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We present a new field-theory method for growth-kinetics problems which describes the entire
time evolution of the system from the early stage after the quench until final equilibrium is attained.
The method is developed for a scalar order parameter (conserved or nonconserved) with dynamics
of the Langevin type and a systematic low-temperature perturbation scheme is constructed. The
main results obtained in lowest order are as follows: (i) a reduced singlet probability distribution
which evolves from a Gaussian at early times to a bimodal distribution at late times; (ii) the dynami-
cal separation of two characteristic lengths L (t) and g(t) associated, respectively, with the domain

size and with the correlation length of fluctuations within a domain; (iii) scaling behavior for the
structure factor at long times and a growth law L (t)-t" with n =

4 for conserved order parameter

and n =
2

for nonconserved order parameter; and (iv) the realization of the exact equilibrium state,

free of spurious Nambu-Goldstone modes, as t ~ (x). First-order corrections to the structure factor
are computed and it is found that they lead to no change in the growth law and to the appropriate
first-order temperature corrections in the final equilibrium quantities. Finally the implications of
these results for future work are briefly discussed.

I. INTRODUCTION

Substantial progress has been made on growth-kinetics
problems' over the past ten years. Most of this progress
has been driven by the results of Monte Carlo simula-
tions' of kinetic Ising models. This development was a
reversal of the earlier evolution of this field which was
dominated by studies of field theoretical models of the
Langevin type. In this paper we pick up and extend this
earlier development with a low-temperature theoretical
study of the growth of order in the time-dependent
Ginzburg-Landau (TDGL) model for a scalar field. In
particular we consider the TDGL model with Gaussian
noise in the case where the system is quenched from an
initial symmetric disordered equilibrium state into a
nonequilibrium state driven by parameters corresponding
to some new final ordered equilibrium state with broken
symmetry. We are interested here in treating the time
evolution which characterizes the ordering of the
system —the growth of the domains of the new ordered
phases.

We have gained a significant understanding of the phe-
nornenology of growth kinetics from simulations of both
kinetic Ising models' and Langevin equations. The
main measure of the domain growth is the order parame-
ter structure factor C(q, t) where q is a wave vector and t
is the time after the quench. Ordering is rejected in the
growth in time of a Bragg peak in the structure factor.
One of the major discoveries ' in this field was that the

peak contributions to the structure factor scale with a
single characteristic length L (t) which is a measure of a
typical domain size in the system. In particular, for q
near the ordering wave vector,

where d is the spatial dimensionality of the system. Con-
siderable effort has been spent trying to determine the
growth law, how L depends on t for various systems and
the form of the scaling function F in (1.1). This work has
been based on either direct numerical simulation,
renormalization-group calculations, or on simple
model calculations' with an assumed morphological
structure for the evolving domains at late times. For the
case of kinetic Ising models, evidence is mounting that
there are several types of growth-kinetics classes depend-
ing on the defect structure of the evolving domains and
whether there are quenched impurities or not. The asso-
ciated growth laws are either power laws or logarithmic
in time (depending again on whether there are quenched
impurities or not). Much less work has been carried out
for the Langevin models, primarily because they are more
costly to simulate.

The earliest theoretical work on these growth-kinetics
problems was that of Cahn and coworkers" and Lifshitz
and co-workers. ' The problem of spinodal decomposi-
tion was essentially defined in the the early work of Cahn
and Hilliard" in terms of a linearized treatment of the
TDGL model for a conserved order parameter without
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thermal noise. This work led to the prediction of ex-
ponential growth of a particular wave-number com-
ponent of the structure factor. While this theory
reflected the underlying unstable nature of the system, it
did not include any appropriate stabilizing mechanism
for later times and could only be viewed as a very early
time approximation. Cook' later included the effects of
thermal noise in the problem, but this did not change the
basic structure of the approximation. A further substan-
tial advance in the theory was due to Langer' and co-
workers who took into account nonlinear feedback terms
which had the effect of stabilizing the later stage growth.
The resulting theory was a considerable improvement on
that of Cahn-Hilliard and Cook"' since it led to a
peaked form for the structure factor which moved to
lower values of the wave number as time evolved and the
peak grew with a rate much slower than exponential.
Both effects were in qualitative agreement with experi-
mental observation' of spinodally decomposing fluid sys-
tems using light-scattering techniques.

While the work of Langer, Bar-on, and Miller' (LBM)
represented a significant advance for the field, there were
some important drawbacks to their theory. The approxi-
mation developed was somewhat ad hoc and difficult to
treat systematically. More specifically, Binder and co-
workers ' pointed out conceptually important problems
associated with the long-time behavior of the theory. We
restate these problems here in a somewhat different
language. In the original high-temperature equilibrium
state there is a single correlation length gl which charac-
terizes the structure factor of the system. As the system
evolves toward its final broken symmetry state there are
two independent lengths which characterize the system:
the typical domain size L(t) and the final equilibrium
correlation length g. The LBM theory, as described
below in Sec. II, can accomodate only one length at any
given time, and therefore can not describe both L (r) and

The result is that the theory does not lead to the ap-
propriate final equilibrium state. While this type of
theory has been extended to more complicated physical
systems, ' they all share this same defect. This problem
of developing a theory capable of treating two charac-
teristic lengths (or masses in field theoretic language) is
the fundamental unsolved problem that we address in this
paper.

Another line of theoretical development has been to
avoid the problem of early time evolution and jump to
the later stages where one imposes a certain morphologi-
cal structure on the system. The work of Cahn and Al-
len" and Lifshitz and Slyozov' was along these lines and
led to very useful predictions for the growth laws of a
variety of systems. These theories focused on the evolu-
tion of a single droplet or domain and did not worry
about the distribution of these domains (Lifshitz and
Slyozov, for example, restricted their analysis to the case
of a very dilute solution of droplets). Kawasaki and co-
workers' have extended these techniques to the case of
the late-stage evolution of interacting defects. It is not
clear in this method how one takes into account tempera-
ture effects, equilibration, and the evolution toward this
late stage. In particular it is difficult to determine self-

consistently the distribution of defects. In the work of
Ohta, Jasnow, and Kawasaki, ' for example, it was neces-
sary to postulate that the distribution of interfaces
satisfied a Gaussian distribution.

In recent years there has been rather little effort to con-
struct theories which follow the evolution of systems
from early through late times. One of the reasons is that
much of the focus has been on kinetic Ising models and it
is quite difficult to develop analytical methods for treat-
ing such systems. Glauber's exact solution' for the one-
dimensional kinetic Ising model was used' to analyze
spinodal decomposition, but no exact results exist for ki-
netic Ising systems which show true ordering. Approxi-
mate renormalization-group treatments for such sys-
tems were developed, but these analytical treatments re-
quired knowledge of the time rescaling parameter which
had to be determined using auxiliary methods (typically
Monte Carlo results}.

During the time when attention has been primarily fo-
cused on the uniUersa/ properties associated with the
late-stage growth of ordering, it has seemed less pressing
to develop a first-principles theory governing the entire
evolution of a system. However, with our increasing un-
derstanding of the pinning role of defects and their
dependence on local mechanisms and the parallel devel-
opment of interest in glassy behavior, the importance of
developing a more general theory has become clearer.
We choose in this paper to study Langevin equations
rather than kinetic Ising models for several reasons. The
first is that it seems more feasible to develop an analytic
treatment for these models since they have an extra pa-
rameter, the quartic coupling, which may be used to ad-
vantage. Second, these models appear to be more gen-
erally applicable. They can, for example, be generalized
to the treatment of fluids' ' ' and they also include Ising
variables as a special limit. Third, a continuous order pa-
rameter can be treated using field-theory techniques. Fi-
nally, we were encouraged by the work ' treating the
¹vector model generalization of the model studied here.
In Ref. 22 this model was solved in the large-N limit and
the time evolution of the system was analyzed in detail
over the entire time regime from the time of quench to
the late-time scaling regime. This system is qualitatively
different from the scalar order parameter case we study
here since there is a broken continuous symmetry in the
final state of the N-vector model for N g1. Thus one
generates Nambu-Goldstone (NG) modes2 in the final
state as the system evolves. A relevant observation made
in Ref. 22 is that the solution looks very similar to that
found by LBM. This comes about in the large-N limit be-
cause the transverse modes dominate over the single lon-
gitudinal mode and the only length in the problem during
the later stages of growth is the characteristic domain
size L (t}. The problem for N finite, and in particular for
N = 1, is more complicated since any simple theory of the
LBM type will incorrectly yield a solution for the equili-
brated part of the structure factor with a massless (q )

NG mode.
The method presented in this paper is designed to deal

with the problem of separating the two length scales I.(t)
and g as the system evolves. In the very long time limit
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the method gives the exact equilibrium result without
spurious NG modes. As described in Sec. II, the method
makes systematic use of field-theory techniques for classi-
cal fields as well as new techniques required for treating
the ordering component of the order parameter field.
The main physical motivation behind the formalism is
the recognition that the order parameter field P(R, t) can
be decomposed into the sum of two fields. Early in the
evolution of the system these fields are strongly coupled.
However, as time passes, they assume separate roles and,
for sufficiently long times, they become essentially in-
dependent. One of the two fields is then associated with
the domain growth and the peak in the structure factor
and the other is associated with the fluctuations of the or-
der parameter within an ordered domain. The charac-
teristic size associated with the "peak" field is L (t), while
that for the "fluctuation" field is g. At long times
L (t) »g and the two fields decouple. It seems reason-
able that the fluctuating field can be treated at low tem-
peratures as a field governed by Gaussian statistics. The
peak field can be visualized at long times in coordinate
space as being uniform almost everywhere except near
domain boundaries where the system rapidly changes its
orientation from one type of domain to another. It is
therefore appealing to think of these variables as being
somewhat Ising-like in character.

