
of the disorder. This model is thought to display all the

We demonstrate our technique by calculating the
transmittance of a narrow wire described by an Anderson
model, a tight-binding Hamiltonian with a basis set of
orbitals which are localized around a set of 2N atoms.
(P„], I & n & 2N is the set of annihilation operators for
these basis orbitals. Each atom has a site energy c.„. If
only nearest neighbors interact, the Hamiltonian is

2N 2N —1

H.. .i, = g e.4.'4. + g vt(4'. +t4. +0'.4.+i)1.
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important features of 1D localization [with the possible
exception of isolated extended states [see Sec. IV)].

We then attach the ends (sites n =1, n =2N) to semi-
infinite leads with periodic potentials and single bands of
states. The Hamiltonians of the leads are

Hl d 1= X "(4 +10 +0' 0 +1}
n=0

where all elements of H are zero except for the diagonal
elements [c,„I and the nearest-neighbor hopping integral
v, which is a constant.

We now wish to find solutions of the time-independent
Schrodinger equation,

Hg=EP,
and (2)

lead 2 2 U(on+len+4 nun+1) '
n =2N

These, the simplest possible leads in this model, will be
referred to as elemental leads. Their basis orbitals are
again described by annihilation operators [P„I, but with
—~ & n &0 for lead 1 and 2N g n & 00 for lead 2, so that
the [P„) with —eo &n & oc describe the basis of the
whole system of sample and leads. The Hamiltonian H
for this infinite system can be expressed in matrix form in
the ((t„basis as

0 v

v 0 v

V Ei V

V E,2

V

V E,2n V

v 0 v

v 0

(3)

and from them the scattering matrix for the disordered
region. This is depicted in Fig. 1. The solutions to (4} in
the leads are Bloch waves of the form g„e+'"e(l'lt, where
cos8 =E l2v. This can be easily seen by substituting (2)
into (4) and trying e'" as a solution. Now in lead 1 there
will be an incoming wave of the form g„e'" 1Il„and a
reflected wave g„re '" Ptn. In the other lead there will
be a transmitted wave g„ te'" P„The .problem, then, is
to solve (4) in the disordered region (the region of sites
numbered 1 —2N) with these boundary conditions.

In order to do this we perform a simple transformation
on H by rearranging its rows and columns. This is
equivalent to rearranging the basis as follows. The Ham-
iltonian (3) has a basis of orbitals created by

2, $ „$0,$, , 1I)z, . . . I of Fig. 1, and the condition
of nearest-neighbor interactions gives H the special tridi-
agonal form of (3}. When H operates on P„, the nth state
in this infinite sequence, the result can be expressed in
terms of pt, ptn „and pt+1 only, the states adjoining p„.
If the order of the sequence is changed the structure of H
will be different; H operating on one of the orbitals P„
will give a state with projections along basis orbitals not
adjoining P„ in the new sequence.

Now let us choose the particular rearrangement

[' ' ' &0—l&42N+2&40&42N+1&41&02N&02&4&N —1& ' ' '
& AN&IN+1 )

In this semi-infinite sequence, the last 2N states describe the wire, and all other states describe the leads. It is clear from
the ordering that in this "new" basis there are second-nearest-neighbor interactions, but no nearest-neighbor interac-
tions (except between the last two states). When the appropriate rows and columns of (3) are rearranged, H becomes

0 0 v 0
0 0 0 v

v 0 g) 0
2N

v 0
0 v

v 0
0 v

0 v 0
~2N —i

v 0
0 v

v 0
0 v

V 0 EN V

0 v v
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which divides itself naturally into 2 X 2 blocks:

UI 2x2

vI 2x2

02x2 vI 2

UI2x2 A )

UI 2x2

vI

A 2 UI2x2

VI 2
(6)

UI 2x

vI 2x2

—NA

(6a)

where 02x2 is the 2X2 zero matrix, I 2x2 is the 2X2
identity matrix, and

c„O
A„=

2N —n +1

fp=( 1+r),
$2)V + i

fi =(e +re ),
(7a)

The Hamiltonian matrix is now semi-infinite. In this
"block-tridiagonal" form one can define a recursion rela-
tion for f, a solution of (4), which terminates at block
Az. This solution can be specified by [p„J, the projec-
tions of g on the basis orbitals:

0= X W. 4'.
n

Since we already know the solution in the leads, it is
sufficient to find the solution of the truncated
( N +2 ) &( (N +2) Hamiltonian

02x2 vI 2x2

—i8
AtV =«

The numbering of the states here corresponds to that of
Fig. 1, i.e., the states in the basis before being rearranged.
This boundary condition on (7) means that at the ends of
the isolated Hamiltonian (1) the solution to (4) must
match the Bloch waves in the leads.

