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Spinworrelation function of the S 1 antiferromagnetic Heisenberg chain at T 0
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The correlation function p(l) (S,*g+t) is calculated for the spin-1 Heisenberg antiferromag-

netic chain (H Jg;4';4';+~, Sn+1—=S~) at the ground state. Using the Monte Carlo method of
Hirsch, Sugar, Scalopino, and Blankenbecler, we find that p(l) decays exponentially in contrast to
the S —,

' case where p(l) decays algebraically. This fact coincides with Haldane's prediction

and recent numerical calculations. We calculate the upper bound of elementary excitation from

the structure factor using a variational method which resembles the Feynman theory for elemen-

tary excitation of liquid He.

Since Haldane's theory in 1983, ' the ground-state and
elementary excitations of the antiferromagnetic Heisen-

ber~ (AFH) chain has been investigated by many theor-
ists " and experimentalists. 'z'3 In contrast to the fer-
romagnetic case, the system shows different behaviors for
integer S and half-odd integer S. The simplest case is
S —,

' which can be solved by the Bethe ansatz method.
It was established that the elementary excitation is gap-
less. It is expected that the spin-correlation function of the
ground state decays algebraically. ' The exact numerical
method has been applied to S 2 finite chains up to
N 24. 's ' Monte Carlo (MC) analysis of the correla-
tion function has been done for a longer chain with
N-40. "

For the S 1 case the exact numerical method is ap-
plied up to N 16, ' but the existence of Haldane's gap is
not clear for such short chains. Takada and co-worker, s s

applied the transfer matrix method for infinite length and
finite temperature. Extrapolating to the T 0 case, they
obtained positive results for Haldane's gap. Recently,
Nightingale and Blote'o calculated the lowest energies of
the total S' 0 and the total S* 1 case for N 32 using
a kind of MC method. The energy difference is 0.41 J in
the limit of N ee and Haldane's gap was confirmed.
Then it seems that the MC method is a powerful tool to
investigate the AFH chain. Unfortunately, the method
used by Nightingale and Blote is not appropriate to calcu-
late the correlation function. Therefore, we use the
Monte Carlo (MC) method proposed by Hirsch, Sugar,
Scalapino, and Blanckenbecler (HSSB).2o The applica-
tion of the HSSB MC method to the S 1 AFH chain
was first done by Sogo and Uchinami. z' They calculated
the spontaneous order of the antiferromagnetic chain and
obtained a negative result for the existence of Haldane's
gap. But in our analysis, the HSSB MC method gives
positive results for Haldane's prediction.

In this paper, we retry the HSSB MC calculation for
the S I Heisenberg antiferromagnet and analyze the
two-point correlation function p(l) =&Sfsf~t) and its
Fourier transform S(q). We write the Hamiltonian as
follows:

W 1V

H Jg (S;S,".y1+Sfsf+, +~;S;+1)+Dg(S;)'. (1)

Using the HSSB decomposition we get the following

equation for the partition function Z:

Z =Tr (V1 V2)

V1- Q exp( —azH„,„+1),
n ~odd

V2 Q exp( —hrH, ,,+1),
n ~even

~r-p/L,

Hn, n+1 J(srisn+1+Snsn+1+~snSn+1)

+D/2KS„')'+(S„'+ )') .

(4)

(5)

We discuss the case D 0 and 6 1 setting L 32 or 64,
N 32 or 64, hr 0.2, and J 1. Then T/J becomes
1/6.4 or 1/12.8. This can be regarded effectively as zero
temperature. A Metropolis algorithm is adopted to per-
form the MC simulation. A Monte Carlo state is repre-
sented by a set of N && 2L spins S;,1(i 1, . . . ,N,
j 1, . . . , 2L). The Boltzmann weight is given by

8'( fst, /} ) ~ p a (St i,st+1,/, Si /+1,st+ Li y 1 ), (6a)
i+j even

a(a, p, y, b)—=&a,pIexp( —ArH;, ;+1) I y, b), (6b)

N

p(l) —=N ' g &Sfsf+1) (2NL) 'g(st ts;+/, 1) .
i~1 i,j

The Fourier transform of p(l) is the structure factor
s(q):

(7)

N 2L

S(q)= ge' p(—l) (2L) Z& Isv, 1 I ) q 2trn/N,
l~l j~l

(8)

N
—1/2 g eiqmS (9)

nt l

We use (8) and (9) rather than (7) to calculate the corre-
lation function. In the sequence of the MC calculation we
calculate Ss1 by the fast Fourier transformation. After
MC calculation of S(q) we calculate p(l) by the inverse

where S;,/ takes 2S+1 values S,S—1, . . . ,
—S. The

correlation function of the quantum system at the temper-
ature p

' is given by the correlation function of classical
spins S;i:
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FIG. 1. Longitudinal spin-correlation function ( —1) (Sf
x S +11 is plotted as a function l in semilog plot. Crosses are for
the S 2 AFH chain and circles are for S 1. Apparently, the
S 1 data are nearly on a straight line and the S 2 data are
on a logarithmic line.
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FIG. 3. Structure factor S(q) of the N 32, S —,
' AFH

chain at the ground state. Circles give its net values. Crosses
are ten times the net values. For small q, S(q) behaves as ) q ~

.