It should be emphasized that this separation of vari-
ables governing growth and fluctuations is more generally
useful than for the particular application discussed here.
The peak variable is the vehicle which passes information
from the microscopic to the macroscopic scale. There-
fore it should be a useful device for studying a variety of
growth problems.

The main difficulty in treating this problem is that it is
not at all obvious how to systematically implement these
physical ideas. Specifically, the construction of an Ising
constraint for the peak component in the framework of a
field theory is a very complex problem. In this work we
develop a solution in the context of a classical field theory
which uses the methodology originally introduced by
Martin, Siggia, and Rose (MSR). We set up in Secs. II
and III a systematic perturbation theory scheme valid for
quenches to low temperatures. Detailed results for the
lowest-order approximation are given in Sec. IV. Among
these are (i) a reduced singlet probability distribution for
the field 1((R,t) which naturally evolves (see Fig. 1) from
a Gaussian at early times to the expected bimodal distri-
bution at late times; (ii) an accurate treatment of the very
early time behavior; (iii) a structure factor which exhibits
scaling behavior of the form (1.1) at long times and with a
growth law given by a power law, L (t)-t", where n = —,

'

when the order parameter is not conserved, in agreement
with the well-known Lifshitz-Cahn-Allen"' law, and
n =—' when the order parameter is conserved; (iv) we ob-

tain the exact lowest-order equilibrium state, free of
spurious NG modes, for t ~ ~.

The result n =—' for a conserved order parameter
differs from the Lifshitz-Slyozov result (n = —,'). There
are conflicting reports in the literature as to whether
simulation results are in better agreement with —, or with
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FIG. 1. Reduced singlet distribution function with COP in
d =2 for a quench from e, =0 to a=0. 1. Time steps of 10 units.
The quantity plotted is the right-hand side of (3.38) times 2n..

—,'. This is a very difficult question to resolve from purely
numerical methods, since the small difference between
0.25 and 0.33 is easily buried in numerical uncertainty
and the high cost of the numerical calculations makes it
prohibitively expensive to reach the indisputably asymp-
totic time region. The method presented here, being
purely theoretical, is obviously quite free of these limita-
tions. As we shall see below, the perturbation theory is
systematic and well defined, and we can show formally
that higher-order terms in perturbation theory decay to
zero at long times. Consequently we expect that our
low-order results should not be affected by higher-order
terms for low enough temperatures and long enough
times. It is nevertheless impossible to conclusively rule
out a priori the possibility that this is one of the problems
for which perturbation theory fails and the growth law
could then differ from the n = —,

' found here.
Summarizing, we present here for the first time a glo-

bal solution of a nonequilibrium problem with two com-
peting length scales which reproduces all the essential
features of the physical process. Prominent among these
is the dynamical separation of the two characteristic
lengths and the subsequent generation of the correct final
equilibrium state. In other words, we have constructed
the framework upon which a systematic perturbation
theory is based. The method presented here is therefore
expected to prove useful in different areas of physics
where one is confronted with simultaneous phenomena
taking place over different length scales.

II. MODEL AND DEVELOPMENT
OF PERTURBATION THEORY

A. Definition of model

The model we study is a standard TDGL model for
scalar field. The dynamics are driven by the Langevin
equation
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a1((R t) 5F= —r(R) „+~(R,t),Bt 5 R, t
(2.1) CE(q) is the fluctuating part of the correlation function

given by

where the field g(R, t) is defined either on the continuum
or on a lattice characterized by a set of lattice vectors
R. In (2.1), I (R) is a constant kinetic coefficient, I, in
the case of a nonconserved order parameter (NCOP),
while for a conserved order parameter (COP) we have

(2.9}
T

Cs(q) =
cQ'(q)+» —X(q)

where Q (q) (q in the continuum) is the Fourier trans-
form of the Laplacinan and, to 0 ( T),

I (R)= —DVit, (2.2) 18u M
X(q) = —3uM —3u T(P ) + 11(q)T

(2.10)

(rl(R, t)rl(R', t') ) =2TI'(R)5(R —R')5(t —t'), (2.3)

where D is a transport coefFicient and Vz is the Laplacian
or its lattice version. The noise rl(R, t) appearing in (2.1)
is Gaussian and white and satisfies

with

d k
11(q)=f d CE(q —k}Cz(k) . (2.1 1)

where T is the temperature of the thermal bath in con-
tact with the system. We assume that the effective free
energy is of the Ginzburg-Landau-Wilson form

F = —,
' f1 R c[VQ(R)] +rf'(R)+ —g (R) (2.4)

B.Static equilibrium behavior

Q(R) =M +&T t)}(R), (2.5)

where (f(R})=M and expanding in powers of v T.
Since this expansion is well known, we give here only
the results. For the structure factor C(q}, the Fourier
transform of (g(R)g(R') ), one finds

C(q }=M (2n )d5(q)+ CE(q),

where the spontaneous magnetization is given by

(2.6)

The static equilibrium properties of this model are
governed by the Boltzmann probability distribution pro-
portional to e ~~ . The two independent variable pa-
rameters in the equilibrium theory are chosen to be the
coupling r and the temperature T. The coefficient c and
the nonlinear coupling u are kept fixed and positive. By
varying r from positive to negative values the local poten-
tial V(g)=(r/2)P+(u/4)P4 changes from a single- to a
double-well form. For r &0 one has only a single disor-
dered phase for all temperatures greater than zero. How-
ever, for r &0, there will be some transition temperature
T, =T,(r, u, c), below which (T & T, ) the system develops
a spontaneous magnetization (P) =M(T, », u, c}&0 In.
our work here we will be concerned with quenches to
final states where T « T, and a low-temperature theory
can be developed since one expects fluctuations about the
ordered state to be small.

The basic nature of the low-temperature theory can be
seen by shifting and rescaling the field appearing in the
free energy.

+5(t tp)gp(R), — (2.12)

where P(R, t) and rt(R, t) are zero for t &tp and the ini-
tial value 1(t(R, t) is imposed as a constraint. In carrying
out averages gp(R) is treated as an independent field with

its own probability distribution -e . In this pa-I 0~

per we take Fl to be a symmetric quadratic form:

Ft[gp]Tt ,' fd"R, d ——Ri—gp(R,)gp
'

X (Ri R2 )'Ipp(R2) (2.13)

The generating functional of correlation functions is
given by

C. Functional integral formulation for quench problems

We are interested in studying the nonequilibrium prop-
erties of our dynamical model. Specifically, we want to
consider the case where the system is initially in equilibri-
um at some high temperature TI and at time t =tp is
quenched to some low temperature T. The parameters r
and u may also suddenly change at t =tp from initial
values Rz and uz to final values r, u. It is now well under-
stood from studies of dynamic correlations in equilibri-
um, that it is advantageous in developing a systematic
perturbation theory, to recast the problem in functional
integral form. As first pointed out in Ref. 25, this is
most conveniently carried out by introducing a response
field g(R, t} conjugate to f(R, t). The transformation
from averages over the noise to averages over l( and p is
well described in Refs. 30 and 31. We follow here the
conventions developed in Ref. 32. The additional in-
gredient in our development here is the quench at t = tp
and the imposition of an initial condition at that time.
This new feature is taken into account by rewriting the
Langevin equation in the form

alt(R, t) 5F= —1(R) +rt(R, t)

with

M =Mp 1 — T(P (R))+O(T )
2Mp

(2.7)
Z[U]= fD[4o]D[it]D[el

Xexp —A [f,gp, p]+ fdl U(1)g(1)