We now define a set of 2 X 1 matrices Iz „) such that
the first row of z „ is g„and the second is $2iv „+i. We
denote this matrix by

z=
42IV —n + i

I2 A
& vI2x2

vI A 2 vI2x2

UI 2x2

UI 2x

UI 2x2

—NA

(7)

The subscript n of z now corresponds to that of the 2 X 2
blocks in (6), while the l( subscripts have the same mean-
ing as before. Thus, z p gives the projection of l( on the
basis states at the ends of the leads, and when N & n &0
the z „give the projection of f on the basis of the sample.

In this notation the boundary condition (7a) can be
represented in terms of the z „as

Z 0—

whose basis is Ikp 02N+i 0i ttp2N, Ptv, tttN+i j. Such
solutions must obey the boundary conditions and

+ in t in Z
e I 8+ re

—I8

] —I.e

0 0 0 c, c, ~2M-1 ~2N
R~ ~ ~ ~ ~ ~

W W

SITE —2 -1 0 1 2 2N 2N+l
Each z „can be written as

—n —n —0+—n —1z =X z+Yz (10)

FIG. l. A wave of the form g„"0ate'"e incident on the sam-
ple from the right-hand side gives rise to a transmitted wave
g„" 2n, +, tp„e'" on the left-hand side and a reflected wave
g„"Or/„e'" on the right. .

where the X „and Y„are 2X2 matrices. By operating
with the Hamiltonian (7) on the z „with the Schrodinger
equation (4), we find a three-term recurrence relation for
the X „and Y „. If the energy E and the site energies c;
are expressed in units of v, the nearest-neighbor hopping,
these relations are
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X„+,=(EI2„2—A „)X„—X „ —2x2 —2x20 I
Xo—I 2x2,

Y„+,=(EI 2X~—A „)Y „—Y „

X ) —02x2, —2x2I —1 —2A B

—2 —2B A

B3 (14)

Yo——02x

Since 0 extends only to A z, z „+, must be zero.
Mathematically, this amounts to another boundary con-
dition on g, although its origin is not physically pro-
found. It reflects the fact that a wave at site N+1, the
last state in the basis of (7},must propagate to either site
N or N +2. There are no states further along in the basis
of (7) for it to propagate into. In terms of X„+, and

Y „+,this boundary condition can be expressed as

—NB

—N —NB A

where the A „and B „are 2&(2 blocks and a11 energies
are again in units of the nearest-neighbor hopping U so
that U =1. This transformation is done by using a gen-
eralization of the recursion method. Applying the same
boundary conditions and finding solutions to (4) leads to
a recurrence relation analogous to (11):

8 „+1X„+,=(EI 2xi —A „)X„—8 „X„
X ~+&z 0+ Y N+]z ]=02x2 (12) 8 „+,X „+1 (EI ~~ 2

———A „)X„—8 „X„

(9')

and

z
e

—l8+ r&e l8

we get a similar pair of equations for t and r', where r' is
the reflection coemcient for waves incident from lead 2.
It can be shown through time-reversal symmetry that t
must be the same for waves of the same energy incident
from either lead, so it is unnecessary to define a separate
t'. If we solve these equations we find that

S=—(XN+1+YN+1e '
) '(XN+1+YN+le' )

(13}

Since z 0 and z
&

are simply expressed in terms of the
transmission and refiection coefficients t and r, (12) gives
two linear equations which can be solved for t and r in
terms of X z+ &, Y z+ &, and e*' . By starting with
boundary conditions for an incident wave in lead 2 in-
stead of lead 1,

where X„and Y„have the same meaning as before.
Note that (15) reduces to (11) when all the 8 „=I2„2 and
all the A „are diagonal. A system with more than two
leads can be similarly transformed into a form tridiagonal
in n Xn blocks where n is the number of leads. This al-
lows calculation of an S matrix by solution of a set of
linear equations analogous to (12).

