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Quasiperiodic anisotropic XYmodel
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The quasiperiodic anisotropic XY model in one dimension exhibits ordered and disordered
phases with Cantor spectra which we characterize in terms of the exponent b and the f(a) curve.
The transition to the long-range-order phase is signaled by a nonanalyticity in 8 in addition to the
singular behavior of the long-range correlation function. Based on our numerical results, we con-
jecture that f(a) is a smooth function in the disordered phase, becoming discontinuous in the or-
dered phase. At a special point in the ordered phase, the system exhibits a pointlike spectrum
with localized states.

In this paper, we describe our zero-temperature study
of the one-dimensional quantum quasiperiodic (QP) an-
isotropic XYmodel

H -QJ(n) [cr'(n) o'(n+1)
+ [1+g(n)]o (n)rrs(n+ I )] .

Here the o'(n) are Pauli matrices. The J(n) is the ex-
change constant and g(n) is the anisotropy which breaks
the O(2) symmetry of the XYmodel. The system is made
QP by choosing two values of either J(n) or g(n), in a
quasiperiodic sequence. ' In our study, the QP was
characterized by the golden-mean ratio os (E5+1)l2.

In systems with translational invariance, the onset of
long-range order (LRO) is signaled by a discontinuous
jump from zero to some finite value in the order parame-
ter which is usually the magnetization. Our study of the
model (1), along with our previous study of the QP quan-
tum Ising model, 2 shows that the onset of LRO in QP sys-
tems is also characterized by a discontinuity in the magne-
tization which is a modulating function of sites. However,
in QP systems exhibiting a phase transition from a disor-
dered to ordered phase, additional singularities signal the
onset of transition and characterize the LRO phase.
These singularities are associated with the scaling proper-
ties of the eigenvalues of the system which form a Cantor
set in both disordered and ordered phases. In this paper,
we study the variation in the scaling properties of the
Cantor spectrum for various values of the parameters.
Based on this and our previous study of the QP Ising mod-
el, 2 we conjecture that these new singularities which we
identify in the exponent b and the f(a) curve are generic
and characterize the phase transitions in all QP systems
exhibiting LRO.

By means of the Jordan-Wigner transformation, Eq.
(1) is equivalent to a fermion model, quadratic in fermion
degrees of freedom

H +[et(n)A„c(m)+(c„B„c+H.c.)]. (2)

Here, the c(n) are anticommuting fermion operators.
The matrices A and 8 are respectively symmetric and an-

tisymmetric matrices with nonzero elements defined in the
unit of J(n), as follows: A„,„+t 1+G(n) and At N

1+G(N), 8„,„+~ 1 —G(n) and B~,N —[1 —G(N)].
Here, G(n) 1+g(n) The. N denoted the size of the spin
chain. The pure model [J(n) J and g(n) g] was
solved exactly by Lich, Schultz, and Mattis. For any
finite value of g, the system exhibits long-range-order with
nonzero long-range correlation. The energy spectrum of
the model is continuous with a gap which vanishes at the
onset of LRO.

The quasiperiodic isotropic model [g(n) O, J(n)
J& or J2] was studied by Luck. In this limit, the model

is equivalent to the tight-binding model with B„ofEq.
(2) equal to zero. Such a model does not exhibit any
LRO. These tight-binding models with no LRO have
been studied very extensively in the past. 5 The scaling
properties of the Cantor spectrum were found to be
smooth functions of the parameters.

We will study the quasiperiodic anisotropic model with
nonzero values of g for which the system exhibits LRO.
The main motivation for this study is to investigate the
eff'ect of QP on the phase transition from the disordered to
ordered phase with LRO and to see how to characterize
the scaling properties and LRO phase in systems with no
translational invariance.

In our numerical study, the QP system is approximated
by a sequence of periodic systems with a progressively
larger unit cell of size F„.The F„arethe Fibonacci num-
bers obtained by optimal rational approximations to os.
In our study of the LRO phase, we will keep J(n) to be a
constant equal to J and the g(n) will form a QP sequence
in g& and g2. As described by Lieb, Schultz, and Mattis, 3

the eigenspectrum of the system is obtained by diagonali-
zation of the matrix (A+8)(A —8). This matrix can be
viewed as the tight-binding model associated with our
problem resulting in the following eigenvalue equation

4[G(n —1)tit„—2+ [1+6 (n —1)]tir„

+G(n+1)vr„+z] E tir„. (3)

This corresponds to the tight-binding model with next-
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nearest-neighbor interaction. It should be noted that for
the even N case, the even-site problem completely decou-
ples from the odd-site problem. On the other hand, for N
odd, the even and odd sites remain coupled due to periodic
boundary conditions.