(2.14)
Mp ——

0
(2.8)

where the action A is of the form
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3 [g, g, Po]= Ft[go]+ fdl d2[g(1}m(12)g(2)+g(1)Go '(12)g(2)
~I

+iud (1)I (12)g (2)+P(1)I(12)f (2)]+A [f] (2.15)

with the following specifications: The indices 1 and 2
stand, respectively, for (R„t,) and (Ri, t2), the integral

fdl= fd"R, f dt, ,

and the quantities under the integral are given by

which is identical in structure to Eq. (2.31) found in Ref.
24 in the large Nli-mit except that the 3 multiplying uS(t)
in (2.24) is replaced by 1. These equations are very simi-
lar in structure to those found by LBM. The important
aspect of the solution of these equations for our purposes
here is that

I (12)=I (Ri)5(12),

5(12)=5(R, —R, )5(t, —t, ),
n(12)=8(t, to)TI (1—2},

I(12)= i 5(12—)5(t, to), —

(2.16)

(2.17)

(2.18}

(2.19)

lim r +3uS(t)=0
f ~ oo

and in the long-time limit

C(q)=M (2m) 5(q)+
cQ'(q)

(2.26)

(2.27)

G '(12)= i +i I (R, )( —cV„+r)5(12) .
Bt, 1

In (2.15) Az is the Jacobian associated with the transfor-
mation from a functional integral over the noise to one
over the field P and is given in the case of (2.12) by

~,[y]=—'" fd lr(11)q'(I) . (2.21)

This term ensures ' the normalization Z (0)= 1, or
equivalently, we can take

-~[4 40 0)
P,i[kfo 0]=e (2.22)

D. Naive perturbation theory

Starting with the action given by (2.15), it is straight-
forward to develop perturbation theory directly in terms
of the coupling u. We skip the detailed derivation here
and simply write down the associated equation of motion
satisfied by the Fourier transform of the equal time corre-
lation function

C(R —R', t) = ( g(R, t)f(R', t }),
given by

(2.23)

—+21 (q}[cQ (q)+r +3uS(t)] C(q, t)=2TI (q),at

where

(2.24)

S(t)=f d C(q, t)
(2ir )

(2.25)

as the functional probability measure associated with the
stochastic equation (2.12}.

The advantage of this formalism in the case of Auctua-
tions in equilibrium is that one has a formulation of the
standard field-theoretical type and one can conveniently
develop perturbation theory.

Inserting (2.27) into (2.25) and using (2.26), one obtains

r d q T
(2n ) cQ (q)

(2.28)

W(t)lc =r+3uS(t)= I. '(t)— (2.29)

and the dynamics drives 8'~0 and L ~ (I} as t ~ 00. To
overcome these fundamental defects we must construct a
theory which naturally allows for two masses and the two
corresponding lengths.

E. Decomposition of the field

In order to make progress we now implement the idea
brought forward in the Introduction of decomposing
P(R, t) as the sum of two fields, one of which becomes as-
sociated, as times evolves, with the growth of domains,
and the other with fluctuations within a domain. In oth-
er words, we must introduce the appropriate dynamical
generalization of the shift (2.5) used in the analysis of the
equilibrium state, with the requirement of keeping the
symmetry unbroken at all finite times.

The first step is to enlarge the function space by intro-
ducing, in addition to the order parameter f(R, t), a new
independent stochastic field o(R, t) with its own normal-
ized distribution P [o ], which, for the moment, is not
specified, except for the condition (tr(R, t)) =0. The
joint distribution for the pair (f,o ) then takes the prod-
uct form

P[0 Po 0 ~]=Pq[0 4o 4]P.[o] (2.30)

Comparing with (2.9), we see that (2.27) gives a very poor
approximation for the final state. It gives an unphysical
NG mode ( —Tlq ) in the fluctuation spectrum. It also
gives an incorrect value for the zero-temperature magne-
tization [compare (2.28) with the correct result (2.7)] and
an incorrect first-order temperature correction.

As mentioned in the Introduction, the problem with
theories of this type is that they allow for only a single
length or mass. In (2.24) we can identify a single mass
term 8'and a length L via
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(2.31)

and, switching to the pair (P, o ) we obtain the joint dis-
tribution

P[4 0o 0 ~]=P~[4 40 0+o]P.[~] (2.32)

The scheme becomes nontrivial when we use cr(R, t),
whose dynamics is governed by P [o], to model the
growth of order. The field P(R, t) is left to describe fiuc-
tuations about order, which become less and less impor-

and it is clear that at this stage the field o. does not enter
into the order parameter correlation functions.

Next, we introduce the field P(R, t) through the
translation

tant as time proceeds. Eventually, in the asymptotic re-
gime, the field P(R, t) is expected to become Gaussian
and to decouple from o(R, t). It is clear that the careful
construction of the appropriate form for P [o ) is crucial
to the structure of our theory.

According to the physical picture described above,
o(R, t) should be a two-valued variable, which keeps the
same magnitude inside a given domain and changes its
sign across an interface. We formalize this by taking

(2.33)

where $(t) is some time dependent quantity to be dis-
cussed below, and p(R, t) =+ l. We can then rewrite the
action in terms of P and o as

A [f,fo, p, o)= Fr[$0]+fd1 d2(p(1)n(12)p(2)
TI

+$(1)I(12)$0(2)+f(1)I Gf '(12)p(2)+ G '(12)o (2)

+iuI (12)[3o(2)P (2)+P (2)]I)+A (o+P),

where the new propagators, after a spatial Fourier transform, are given by

(2.34)

G~ '(q, t, , t2)=i +I'(q)[cQ (q)+ W~(t)] 5(t, t2), —
ti

(2.35)

Gf '(q, t„t2)=i +I'(q)[cQ (q)+ Wf(t)] 5(t, t2), —
1

(2.36)

and the mass terms are now different and given by

Wz(t)=r +uS(t),

Wf(t) =r +3uS(t),

(2.37)

(2.38)

where the subscripts p and f will be used to denote peak and fluctuating contributions.
Before going further with the specification of the o(R, t) variable and its governing probability distribution P [o ],

we need some results for Gaussian functional integrals which we will refer to repeatedly as we proceed and will help us
in motivating the next step in our development of perturbation theory.

F. Gaussian functional integrals

Let us consider the structure of response and correlation functions within a functional integral approach with a quad-
ratic action of the general form:

Aq[% 0 qp]=r~f d Rid R2%0(R])g (Ri R2) Po(R2)

+fdl d24(1)n(12)4(2)+ fdl d24(1)[G '(12)%(2)+I(12)+o(2)], (2.39)

where g ', m, and G ' are arbitrary functions, transla-
tionally invariant in space, and I(12) is given by (2.19).
It is not hard to show [essentially by recalling the
equivalence of (2.12) and (2.15)] that (2.39) leads to a dy-
namics of the field 4 equivalent to that generated by the
Langevin equation

G '(11)%(1)= I(11)+o(1)+ir)(1)—, (2.40)

where, here and below, repeated barred indices indicate
integration over space and time and the Gaussian noise
satisfies (r)(1)q(2)) =2m(12). Thus, one expects that m is
proportional to the temperature and drives the system to-
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TABLE I. Correlation matrix for the quadratic action (2.39). C(12) is defined by (2.42).

p(1)

P(2)
f(2)

Pp(2)

G(21)
6(12)
C(12)

i f d R3 G(l, Rqtp g}(R 3 R2}

0
i f d R, g(R, —R, }G(2,R,tp}

g (Rl —R2)

and similar ones obtained by differentiation with respect
to%'and 40. In Table I,

C(12}=—f d 1 d2G(ll)G(22)2m(12) (2.42)

and

2~(12)=2~(12)5(t, to)5(—t~ —to)g(R, —R2) . (2.43)

These results can also be obtained directly from the
Langevin equation. Restricting the analysis to inverse
propagators G ' of the general form (2.35)—(2.36) with a
mass term W(t), it is easy to show that

6 ( q, t &, t z ) = i 8( t, —t z)—
f)

)(exp — tI q c q +8't
(2.44)

which is identified as a retarded propagator with the
equal-time value

G(q, t, t)= il2 . — (2.45)

In the important special case where W(t}~ WE )0 as
t~ pp and ~(q, t, t )2=TI (q)5(t, t2), then, for—large
t, =t2=t, the Fourier transform of the correlation func-
tion (2.42) reduces to its equilibrium value

lim C(q, t, t}= T
cg (q)+ WE

(2.46)