In practice, this transformation introduces large
rounding errors into the A „and B „. It can be shown
that these errors do not affect calculation of the transmit-
tance. Such justification will be presented in a later pub-
lication on 2D calculations.

In the context of electron transport in solids the calcu-
lation of transmittance describes an electric current in a
disordered solid in the low-temperature, low-current lim-
it. If the temperature is low enough there will be a few
inelastic-scattering events while the electron is within the
sample; in the low-current limit the density of excitations
is suSciently low for their interactions to be negligible.
Therefore, the system is well defined by an elastic, ran-
dom, independent-particle Hamiltonian. From this
standpoint, the transformed matrix (14) can be thought of
as an "equivalent quantum circuit. "

In the remainder of this paper we consider calculations
involving 1D samples of the form (1).

This is the scattering (S) matrix for the disordered re-
gion. For a given sample at energy E, X z+, and YN+&
may be calculated using (11). Such a calculation is ex-
tremely stable since at each step in the recursion the
three numbers being added are of roughly the same order
of magnitude, minimizing the effects of rounding error.

Although we only present results for one dimension
here, the real power of this technique becomes evident
when one wishes to generalize to higher dimensions. It
can be shown' that a sample described by any finite
discrete Hamiltonian which is attached to elemental leads
of the form (2) can be transformed into a form very simi-
lar to (6). Specifically, the general form of this
transformed matrix is

III. RELATION TO OTHER METHODS

A large amount of numerical work has been done on
Anderson models, particularly in one dimension. It is
therefore reasonable to ask how this technique differs
from others and what advantages it has to offer. Most
techniques use recursion relations in one form or another
because they are easily and stably computable, although
it should be noted that some compelling work has been
done with other techniques. ' In the remainder of this
section the block-recursion technique will be compared to
some other recursive technique in one and higher dirnen-
sions. Comparison of results to other types of techniques
or disorders will be presented in a later section.
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Previous recursive techniques generally fall into two
categories: those that use more stable three-term re-
currences to calculate t (E) or an equivalent quantity but
are limited to one dimension, and many-term or "slice"
recursions that are applicable to higher dimensions but
are not as stable.

A. 1D calculations

Perhaps the most extensive calculations of the statistics
of 1D systems were performed by Czycholl, MacKinnon,
and Kramer. ' They used the Kubo formula to find the
conductance of isolated 1D Anderson models (i.e.,
without leads) by three methods: integrating the time-
dependent Schrodinger equation, recursively computing
matrix elements of the resolvent 6 =(E H) —' between
ends of the sample, and computing matrix elements of 6
by use of continued fractions. Since a finite system was
used it was necessary to add a small imaginary com-
ponent to the energy; otherwise the discrete eigenvalue

spectrum of a finite Hamiltonian would make quantities
such as t (E) very sensitive to whether or not E is an ei-
genvalue. However, states with complex energies do not
describe elastic scattering because they decay in time.

The problem of discrete energy spectra in calculation
of elastic scattering can be solved by adding leads that
make the system infinite and the spectrum continuous.
This is a more physical calculation as electrons in a cir-
cuit whose eleinents have length comparable to the elec-
tronic localization length cannot be expected to have
eigenfunctions that are confined to the sample. A calcu-
lation which included semi-infinite leads and very closely
resembled our method was performed by Economou and
Soukoulis. t(E) was recursively calculated for the
Hamiltonian (3) without transforming it to (5) as we have
done; instead a scalar recurrence relation analogous to
(11) was used to find the f„(E), from which t(E) was
found. A related technique is that of transfer ma-
trices. "' ' ' In this method the sample is divided into
individual site scatterers, each of which is represented by
a matrix that describes its effect on a wave propagating
through the lattice. The product of all the matrices is
another matrix whose eigenvalues are related to the
scattering matrix.