Figure I shows the Cantor spectrum of the model. The
goal of this paper is to understand the effect of LRO on
the scaling properties of the spectrum. We computed the
scaling index b which describes the scaling of the total al-
lowed bandwidth with the size of the system. s This in-
volves calculating the bandwidths of all the bands associ-
ated with F( eigenvalues as the Bloch index k is varied in
the first Brillouin zone. 5 Near the onset of long-range or-
der, the exponent 8 is found to be a linear function of g
(see the inset in Fig. 2), becoming nonanalytical at the
transition point. The nonanalyticity of b in QP systems
exhibiting a phase transition from disordered to ordered
phase was also seen in our study of the quasiperiodic Ising
model in a transverse field. We believe that it is the gen-
eric result for all QP systems exhibiting a transition of
long-range order. This makes 8 a very important quantity
in describing the phase transition in QP systems as the on-
set of the transition is signaled by a nonanalyticity in b.

The Cantor spectrum of the system is a multifractal
with not one but a whole distribution of characteristic ex-
ponents. To characterize such a fractal, we use a recently
proposed thermodynamical formalism. 7 We define a par-
tition sum I, which partitions the set into 1 pieces

r(- g(F() '/co, (4)
i 1

where m; is the width of the i'" band and F( ' corresponds
to its measure. The normalization condition I I defines
the function r in terms of q. The generalized Renyi di-
mensions Dv r/(q —I) characterize the fractal set in
terms of infinity of dimensions. This spectrum of dimen-
sions has been linked to a spectrum of scaling indices com-
monly known as the f(a) curve by a Lengendre transfor-
mation

a dr/dq,

f(a) qa —r.
The sum I, q(r), and r ' are interrelated in the same
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FIG. 2. A plot of exponent 8 vs gI with g2 0.

way as the thermodynamic partition function, free energy,
and temperature. This can be seen by rewriting Eq. (4) as

q- In+exp[ —rin(o);)]. (7)
nF(

Therefore, the f—a formalism is linked significantly to
the thermodynamics defined from Gibb's ensemble. This
analogy is particularly helpful in providing a new theoreti-
cal insight when the function I undergoes "phase transi-
tion. " The exponent a defined above is the local scaling
exponent of the integrated density of states for a given en-
ergy. The f(a) is the fractal dimension of the subset in
the set consisting of all points with scaling index a.

For the pure model, the scaling is trivial almost every-
where with a I and f(a) I except at the band edges
where the Van Hove singularities give a 0.5 with
f(a) 0. Therefore, theoretically, the f(a) consists of
only two points. 9 In a numerical study of the f(a) curve
for QP systems, we find that this function is smooth in the
disordered phase (see Fig. 3). In our model (I), this be-
havior was seen when g Oand the exchange couplings J(
and J2 are in QP sequence. This also implies a smooth

q
—r plot as shown in Fig. 4. The study of the f(a) curve

in the LRO phase is hampered by some convergence prob-
lems. However, this study suggests that the function is
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FIG. 1. The figure shows the Cantor spectrum for 610 sites
and gI 0.2 and g2 0.1.
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FIG. 4 The corresponding q vs i plots.

discontinuous in the LRO phase (see Fig. 4). Based on

very detailed numerics for various values of the parame-

ter, we conjecture that the f(a) is discontinuous in the
LRO phase. 9 This discontinuity in f—a is also signaled

by a cusp in the q
—r plot and hence corresponds to a

phase transition in the partition sum I . This is very im-

portant result as it characterizes the LRO phase in QP
systems. We suggest that this is the generic feature of all

Cantor spectra when the QP system has a LRO.
The gt

—1 and g2 0 is a special point where the in-

teraction between nearest-neighbor spins is pure Ising

type or pure XYtype, in a QP sequence. At this point, the
bandwidths associated with each eigenvalue go to zero

and hence the spectrum is pointlike and the states are lo-
calized. At this point, the exponent b goes to infinity as
(g2 —1) ", where ti =0.25. In this limit, the f(a) col-
lapses to zero with a equal to zero everywhere. It is in-
teresting to compare the behavior of this model with that
of the Harper equation' which exhibits critical behavior
with the Cantor spectrum at a critical value 1I. 2. Below
criticality, the system exhibits extended states while above
the critical value, the states are localized. This is in con-
trast with our model (1), which exhibits critical states for
all values of gt and g2 except when gt and g2 are equal to
zero and gt and g2, respectively, are equal to 0 and —l.
At these special points the states are, respectively, extend-
ed and localized.

In summary, based on our study of two QP systems (the
Ising model in a transverse field and anisotropic XY mod-

el), we conclude that the QP systems exhibiting LRO
show additional singularities which appear in the scaling
properties of the Cantor spectrum. We believe that these
results are generic.
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