G. Separation of variables

Armed with these results we return to the specification
of P [o ]. We must, of course, be guided by the physics
described by the original Langevin equation (2.12) and
our intuition that P becomes in some sense "small" at
long times. Let us assume for the moment that we can ig-
nore the field (() in (2.12) and replace g~o. If we multi-
ply the resulting equation by i and recognize that the
noise 0 associated with o. should differ from g, we obtain
immediately the equation of motion

ward equilibrium.
It is not difficult to derive the correlation matrix given

in Table I by computing the averages over the fields 4,
%0, and %' through the identity

f d [4]d[4]d [40] [e 'f (4,%, BIO)]=0 (2.41)

( 8(1)8(2) = 2II(12), (2.48)

lim ( ~P(q, t)
~

)=
cg (q)+2 )

r
i

This indicates that the variable (() can be taken as 0 ( &T )

for sufficiently long times.
The above schematic analysis, although very appealing

on physical grounds, is mathematically flawed, since
(2.47) cannot hold for a discrete variable. However, one
can require that it be satisfied on average. If we formally
solve (2.47) for cr and compute the average two-point
correlation function, we must average over Pp and 8. Us-
ing (2.48) and (2.13), so that

(2.49)

( fo(R()gp(R~) ) =go(R, —R~), (2.50)

where II will be discussed below and differs from n(12).
Suffice it to say here that H and 8 can be set to zero as
T~O. Comparing (2.47) and (2.40), we are led to the
identification of 6 as the propagator associated with the
peak contribution.

There is another way of viewing this discussion. Let us
consider P&[g, fo, g+cr) as the probability distribution
for P(R, t), parametrized by the stochastic process
cr(R, t). If the dynamics of a(R, t) governed by P [tr],
are not properly chosen, then, in the long-time limit, P
will not be appropriately enslaved by u(R, t} and will not
represent small fluctuations on an ordered background.

If this picture is to be valid, then it is crucial that the
coefficient of the term in (2.34} linear in a and propor-
tional to 6, vanishes in the long time and distance lim-

it. It is, of course, this vanishing of 6 and 8' for
small wave numbers and long times which contributes to
the building of a Bragg peak in the solution of (2.47) for
the structure factor.

The choice of 6 ' as the propagator associated with
the o dynamics leads not only to the separation of the
variables 0 and P at long times, but also to the correct
separation of length scales. The characteristic length
L(t)=[—W (t)lc] ' can then be associated with the
domain size, and g( t ) = [ WI ( t) lc] ' associated with
the correlation length of fluctuations. As order develops
in the peak, we expect L(t}~pp(W =r+uS~O) and

WI(t }~2
)
r

~
)0. In this case, with WI( pp ) =2

~

r ~, we

see, using (2.36) and (2.46), that the equal time correla-
tion function associated with the P variable will reach, as
t ~ po, its correct equilibrium value (2.9):

G '(11)o(1)= I(11)+i8(1), —

where the noise 0 is Gaussian and satisfies

(2.47)
we immediately obtain

(o(1)cr(2))= —G (11)G (22)211(12) (2.51)
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where

2II(12)=211(12)+5(t, —t )5(t t —)g (R, —R ) .

Q[cr
~
m]= g —,'[1+m (l)cT(l)/$(tl)],

I

(2.54)

(2.52)
where m(R, t) is a continuous field, and Q, which
satisfies,

$(t)= (cT ( I ) ) (2.53)

which follows from (2.33).

H. Construction of P [o ]

For consistency, we must remember that (2.51) must be
supplemented by the crucial constraint

g Q[cT
~
m]=1,

g cT(1)Q [cT
~

m]=m (1),

g o(1)o(2)Q[0
~

m]=m (1)m (2)
I~I

(2.55)

(2.56)

Our analysis in Sec. IIG has led us to a set of con-
clusions which are difficult to reconcile.

(i) The fundamental field g should contain an Ising-like
component 0. whose identification allows us to separate
the two mass scales W and 8'f and suggests that we
identify the propagators 6 and Gf with the variables cr

and P.
(ii) This Ising-field 0 however, cannot directly satisfy

(2.47) derived by setting g=cr in the original Langevin
equation because of its Ising nature. The best we can do
is to require that (cr(1)cT(2)) satisfies (2.51) and (2.53).

These apparently conAicting conclusions can be recon-
ciled through the proper construction of the distribution
P [cT]. As a first step in constructing P [0], we intro-
duce

—A [m, mo, m]P [m, mo, m]=e (2.58)

where A [m, mo, m] is an action of the MSR type and
we define

P [cT]= JD [m ]D [mo]D [m]Q [cr
~

m]P [m, mo, m ] .

(2.59)

If we reorganize the product in Q in terms of a sum or-
dered by the number of o. variables we obtain

+5(12)[S(ti)—m (1)], (2.57)

maps o. onto m except for space-time points which coin-
cide, where, for example, a (i) =S(t, ).

Next we endow the field m(R, t) with dynamical be-
havior through a probability distribution of the form

(m(1)) (m(ll )m (12) )
P [cT]= 1+ g cT(l)+ —,

' g o(1 )o(12)
2N

1) ~12

(m(li)m (lz)m (13))
cT(1, )cT(12 )cT(13 )+

l), 12, 13

1)~12~13

(2.60)

where the averages in the coefficients are taken with respect to P . We note, however, that a normalized distribution
for an Ising-like field is of the general form

(cr(1) ) (cT(l i )cT(li ) )
P [cT]= N 1+ g o(l)+ —,

' g o(l, }cT(12)
2 l Stl

1) &1~

(lT(1, )o(1, )cT(1, ))
+

t g cT(l] )cr(12)(T(13)+
l)~l2~I3 l) li li

(2.61)

Comparing (2.70) and (2.61), we see that we are in the position of modeling the dynamics. of the Ising-like field 0 (R, t)
by means of the dynamics of the continuous field m (R, t). In fact, one can see by inspection from (2.60) and (2.61) that
the correlation functions of cT(R, t) do coincide at distinct points with the correlation functions of m (R, t), and the
latter are specified by giving the action A [m, mo, m]. Due to the intrinsic difference between Gaussian and Ising
statistics, deviations occur when two or more fields are taken at the same point. Consider, for example, the two-point
correlation function (cr(1)cr(2)). If we multiPly o(1)ct(2}by Q[cr

~

m]P [m, mo, m]P&[g, italo, 11'] and sum over all of
the variables, using (2.57), we obtain the general result

( o (1)cr(2) ) = (m(1)m (2) ) +5(12)[$(ti ) —(m (1)) ] (2.62)
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and the two correlation functions will be identical everywhere,

C (12)=o(1)o(2))=(m(1)m(1)),
if we enforce the self-consistent constraint (2.53),

S(t, )=(m'(1)) .

One can show in a similar manner, using (2.56), that

(o(1}m(2))=C (12) .

(2.63)

(2.64)

(2.65)

Higher-order correlation functions cannot be constructed to coincide everywhere.
We can now develop a nontrivial, non-Gaussian dynamics for cr(R, t) through a Gaussian dynamics for m (R, r }. We

simply stipulate that m (R, t) obeys the equation of motion (2.47),

G '(11)m(1)= I(11)m—z(1)+i8(1), (2.66)

where mo is governed by the initial free energy Fz given by (2.13) with $0 replaced by mo. Clearly, from the discussion
of Sec. II F, the quadratic action associated with the field m is given by

Fz[mo]+ 1 dl d2[m(1)H(12)m(2)+m(1)[6 '(12)m(2)+l(12)mo(2)]] .
I

(2.67)

From (2.66) we can identify G~
' as the propagator for

the m field, and, to the extent that the m and o fields
coincide at distinct points, we can also identify G as
the propagator for the 0. variable and reconcile the two
points listed at the beginning of this section. In particu-
lar we have constructed P [cr ] such that (2.51}and (2.53)
hold and G „'(11)C~(12)=—2n(12)G„(22), (2.72)

in the final equilibrium state. In the case we study here
this mode is spurious and H must be constructed such
that no such mode appears in C . The NG mode con-
tained in C,

„„

is associated with the massless limit of 6
and consequently we define a new quantity Cz.

C (12)=—6 (11)G (22)2II(12) . (2.68) where 6„'is given by (2.32) with W =0. Since the
difference between C,„„(12)and CN(12) will not contain
the NG mode, we can set

I. Determination of II(12)
C (12)=C,„„(12)—C~(12) . (2.73)

6 '(11)C,„„(12)= —2%(12)6 (22), (2.70)

where

2n(12)=2m(12)+5(t, —to)5(t2 to)go(R) —R2) (2.71)—
and ~(12) is the usual noise auto correlation given by
(2.18). This equation was studied in Ref. 22 and, while
leading to an ordering peak, it also generates a NG mode

The last point to be specified in the determination of
the o and m variables is the noise term II(12). The con-
struction of an acceptable form for H is based on the ob-
servation that unless II vanishes at long times one will
generate the spurious NG modes discussed earlier. In ad-
dition, one expects that at short times the peak growth
will be influenced by thermal noise and II-T, while at
long times thermal noise should be unimportant in deter-
mining the peak contribution.