Both of these methods have the advantage of including
the leads in the calculation; however, both require a ma-
trix in the tridiagonal form of (3) to give stable three-term
recurrences for the wave functions. These techniques are
therefore not so useful in higher dimensions, or for long-
range hopping. For a sample with a Hamiltonian more
complicated than (1) that is attached to simple leads, the
transformation we have applied to make the leads block
tridiagonal allows the rest of the Hamiltonian (that
describing the sample) to be transformed into a similar
block-tridiagonal form without affecting the leads, so that
the efficient recursive calculation (15) for the wave func-
tions can be performed and the boundary conditions can
still be matched.

B. "Slice" recnrsions in higher iiimensions

Recursive calculations on samples of higher dimension
have usually involved dividing the sample into "slices,"

arrays of sites of dimension d —1, where d is the dimen-
sion of the sample. Some recursion relation is then
defined which calculates the properties of the system
from those of the slices. Lee and Fisher connected their
2D samples to 2D leads and recursively calculated matrix
elements of 6 =(E H—) ' between states in the two
leads. At each step of the recursion the resolvent of an
isolated slice was calculated and a matrix of order com-
parable to that of the resolvent was inverted. Performing
such an inversion at each step is time consuming. In-
stead, MacKinnon and Krarner used a different slice re-
cursion to find the operator 6 '=E —H from the 6
for each of the slices, so that it was unnecessary to invert
a large matrix until the end of the calculation. Matrix
elements of 6 ' between ends of an isolated sample were
found. However, since the object of the calculation was
to observe gross spatial features of the wave functions
(such as localization lengths), only the exponent of the
most rapidly diverging component of 6 was measured.

By defining a recursion in terms of slices, both methods
have introduced an instability that was not present in the
1D calculations described earlier. For systems described
by a Hamiltonian with a discrete basis, quantities such as
6 or t (E) contain polynomials or ratios of polynomials in
E whose orders are comparable to the number of basis
states. In the case of t(E) this is evident from Eqs.
(10)—(13). We have noted the desirability of using three-
terrn recurrences to calculate polynomials since in a rela-
tion such as (11}all additions involve a few numbers of
roughly the same order of magnitude. However, in a
slice recursion 6 for an isolated but large slice is a sensi-
tive function of E with zeros and singularities close to the
real axis. Many numbers of greatly differing magnitudes
are added together, creating errors that accumulate much
more rapidly than for the recurrence (11).

The use of elemental (one-band) leads does not limit
the application of our method. In the low-temperature
limit we are considering, electron transport in the leads
takes place only in those bands which intersect the Fermi
surface. It can be shown that any nondegenerate Ham-
iltonian can be transformed into tridiagonal form, so that
if the Fermi surface intersects n bands, then the Hamil-
tonian for electrons near the Fermi surface can be
transformed into n decoupled tridiagonal Hamiltonians.
Each of these Hamiltonians, although in general some-
what more complicated than those in (2), can still be
thought of as an elemental lead in the sense that it de-
scribes wave propagation into and out of the sample by a
single band of states. A lead with more than one band in-
volved in transport can therefore be adequately described
by transforming it into a number of elemental leads equal
to the number of bands crossing the Fermi surface. As
we indicated in Sec. II, this merely means tridiagonaliz-
ing in n gn blocks, where n is the number of elemental
leads. If an excessive number of such leads (comparable
to the number of basis states of a slice) were required, the
calculation would have an instability similar to that of
the slice recursions. However, almost all cases of interest
can be described in terms of leads with at most two
bands, so this is not a problem. It is therefore unneces-
sary to perform a slice recursion to describe 2D or 3D
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systems.
The ability to attach leads to different parts of the de-

vice also has obvious applications to the description of
four-lead devices, a problem of great experimental in-
terest.

IV. RESULTS FOR ONE-DIMENSIONAL CHAINS

We have studied one-dimensional Anderson models
ranging in size from 1 to 400 sites and in disorder from
w/U =0.5 to w/v =5. Figure 2 shows typical plots of

~

t(E)
~

for two systems with w/U =2. The first is the
entire band for a chain 20 sites long; the second is a nar-
row resonance in a chain 180 sites long. The Lorentzian
appearance of the peaks is due to the previously noted
fact that

~

t (E)
~

is a ratio of polynomials in E. Al-
though the sample is almost transparent at one energy in
Fig. 2(b), the peak is not an unusual feature; at w/u =2
we examined large portions of the band for 28 chains of
different lengths from 10 to 250 sites and in each case
found at least one peak whose height was greater than 0.7
and in all but one case greater than 0.9, with average
widths decreasing as the length increases. At this disor-
der average localization lengths (see below) are about ten
sites.