5.5 ~ 2 .

This value is not far from Takada's estimation
(I/(=0. 12) which is obtained by the transfer matrix
method.

The elementary excitation of the AFH chain is expect-
ed to have the following approximate form:

Fourier transformation. This process is faster than the
calculation which uses Eq. (7).

The correlation function p(l) is given in Fig. 1 for the
S —,

' and S 1 cases. In the S 1 case ( —1)'p(l) de-
cays exponentially. In the S —,

' case, it decays as 1/l.
The statistical error becomes larger as l increases. Our
estimation of the correlation length ( has a large error:

(10)

Eq. (11)we have

s(x) c/( =0.36J .

This value is very near to Nightingale and Blote's calcula-
tion of the gap, 0.41J. The real light velocity is slightly
larger than the spin-wave value 2J. From Parkinson and
Bonner'ss numerical data for the N 14 chain, we esti-
mate that c is about 2.7J. This enhancement of light ve-
locity occurs in the S —,

' AFH chain where the spin-

s(q) -c(sin'q+g ') '/'.

Here, q is momentum of the excitation and c is the so-
called light velocity of the system. In the region where q
is far from 0 or z, e(q) is approximately c sin ~. Ac-
cording to the spin-wave theory, e(q) is 2SJ

~
sinq . Then

the spin-wave value of c is 2J for the S 1 case. Using
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FIG. 2. Structure factor S(q) of the N 32, S 1 AFH
chain at the ground state. Circles give its net values. Crosses
are ten times of net values. For small q, S(q) behaves as q .

FIG. 4. Elementary excitation s(q) and g(q) defined in Eq.
(13) for the S —, AFH chain in units of J. Solid line is s(q)
which is taken from des Cloiseaux and Pearson's solution (Ref.
22) [s(q) (Jx/2) (sinq I l. Crosses are g(q) for the N-32
chain.
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wave value of c is J instead of the exact value c trJ/2
(Ref. 22).

The structure factor S(q) is related to the elementary
excitation e(q). At q 0, S(q) becomes zero. Near
q tr, S(q) diverges logarithmically for the S
But for the S 1 case, it has a Lorenzian peak at q tr.
In the same way as Feynman'sz3 variational theory for ex-
citation spectrum of liquid He, we get the following in-
equality:

X 4

X
X 4, X

4X

e(q) (g(q) —=2J(l —cosq) [—p(1)]/S(q) . (13)

N
S'

( tit& =Ill »g -e q S ) y&
m 1

(i4)

Then we have

Assume that
~ tlt) is the ground-state wave function of the

Hamiltonian H. Consider the trial wave function with
momentum q: 0 Tf/p 1T

q

F1G. 5. Elementary excitation e(q) and g(q) defined in (13)
for S 1 AFH chain in units of J. Circles are elementary exci-
tation with total spin one and momentum q of the N 14 chain
which is taken from the Parkinson and Bonner's table in Ref. 6.
Crosses are g(q) for the N 32 chain.

1 (ty ( [S'-q, [H,Sq]] ) y)

&w)S' qs;[ tt &

2J(1 —cosq) [—p(1)]/S(q) .

() [() (- )]/
(lit ) S qSq ( hatt)-

J(1 —cosq) —N 'g&S,"S,"+1+S;S;+,&

S(q)

Thus we get Eq. (13). A similar inequality was obtained
by Hohenberg and Brinkman. 2 The numerator of Eq.
(13) behaves as q2 near q 0. Then S(q) for the S 1

Heisenberg antiferromagnet should behave as q' (a ~ 2)
because a(q) is bounded from below. This can be seen
from Fig. 2 where S(q) is plotted for the N 32, S 1

AFH chain. In fact, S(q) behaves as q2 near q 0. On
the other hand, S(q) fdr the S —,

' case behaves as
~ q ~

as shown in Fig. 3. Thus the behavior of S(q) is different
for the S —,

' and 1 cases. As shown in Fig. 4, the in-

equality (13) stands very well for the S —,
' case. Here,

g(q) and a(q) are almost the same near q 0. In Fig. 5,
we plot g(q) for the S 1 and N 32 cases. We have no

data on a(q) for such a long chain. As a comparison, we
plot a(q) for the N 14 case from Ref. 6. In conclusion, it
is expected that the system has an elementary excitation
assumed in Eq. (11). This excitation resembles the mode
of des Cloiseaux and Pearson22 for the S —,

' chain but is
different near q 0 and ir.
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