We construct II satisfying these requirements by first
considering the equation satisfied by C obtained by mul-
tiplying (2.51) on the left by G

6 (11)C (12)=—2H(12)6 (22), (2.69)

where H and II are related by (2.52). Let us now consider
the auxiliary correlation function C,„„(12)obtained by
replacing II by Fr in (2.69):

Subtracting (2.72) from (2.70), using (2.73) and comparing
with (2.69}allows us to identify

2H=2%(12)+6 '(11)Gq '(22)CN(12) . (2.74)

J. Recapitulation

At the beginning of this section the field ti was split
into the two fields P and o in order to introduce two
different "masses" 8' and $Yf in the theory. This re-
quired that cr be an Ising-like variable, whose dynamics is
described by a probability distribution P [o ] designed to

By making use of (2.71) and the definition (2.35) in (2.74)
we obtain, after a spatial Fourier transform,

2H(q, t, , tz)=l (q)[ —2iW (t2)6„(q,r2, t, )T

2i W, (r,—)6„(q,r„r,)T
—W (r, ) W, (r, )C~(q, r, , r, )] .

(2.75)

The key point for our purposes here is that II(q, t „t2)
vanishes as t, or t2~ ~ since W (t} vanishes as t~ ~.
The resulting peak correlation function C (12) will, con-
sequently, not contain any spurious NG modes.
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govern the growth of the peak contribution in the struc-
ture factor. The proper mathematical construction of
P [o] requires the introduction of an additional (con-
tinuous) field m (R, t) which, in some sense, is conjugate
to o(R, t). In the end, the distribution governing the
theory in the expanded function space is given by

Pr[g fo 0 o,m, mo, m)

We can then write down the total action

A~ ——Ao+ V,

where

1
Ao= A + Ft[go]

I

(3.4)

—A7 [fP, otto, y, cr, m, mo, m]=e g jo. mj,
where the action A z is given by

(2.76)
+ fd 1 d2[tj(1)n(12)1((2)

+f(1)[I(12)$0(2)+Gf '(12)p(2}

Ar[g, go, g, o, m, m, mo]= A [m, m, mo]

+ A [f,go, p, o ] (2.77}

with A given by (2.67) and A by (2.34).

III. PERTURBATION THEORY

A. General considerations

+G~ '(12)m(2)]J

is the zeroth-order contribution, and

V= fdl d2[Q(1)ittI (12)[3o(2)$ (2)+Q (2)]I

+ AJ[o+p)+ V

(3.5)

(3.6}

V = 1 2 1G '12 o. 2 —m 2 (3.3)

as part of the perturbation. We expect V to be a small
perturbation because o(1) is, on average, very nearly
equal to m(1). At long times the two fields coincide ex-
cept near interfaces. Furtherinore, G '(12) goes to zero
at long times and distances because 8' ~0. We will

later see that this expectation is explicitly verified at first
order where the contribution arising from V vanishes.
Should one include (3.1) directly in the zeroth-order
probability distribution, terms would be generated at first
order which are of the same magnitude as the zeroth-
order terms.

The distribution Pr given by (2.76) is an exact formal
rearrangement of the original field theory. We can now
proceed to solve for the basic properties of this model in
perturbation theory. To do this we start by choosing an
appropriate quadratic approximation to A&. Since A is

already quadratic in the fields m, m, mo, we include it
completely in our zeroth-order action. There are three
sources of nonquadratic terms in A which should be in-

cluded in the interaction. The obvious terms are those
proportional to 3o(2)$ (2)+P (2} and the Jacobian
term, which can actually be combined to give one source
of nonlinearity. Less obvious is the term3

fd1 d2$(1)G '(12)o(2) . (3.1)

This term is quadratic in the fields, but, because of the Is-
ing nature of cr, it does not lead to a Gaussian contribu-
tion in the associated probability distribution. Instead we
write

1 2 1 Gp
' 12 o 2

= fd 1 d 2 P(1)G '(12)m (2)+ V (3.2}

and we treat

is the interaction. We develop perturbation theory by
writing the total distribution

Pr =Poe —V (3.7)

where

Po ——e 'Q[o
~
m] (3.&)

P(1)=g(1)—a (11)m (1),
where

a(12)=Gf(11)G~ '(12) .

(3.9)

(3.10)

The zerath-order action then decouples into a sum of two
parts:

Ao ——A +A~, (3.11)

where A is given by (2.67), and A& has the same general
form as A

and expanding in powers of V. A few general comments
are in order.

(i) Even though the portion of Po proportional to e
is Gaussian, Po is certainly not Gaussian with respect to
the basic field f due to the factor of Q [cr

~
m]. This will

be demonstrated explicitly below when we calculate the
singlet distribution function p.

(ii) The assumption that V can be treated as small for
small T is supported by the expectation that at long times
f-1/&T, P-~T, and m -o —L/&T. Thus the term
in Vproportional to oP is of O(&T ) and the P terin of
0 ( T). V has been discussed above.

(iii) Looking at the zeroth-order action Ao, we see that
there is an indirect coupling between the fields m and P
through the term

/GAL
'm. We can achieve a further sep-

aration of the peak variable and the equilibrating phonon
contribution if we make one further shift and define the
field g( 1 ) via

A~ ,' fd R,d R2$0——(R—,)go '(R, —R2)1to(R~)+ fd 1 d2[itj(l)n(12)1((2)+1((1)[I(12)$0(2)+Gf '(12)g(2)]I . (3.12)
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In terms of these new variables the original field is given
by

we find

g(1)=cr(1)—a (11)m (1)+g(1) . (3.13)
—+21 (q)[cQ (q)+ W (t)] C (q, t)
at

B. Zero-order theory

In this section we work out the zero-order theory in
detail. The results of this computation show that the
probability distribution Po given by (3.8) contains all the
essential features of the physical process that we wish to
describe.

Let us then consider the structure factor

= —2I (q) W (t)C&(q, t)+5(t —to)go(q) (3.22)

which must be supplemented by the consistency con-
straint (2.64) given by (2.25) with C replaced by C
Similarly, from (2.72) one can derive the equation obeyed
by the equal-time quantity Cz(q, t}

at
—+21 (q)cg (q) C,v(q, t)= —2TI'(q)8(t to),—

C(12)= (Q(1)Q(2) } (3.14) (3.23)
After replacing P using (3.13), we evaluate the zeroth-
order average with respect to Po, which we denote by
( )0. Since the variables m and (r are decoupled from g
at zeroth order, all such cross correlations are zero. Us-
ing (2.63) and (2.65), it is easy to show that at zeroth or-
der

which can be integrated explicitly to obtain:

ro } —2r(q)cg (q)(t to)—
C (q, r)=—,[e ' —1] .

cg (q)
(3.24)

Next we consider the contribution to the structure fac-
tor given by C, (12). Inserting (2.51) in (3.18) we obtain

C (12)=C~(12)+C (12)—C, (12)—C, (21)+C„(12),
(3.15}

C, (12)=—Gf(11)2II(12)G (22) . (3.25)

where we have introduced the notation

C (12)=(((I)g(2)&, ,

C (12)=(m(1)m(2))o,

C, (12)=a(11)C (12),

C„(12)=a(11)a(22)C(12) .

(3.16)

(3.17)

(3.18)

(3.19)

The derivation of the differential equation obeyed by the
equal-time quantity C, (q, t) is considerably more compli-
cated than those discussed above and we illustrate only
the key steps. The main new complication is due to the
nonlocal structure of II(12) as given by (2.75). If we mul-
tiply (3.25) from the left by Gf

' and from the right by

G~ ', add the two resulting equations, set t, =t2 and
Fourier transform over space we obtain

Let us focus here on the determination of the equal-time
correlation functions. Let us start with C&. Comparing
(3.12) and (2.39) we see that we can evaluate C& immedi-
ately in the general form given by (2.42) with G ~Gf and
gogo. Multiplying the result from the left by Gf ', we
obtain where

+&(& —&o )go(q), (3.26)

—+21(q)[cg'(q)+ W, (r)] C, (q, t)
at

= —I (q)W (t)[Hf(q, t)+H (q, t)]

Gf '(11)C((12)= —Gf (22)2F(12), (3.20) W, (r}=r+2uS(r) (3.27)

where F is given by (2.71). Rewriting (3.20) with the in-
dices 1 and 2 interchanged, adding the result to (3.20),
setting t, =t2 ——t, Fourier transforming over space and
using (2.45), we obtain for the correlation function
C~(q, t)

—+2I (q)[cg (q)+ Wf(t)] C&(q, t )
c1t

=2TI'(q)+5(t t )go(q0) . (3.21)—
In complete analogy with the derivation of (3.20) one ob-
tains:

G (11)C (12)= —G (22)2II(12) .