Several authors have suggested the presence of reso-
nances and their possible origins. For a model of one di-

mensional disorder very different from the Anderson
model, Denbigh and Rivier and Condat and Kirkpa-
trick noted that at each of an infinite, discrete set of en-
ergies their lattice had an extended state and was there-
fore completely transparent to wave propagation. (This
set of energies was of measure zero, i.e., was a set which
was infinite but discretely spaced in E and so carried no
probability weight when compared to the full continuous
spectrum of eigenstates. ) It is not clear whether the An-
derson model supports such solutions in general. Azbel
has suggested that localized states with a single max-
imum very near the rniddle of the sample would couple
equally with both leads and would produce strong
transmittance at that energy. Previous numerical studies
of resonances and phase-correlation lengths' ' indicate
this phenomenon is an important cause of resonances. In
a picture somewhere between these two, Pendry has ar-
gued that "necklace" states, probabilistically exception-
al states with more than one maximum located in a broad
area near the sample center would dominate the transmit-
tance and provide very transparent resonances. Which of
these effects causes a particular resonance is interesting
experimentally since this will determine the characteristic
time for an electron to traverse the sample (longest time
for resonant tunneling, shortest for extended states). We
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FIG. 2. Transmittance of two disordered wires as a function
of energy for w/v =2. (a) The full band for a chain 20 sites
long. (b) A narrow region of the band for a chain 180 sites long,
showing a sharp resonance.

FIG. 3. Relative probability density distribution for finding a
chain with a given transmittance at fixed disorder, length, and
incident wave energy in the following limits. (a) Low transmit-
tance (240 sites, w/v =2, E/v =0.5). The probability histo-
gram (circular data points) is well fitted by a Gaussian (solid
line). (b) High transmittance (200 sites, w/v =0.5, E/v =0.5).
The histogram is skewed and is not well fitted by a Gaussian.
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know of no authors who have quantified the relative like-
lihood of the existence and strength of different types of
resonances in a given Anderson model; such a calculation
remains an open problem. It has also been observed' ' '

that large fiuctuations in transmittance occur near band
edges in samples with random 5-function (vacancy) de-
fects.

The statistical variance of
~

t
~

for a given length and
disorder was calculated by generating 200 chains with
this length and disorder and calculating

~

t(E)
~

at a few
selected energies for each. One would expect that in the
limit of long chains with weak disorder the distribution of

~

t
~

would be log-normal by the following argument
which follows the ideas of Thouless: In the weak-
disorder limit the leading term in t will be the product of
the forward-scattered component of a propagating wave
at each site. If this component at site i is t;, then

This is because in a system of many random
scatterers multiply backscattered waves interfere with
random phase. The interference is therefore destructive,
and these components do not contribute to the transmit-
ted wave. It can be shown that in this limit the t; equal

e,'/(8v sin'8) so that

O

O

(a)

O
CV

CV

~ O

C

(b)

~o

I

O
O

0. 00

a

w
w

N5
5

80. 00 160.00 240. 00
Number of Si tes

I

aN I

320. 00

2N
lnt=(8u sin 8) (16)

which for large N is distributed normally. We observe
this in the appropriate limit (Fig. 3}. In fact, even for
stronger disorder (w/v &2), for chains more than a few
localization lengths long, the first eight moments of the
distribution of

~

t
~

at a given energy agree to those of
an appropriately fitted log Gaussian to within the stan-
dard error of each moment. This is in agreement with
the results of Economou and Soukoulis.