Using the expression for II given in (2.75) and performing
steps very similar to those leading from (3.20) to (3.21),

and where the quantities Hf and H are themselves
correlation functions which require a similar analysis to
determine the differential equations governing their
equal-time behavior:

—+2I (q)[cg (q)+ —,
' Wf(t)] Hf(q, t)

at

= I (q) [2T0( t —to ) +C&( q, t ) Wz ( t)), (3.28)

—+21(q)[cg'(q)+ —,'W (r)] H (q, r)
at

=I (q)[2TH(t —to)+C)v(q, t)W (r)] . (3.29)

A similar procedure applied to C„(q,t) yields the deter-
mining equation:
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—+21 (q)[cg'(q)+ WI(t)) C„(q,t)

= —2W (r)l (q)HI(q, r)+5(r —ro)go(q} . (3.30)

In summary, the set of equations (3.21), (3.22), (3.24),
(3.26), and (3.28) —(3.30) give the behavior of the structure
factor in the zero-order approximation. It is also possible
to derive, without much more effort, the equations for the
time-displaced structure factor C(q, t, t + r }, which,
however, will not be studied in this paper.

The solution of the differential equations derived above
will be considered in detail in Sec. IV. Here we add a few
qualitative comments which elucidate the physical can-
tent of the zeroth-order approximation. For simplicity
consider a quench to zero temperature ( T =0) where

C)v(q, t) =HI(q, t) =Hy(q, t) =0 .

The governing differential equations can then be rewrit-
ten in the compact form:

moment S(t) .Starting from the initial instability due to
W (to) &0, the system equilibrates by growing a peak un-
til W (t)~0 .Hence, (3.31a) has a long-time solution:

lim C (q, t)=MO5(q) (3.33)

with

Mp ———r/u .2= (3.34)

p(y, &) = (5(y —P(R, &)) )0, (3.35)

Furthermore, since W&(t) and W, (t) are both positive for
sufficiently long times, the other contributions to the
structure factor eventually decay exponentially to zero
and after the passing of these transients, the structure
factor is given by the peak contribution only. This
demonstrates that the set (3.31) produces the expected or-
dering and the correct equilibrium state for T =0. The
structure of the distribution Pp underlying the zero-order
theory is most effectively illustrated by studying the re-
duced singlet probability distribution p(y, t), defined by

D (q, t)C (q, t)=0,
D~(q, t)C((q, t) =0,
D, (q, t)C, (q, t) =0,
D&(q, t)C..(q, t) =0,

(3.31a)

(3.31b)

(3.31c)

(3.31d)
+ X 1x[y —u(1)+a(11)m(1)—g(1)]

P e2' (3.36)

which gives the probability that the field g(R, t) at the
time t has the value y. Using the integral representation
of the 5 function and the decomposition (3.13), we have

with

D„(q,t) =—+2I (q)[cQ (q) + W„(t)] (3.32)

and all correlation functions are initially ' equal to go(q}.
For the particular case of T =0, we see that
C~(q, &)=C„(q,&). We show explicitly in Sec. IV that
the peak growth in the structure factor is driven by
(3.31a), and that it indeed involves only C (q, t) and its

After tracing over o., which can easily be performed, one
is left with Gaussian averages over g and m and the in-
tegration over x. The Gaussian averages can be carried
out using the basic result

(e's(")&(")o——exp[ —(1/2)8 (11)B(12)(g(1)g(2) )0].

(3.37)

The final result is given by

p(y, t) =(8irb)
S, (r) S, (t)

[~ +1/'S (i)] &
—[y+(/S( )} /2(b+ 1+ [~ i/'S (i)] e

—(y —(/5(()) /2b

b&S (r) b&S (r)

(3.38)

where

b =Sg(&)+S„(&) (3.39)

and S&(t), S,(t), S„(t)are moments of C&(q, t), C, (q, t),
C„(q,t) analogous to S(t) as given by (2.64). The ex-
pression (3.38), after computation of these moments,
leads to the results shown in Fig. 1, which displays the
evolution from the initial Gaussian, associated to the
disordered state, to the final bimodal distribution charac-
teristic of the ordered equilibrium state.

C. General structure of perturbation theory

In the fuHy interacting theory the average giving the
structure factor is taken is taken with respect to the total

probability distribution Pr, given by (2.76). We now in-

vestigate what modifications the interaction produces on
the behavior of the structure factor. The first step is to
derive a general expression for the structure factor which
involves only the variables g and m entering the zero-
order theory.

As we have shown in Sec. II, the fields o(R, t) and
m(R, t) share the same correlation function (2.51) and
this is a basic requirement, independent of perturbation
theory, which follows from the structure of P [(y]. This
is not the case for the mixed term (o(1)(}}(2)), since the
joint probability of the fields cr and P clearly depends on
the interaction. However, a term of this type can be
rewritten as an expectation in terms of m and (t. From
the definition (2.54) it is easy to derive
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o(1)Q[o
~

m]= m(1) —[S(t, ) —m (1}]
am (1)

yQ[o ~rn]. (3.40)

Inserting this result into (cr(1)P(2) ) and integrating by
parts with respect to m, we obtain

( o(i)y(2))

G~p( 12)=GR (12)5~p+ C~(12)5p(

+G„(11)X~(12)G (22)5p

+GR(11)X~.(12)C.(22)5p.

+G~(11)X~ (12)C (24)X ~(43)G~(23)5'

(3.52)

where

=( I 3m (1}+[S(1)—m (1)]G '(11)m(1)I(I)(2)) . Gq '(12)=Gf '(12)—X~((12) (3.53)

Introducing the field

N(1)=3m(1)+[S(1)—m (1)]G '(11)m(1)

(3.41)

(3.42)

and using (3.9), we can write the structure factor in the
form

and the interacting C& is given by

C((12)= —Ga (11)[2r(12)—X]](12)]Gq (22) . (3.54)

Exploiting the above results, (3.43) can be rewritten in
the form

C(12)=B(11)B(22)C (12)+Cg(12)

+ ([N(1)—m (1)]g(2))
C (12)= [5(11)—a (11)][5(22)—a(22)]C (12)

+ ( [N(1)—a (11)m (1)]g(2))
+ (g(1)[N(2)—m (2)]),

At zero order the cross terms (N(1)g(2)) and
(m (l)g(2)) vanish and the form (3.15) of the structure
factor is recovered.

In order to discuss the perturbation expansion for the
structure factor, we start by defining the matrix correla-
tion function

B(12)=5(12)—a(12)+Gz(13)X& (32) .

This form is useful for a perturbative analysis.

+ ( [N(2) —a (22)m(2)]g(1) ) +C&(12) . (3.43)
where

(3.55)

(3.56)

g G '(11)G p(12)=5 p5(12) (3.45)

and can be written as

G p(12)=((P,(1)Pp(2)),

where the indices a and p run over m, m, g, p [e.g. ,
(p -(1)=m(1)]. The matrix inverse G ' satisfies

D. First-order correction

The first-order correction to the structure factor (3.55),
except for the last two terms which will be discussed sep-
arately, requires the evaluation of the self energies. The
first step is the construction of the effective interaction,
which is obtained by taking the logarithm of the non-
Gaussian part of the total distribution (3.7). To first or-
der in the coupling constant we find

G p'(12)=G p '(12)—X p(12), (3.46)

where X p(12) is the self-energy part which vanishes at
zeroth order, and the zeroth-order part of the inverse,
G ' is obtained from the zeroth-order action (3.11):

AI ———ln Tr Q[o
~
m](1 —V)

= AJ(m, (I())+ AI(m}= Al

where

(3.57)

0 —1 0 —1 0 —1 0 —1G ] ——G ( ——G] ——G( ——0,
G '(12)=G (12)=6~ '(12),

(3.47)

(3.48)

A&(m, g}=— fdl I (R&,R&)[2m(1)P(1)+P (1)],
2

(3.58)

G~( '(12)=G(~ '(12)=Gf '(12),

Go~~ '(12)=2%(12),

(3.49)

(3.50)

AI(m)= fd 1 d2ig(1)uI (12)[2m (2)P (2)+P (2)]

(3.59)

G (12)=2II(12} . (3.51} and P is to be evaluated in terms of g and m using (3.9).
The first-order self-energies are then computed using

The inversion of (3.45) for G p(12) is made easier by
taking into account (i) from the general structure of the
total action (3.4) it follows that G p' ——0 when both a
and P are unhatted variables; (ii} from the structure of the
vertices it follows that X p

——0 when either a or p is equal
to m; and (iii) G:& ——G:& ——0 since the fields g and m are
uncorrelated. We then obtain from (3.45}:

g (1)Q2

( 54,(1)M'p(2) ' l
(3.60)

where 4 is a vector whose components are the indepen-
dent fields g, m, g, and rn From (3.60), .after some
straightforward algebra, we find that the only nonvanish-
ing first-order self-energies are
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X~~(12)= —3iu I (12)[S~(1)+S„(1)—2S, (1)] (3.61) IV. RESULTS

and

X ~(12)=—3iu1 (12)[S~(1)+S„(1)]

+3iu I (22}a(21)[S~(2)+S„(2)—2S,(2)],
(3.62}

V(12)= ( [N(1)—m (1)]g(2)) . (3.63)

This vanishes at zeroth order and at first order, before
doing the Ising sum, is given by

V(12)= —( [N(1)—m (1)]g(2)[A I+ At+ V ] )0 .

where the moments S&, S„S„havebeen introduced in
Sec. III B.

The correction to the structure factor, which cannot be
extracted from a self-energy, is the quantity

Ck= (4.1)

We now present some of the results that can be ob-
tained from the lowest-order theory. The basic equations
for the equal-time correlation functions were derived in
Sec. III are given by (3.21), (3.22), (3.24), (3.26),
(3.28) —(3.30), and (3.15), which relates the structure fac-
tor to its various pieces. We will study both the case
where the order parameter is conserved and where it is
nonconserved and results in both two and three dimen-
sions will be given. We choose to carry out our calcula-
tions in an isotropic continuum, introducing a cutoff AQ

in q space to avoid the ultraviolet divergence in the com-
putation of S(t). Alternatively, we could perform the
calculation on a lattice.

Defining the dimensionless variables
' 1/2

(3 64) and

The calculation of this contribution is rather lengthy but
it leads to the simple final result

21, /r )

C
(4.2)

V(12)=6iuI (11)Gf(21)S,(1) . (3.65)

and

C((q) =0 T
cQ (q)+2

~

r
~

(3.66)

Using the results (3.61), (3.62), (3.65) and that all other
self-energies vanish to this order, one can evaluate the
structure factor (3.55) to first order in V. We shall settle
here for investigating the long-time limit for the Bragg
peak. We show in Sec. IV that S,(t) and S„(t)vanish as
t~~, it is also easy to show that a(q=O, tt), which
enters the Fourier transform of X &, also vanishes as
t ~ ao. Clearly at zeroth order in the long-time limit

with I', = I c for NCOP and I,=D
~

r
~

for COP, all the
differential equations satisfied by the various equal-time
correlation functions are of the general form

(4.3)

For example, the equation for the peak contribution
(3.22) can be rewritten in the dimensionless form

+k'[k' 1+S(r)] C—(k, r)
'T

=e[1—S(r)](1—e " ')+g(k)5(r —~0), (4.4)

d"
S~(1)=(g'(1))f "

C((q) .
(2m )"

(3.67)

where
' d/2

C (k, r)= C (q, t)
r c

(4.5)

We can then evaluate for large t, and t2.

X -(q, t, t, )= —3iul (q)5(t, —t, )(g'(t, ))

=X &(q, t, t, ) .

We then obtain the result for the structure factor

C(q)=C&(q)+M 5(q),

(3.68)

(3.69)

is the dimensionless structure factor, and

S(r)= S(t) (4.6)

is the corresponding moment, with a dimensionless cutoff
A, related to Ao as in (4.1). We have chosen A= 1 in all
of the calculations reported here. The quantity

where C&(q) is given by (3.53), (3.54), and (3.68) and

2M
(3.70)

uT ir[
r2 C

d/2

(4.7)

Comparing with (2.7) and (2.9), we find the same results
to first order in the temperature obtained from the equi-
librium theory. Therefore, the features of the dynamical
solution which we have emphasized in the zero-order
theory —growth of a peak and equilibration to the
correct final state —do persist when first-order correc-
tions are taken into account.

g(k)= g, (q) . (4.8)

is the dimensionless coupling characterizing the final
equilibrium state. The shared initial condition for the di-
mensionless correlation functions C, C &, C„andC„is
given by
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+ f d r'h(k, r')exp —f dry(k, F)
Tp

(4.9)

Rewriting (4.9) with the time argument r+ b„where 6 is
a small time step, it is straightforward to derive

f(k, r +&)=e '""f(k, 7.)+ ' (1—e "'"'a)
y(k, r)

(4.10)

which is correct to O(h ). Hence the time evolution of

The solution of (4.3), with an initial condition f(k, ro),
is given by

f(k, ~)=exp —f dry(k, r) f(k, ra)
7p

f (k, r) can be generated by iteration of (4.10), keeping in
mind that at each time step the computation of y(k, t) in-
volves an integration over k to obtain the moment S(r).
This is the only step which is performed numerically in
the following analysis.

The driving terms appearing on the right-hand side of
(4.3) are of two types: One is noise driven, proportional
to the final quenching temperature ().). The other is pro-
portional to the initial value of the correlations. If both
are zero, C(k, r) remains zero at all times. If either is
nonzero, there is growth.

It is generally believed that the long-time properties of
these systems are the same for either type of driving
terms: Quenches to finite temperatures with zero initial
conditions are expected to give the same long-time behav-
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FIG. 2. Moments for COP: S„,S&, S„S,ST. S„andS& are distinguishable only in panel (a).
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C(k, r) =C~ (k r)+C (k, r)+C„(k,r—

dimensionless mom entsand the corresponding di

(4.11)

—2S (r) .}=S(r}+S(r)+S,.(r)—
n

' . ine the moments appearing in
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The curves in Fig. 2 contain a large amount of infor-
mation. The overall gross feature for very early times is
that all of the moments grow rapidly [S(r)-e' /&r]
and the variables o(1), g(1), and a(11}rn(1) are all ini-
tially unstable. However one finds as S increases that the
W(t) functions associated with the correlation functions
C, C &, C„C„increase from their shared initial nega-
tive value of —1 (in dimensionless units) toward zero.
When S(r)- —,', one finds that the mass terms for C

&
and

C„passthrough zero and their subsequent positive value
causes S& and S„to reach rnaxirnum values and begin
exponential decay toward their final equilibrium values:

d

S,(.)=f (4.16)
(2ir)~ k'+2

M= ~C q=SGf g

(2ir )
(4.17)

we obtain, using (4.6),

—I'
M0 ——

Q
(4.18)

and S„=O.As time evolves and S(r) approaches —,
' the

saine change of sign occurs in the S,(r) mass term, caus-
ing the subsequent decay of this moment to zero. During
the latest stages S approaches 1 and the mass associated
with the peak goes to zero as described below (3.32}.
Since the area under the central peak tends to the magne-
tization squared for long times:
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FIG. 4. Moments for NCOP: S„,S&, S„S,ST. S„andS& are distinguishable only in panel (a).
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as expected.
Note there is no major difference between quenches to

zero temperature and nonzero initial conditions and
quenches to nonzero temperature with zero initial condi-
tions, thus, the expectation that initial condition averag-
ing and noise averaging are equivalent appears warrant-
ed. Finally we observe that dimensionality seems to play
a minor role, except for a change in the time scale.

Once the various moments shown in Fig. 2 are ob-
tained one can proceed to evaluate the singlet distribu-
tion function given by (3.38). Figure 1 shows p(y) multi-
plied by 2m, in terms of the dimensionless time defined by
(4.2) and y measured in units of Mo. The parameters
characterizing the system are a=0. 1 and g(k }=0.

In Fig. 3 we show C(k, r) as a function of k for several
values of v. in the intermediate time regime. The four
panels in the figure correspond to the same four curves as

in Fig. 2 and similar comments apply. The evolution of
the wave vector k (r}, corresponding to the maximum
value of C(k, r), toward smaller values can be clearly
seen. Its behavior with time is analyzed in more detail
below.

We turn, in Figs. 4 and 5, to the case where the order
parameter is not conserved. The moment ST(r) and its
constituents are shown in Fig. 4. Except for a large
change in the time scale rejecting a much faster equili-
bration, the qualitative behavior is as in the conserved
case. In Fig. 5 results are shown for C(k, i) for a NCOP.
Here we have the very obvious difFerence, compared to
the COP case, that the ordering peak now grows at k =0.