The frequency distribution cannot have this form in
the limit of shorter chains, of course, since mathematical-
ly the range of

~

t (E)
~

is between 0 and 1 so its log can-
not range over all real numbers, and physically because
backscattering is more important when the wave has
fewer lattice sites to randomize the phase of the multiply
backscattered components. In this limit we observe a
significant skew [Fig. 3(b)] which can result in a most
probable value significantly different from the average.
This is in qualitative agreement with results for isolated
chains, ' and for randomly spaced 5-function barriers. '

It is tempting to ask whether the resonances can be un-
derstood as the "tail end" of this distribution. This can-
not be the case, however, since (16) tells us that in this
approximation a resonance where t=1 (Int =0) corre-
sponds to a lattice where all the c.; are zero. The con-
clusion is that for long chains resonances occur for excep-
tional energies at which the approximation of incoherent
backscattering breaks down. At these energies the back-
scattering is strongly coherent and interferes destructive-
ly to give a transmittance that is nearly unity.

The scaling of
~

t
~

with the length of the sample can
be shown by taking statistics at the same energy and dis-
order for several different lengths. We expect that

~

t
~

=e /~, where g is the localization length and L is
the length of the sample, so that a plot of ln

~

t
~

against

O

0. 00

W I

d d

100.00 200. 00 300. 00
Number of Si tes

400. 00

L would give a straight line of slope I/g. Figure 4(a)
shows that this is true for the mean at all length scales we
have examined, but not the most probable value of
ln

~

t(E)
~

when 2N &g [Fig. 4(b)]. (There is, of course,
considerable departure from this average behavior when
one looks at individual chains. ) The error bars in Fig. 4
for the mean are standard errors of the mean and those
for the most probable value represent an estimate of the
uncertainty based on the width of the histogram classes
we used in calculating distributions functions for ln

~

t
~

We can find an "average" localization length for these
systems using the method of Thouless and the approxi-
mation of lnt given in (16}. The inverse of the localiza-
tion length 1/j will approximately equal (1/2N)lnt or
(1/N)lnt. The right-hand side of (16) can be approxi-
mately summed by taking 2N times (e,. ), where this
average over all the c, equals

(E;)=(1/w) J x dx =( ,', )(w/v)—
—w/2

giving a 1ocalization length

/=47(v/w) (1/sin 0) . (17)

FIG. 4. Scaling behavior of the mean (crossed-circle data
points) and most probable value (triangular data points) of
ln

~

t
~

' for fixed disorder and incident energy in two regimes.
Except for most probable values in (b), error-bar sizes are com-
parable to data-marker sizes. (a) 2N & g (w/u =2, E/u =0.5).
The average localization length f is about 10 sites. (b) 2N=(
(w/u =0.5, E/u =0). Here, g is about 200 sites.
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This agrees with the slopes of the lines we have plotted to
within one or two standard errors of the slope in each
case.

Figure 4 demonstrates an interesting result. For N &g
the resonances dominate the statistics of the transmit-
tance, as can be seen in Fig. 3. It is therefore not obvious
that a scaling law of the form t =e ~ should be obeyed
in this regime, since the nearly transparent states are
becoming more significant in the average (Fig. 2). The
mean, however, does obey this scaling law exceptionally
well; it is the most probable value that does not. This is
the opposite of what one would naively expect.

It should be pointed out that Pichard' observed a lo-
calization length that varied with the sample size in
transfer-matrix calculations for g»2N. Specifically, he
observed (~N'~ . We do not observe such a depen-
dence. (1n

~

t
~

) appears linear at all length scales. If
we literally take

~

t
~

—=e ~~ and use the most probable
value of ln

~

t ~, we get an approximate power law for
g(N) of the form g ~ Nr, where y is somewhere between 1

and 3 in the few cases we have examined. Whether we
are not using chains with 2N sufficiently smaller than g to
see this effect or the effect is really not present in an An-
derson model is not clear to us.

V. CONCLUSION

We have introduced a new method for calculating the
transmission properties of an arbitrary disordered sys-
tem. This calculation is more stable than previous
methods when applied to systems of dimension greater
than 1. This method involves attaching the disordered
system to ordered, elemental leads and transforming the
matrix into a block-tridiagonal form that allows calcula-
tion of the scattering (S) matrix by means of a stable
three-term recurrence and a straightforward matching of
boundary conditions. We have applied this to the statis-
tics of disordered 1D systems. We observe highly trans-
parent resonances even for long chains with strong disor-
der. The average localization lengths in our chains are in
close agreement with those predicted by the analytic
method of Thouless and seem to be independent of the
chain length.
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