We turn now to an examination of asymptotic behav-
iors. For very short times and with initial conditions
such that S(r) «1, one can easily determine all of the
correlation functions and their moments. One obtains,
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for example, for a COP:

(I'.)
—rk (k —1)[g(I )+~k2(1 e

—k T)]

and

(4.19)

and S(r) are identical. In Fig. 6 we show the long-time
behavior of S(w) for a COP. The maximum time depict-
ed is nearly one order of magnitude larger than the long-
est time attained in numerical simulations. We find that
as ~~~:

(. (I g ) —e
—'k (" —t' g(I')+ (e'k (" —(~ 1)

k —1

(4.20)

A, B,
(n+ 3z4+ (4.21)

The moments are seen to grow as e'~ /&r as pointed out
above. This exponential growth is clearly associated with
the Cahn-Hilliard mechanism.

We turn next to the long-time behavior. We consider
first the behavior of the moments at long times. In this
regime ST(r) =S(r)+S(v)+S&(~ ). Since the latter is a
constant at long times, the time dependences of Sr(~)

The parameters A, and B, depend weakly on e and el.
For the parameters characterizing Fig. 6(a)
(a=0. 1,el ——0), A, =2.77 and Bs =0.15. We have stud-
ied A, (e, e I——0) and A, (e=O, EI) from a fit to S(r) for
times &~20, and found that A, =a +b lnZ, where Z is ei-

ther e or ei, whichever is nonvanishing, and a =2.4,
b = —0. 19 for el ——0 while a =3.7 and b = —0. 14 for
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FIG. 6. Best fit for S(~) vs ~ in d =2. (B) COP, S(~)
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FIG. 7. Quench with COP from ei ——0 to a=0. 1in d =2. (a)

kp vs 7 DBtB co1ncide w1th best fit kp 0 025+0 62T (b)

Cp(7 ) vs 7 DBtB coincide with best fit Cp(7 ) 6 837
—0.69K' —15.4.



38 FIELD THEORY FOR GRO%'TH KINETICS 539

e=O. The intermediate time behavior where w & 20, but
beyond the initial exponential region is hard to character-
ize quantitatively.

When the order parameter is not conserved we find
that $(r) reaches its asymptotic value according to:

A, B,S(r)=1— + ~~~+0 (4.22)

where, for example, for two dimensions, a=0. 1 and

er ——0, the values A, =0.97, B,= —0.40 give a good fit
over the time interval 20&~&300. It is not surprising
that the asymptotic limit is reached earlier and with a
faster power law in the absence of a conservation law.

We now turn to the long-time behavior of the structure
factor itself. To characterize the domain growth, in the
conserved case we use the position k (r) of the peak in

C(k, r). We also define the peak height, C (r)
=C[kz(r), r] .For the case @=0.1 and zero initial condi-
tions, we find at d =2 the results shown in Fig. 7. In all
cases considered we find that k~ '(r) and r (r) are given
asymptotically by:

k '(r)=1. +Ar'

C, (r) = A, r'"+B,r'~'+ C, ,

(4.23)

(4.24)

d ink (r)
n,o(r) =

d ln~
(4.25)

~here L0, A, AP, BP, CP depend weakly on e and ei. For
the case shown in Fig. 7 we find, in the range
2000 & r & 15 000, L0=0.025, A =0.62 and for the peak
height A =6.83, B = —0.69, C~= —15.4 in the range
2000&r&15000. Analyzing Fig. 7(a) and defining the
eft'ective exponent,

0.8
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one can see that n, tt~ ,' mon—otonically from below.
In three dimensions (4.23) remains valid while (4.24) is

replaced by

0.5— C (r)=A r +B r' +C r' +dP P P P P (4.26)
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This is in agreement with the expectation that the dimen-
sionality should not affect the growth exponent n, while
C -r" implying the scaling law C kd=A /A . We
show in Fig. 8 the results for k (t) obtained in three di-
mensions for a=0, ei ——0. 1. In this case, a fit in the. range
10 &~&10 yields L0 ——0.29, A =0.51, A =11.1,
Bp 1 3 7 Cp 8 1 6 and Dp 65 6.

The development of asymptotic behavior occurs much
earlier when the order parameter is not conserved. We
then find in this case that the width of the peak at k =0
decreases asymptotically as:
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FIG. 8. Quench with COP from el ——0 to a=0. 1 in d =3. (a)

kp vs v . Data coincide with best fit kp
' =0.29+0.5 1~'; (b)

Cp(~) vs ~. Data coincide with best fit Cp(~)
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FIG. 9. k ~( v ) vs ~. Data coincide with best fit

kg '(r) = 1.20&' —0. 13.
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k~'(~) = A ~v' +8~ (4.27}

which is in agreement with the Lifshitz-Cahn-Allen law,
as expected. A ln-ln plot of k~ versus v. for the case
E=O 1., et ——0 is given in Fig. 9. The fit to (4.27) with
A ~= 1.21 and 8+,———0. 13 cannot be distinguished
from the solution for kz.

In the long-time regime we have also verified that scal-
ing is satisfied. In the asymptotic region the structure
factor for a COP can be written as

F (x}

-3.5

-8.5

C(k, ~) =C (~)F[k/k ( ~) ] (4.28)

with F(1)=1. The scaling function F(x) is plotted in
Fig. 10 for d =2 and d =3 (narrower peak) in the case of
a quench with ez ——0, @=0.1.

We have also obtained the shape function for the non-
conserved case where we define F (x) by:

-13.5
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X
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C(k, r)=C(0, r)F[k/ka(r)] . (4.29)
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FIG. 10. Scaling function I'(x) vs x for COP in two and three
dimensions.

In this case the shape function is Gaussian for x not too
large, as it is demonstrated by plotting (Fig. 11) lnF(x)
versus x . In Fig. 11 the shape functions for a quench in
d =2 and d =3 (with et ——0, e=0 1) are .cotnpared and,
as in the COP case, a narrower peak corresponds to the
higher dimensionality as it should be expected. We have
found in all cases (COP and NCOP) that F(x ) decreases
as

~

x
~

for large values of
~

x
~

in both two and three
dimensions. This is in agreement with Porod's law
(x ' + "}in three dimensions, but not in two. It is possi-
ble to show that the ~x

~

result follows analytically
from substituting (4.21} into (4.4), and carefully examin-

ing the long-time limit.
While the long-time result for the growth law in the

nonconserved case [L(t)-t'~ ] is well established, the
exponent for the conserved case is more controversial.

FIG. 11. Scaling function F(x) vs x for NCOP in two and
three dimensions.

Recent numerical simulations of (2.1) extend to relative-
ly early times (v&2000) and yield results varying be-
tween —,

' and —,'. Taking into account the uncertainty due
to the numerical methods, these results are compatible
with the asymptotic behavior obtained here. A detailed
comparison between the two methods will be made in fu-
ture work.

V. CONCLUSIONS

In this paper we have addressed the long-standing open
problem of constructing a theory which is capable of
describing the entire time evolution of a system undergo-
ing a nonequilibrium process from an initial disordered
state to a final ordered state. We have done this in the
context of a field-theoretic method for Langevin dynam-
ics and we have developed a systematic low-temperature
perturbation expansion, The lowest-order theory has
been analyzed in detail producing all the expected
features of the global time evolution, such as a reduced
singlet probability distribution evolving from an initial
Gaussian to a final bimodal distribution, the separation of
the domain size L(t) from the correlation length g(t)
generated by the dynamics, and the equilibration to a
final ordered state without Nambu-Goldstone modes.
The growth law at long time L (t)-t" has also been com-
puted to lowest order, obtaining n = —,

' for COP and n =—,
'

for NCOP. We find that these models are of the class-I
type introduced in Ref. 9, with no activated processes at
very low temperatures.

The stability of these results has been checked when
first-order corrections are taken into account, and it has
been found that no change occurs in the growth law,
while the final equilibrium quantities, like the magnetiza-
tion and the correlation length, acquire the appropriate
first-order corrections in the temperature.
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Also of interest is the fact that the method is not limit-
ed to purely uniform boundary conditions. It is in princi-
ple possible and in practice rather straightforward to use
the basic equations of Sec. IV with nonuniform initial
conditions. One can study, for example, the evolution of
hot drops in a fluid or the evolution of an initially hot
system quenched in the presence of an ordered boundary.
These problems contain the germ of the physics which
must be introduced to study problems such as dendritic
growth, domain wall motion, and nucleation theory. We
believe that the extension of the perturbation methods
discussed here to more complicated and physically
relevant models is not unduly difficult.
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