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Surface exponent in percolation and central-force percolation: A test for splay rigidity
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We study two related problems: one in the usual percolation and the other in central-force per-
colation; namely, the probability that a site sitting on the border of a semi-infinite domain belongs
to either the infinite cluster in usual percolation or the infinitely rigid cluster in central-force per-
colation. We study the critical exponents describing the critical behavior of these probabilities by
a numerical simulation using a transfer-matrix technique. Our results are consistent with the hy-
pothesis that both critical phenomena belong to the same universality class. In addition, our re-
sults suggest that the splay-rigid phase threshold is diferent from the rigidity threshold in

central-force percolation.

The theory of percolation is now a well-understood sub-

ject; most fundamental questions, either about geometric
or transport properties, have been answered. ' On the oth-
er hand, the case of central-force percolation2 is a much
more debated question. In particular, a very important
point has been raised recently:3 Does central-force per-
colation (CFP) belong or not to the same universality
class as usual percolation? This issue is far from being
simple as the threshold of CFP cannot easily be defined by
means of simple geometric arguments, thus leading to a
situation quite analogous to that of the experimentalist
seeking to determine critical exponents. As the propaga-
tion of long-range order in the central-force model is non-

local, perhaps in an analogous way to the nearest-
neighbor three-state antiferromagnetic Potts model, 5 the
geometrical properties of the rigid clusters which are the
quantities of interest in this problem, are very hard to
handle both theoretically and numerically. As a result,
the uttermost interesting question of the possible existence
of a splay-rigid phase, s which has been suggested by
Wang and Brooks-Harris to exist between the rigidity
threshold and a new specific threshold below, is still a
completely open question. We present in this Rapid Com-
munication evidence that indeed such a phase does exist.

In previous work, we have studied s the transport prop-
erties of CFP: the elastic modulus for the random dilution
case and the elastic compliance for the random reinforced
case of super-rigid-elastic elements. The results of these
investigations favor the hypothesis that CFP and usual
connectivity percolation belong to the same universality
class. In order to further strengthen this hypothesis we
study (to our knowledge, for the first time) scaling ex-
ponents associated with surface criticality of CFP. This
was done by calculating with the same algorithm as the
one used to calculate the elastic modulus in CFP, s the
probability for a site sitting on the edge of a semi-infinite
lattice to belong to the infinite rigid cluster. The results
we find are in excellent agreement with the above hy-
pothesis on the equivalence of the universality classes.

We discuss first the analogous problem in the frame-
work of usual connectivity percolation in order to present
the spirit of the computation.

Let p be the probability for a bond to be present and p,

the threshold value. In an infinite domain, the probability
P (p) for a site to belong to the infinite cluster for p
larger than p„hasa singularity at threshold

P (p)~(p —p, )~.

For a semi-infinite domain and if we restrict to the sites
sitting on the edge of this domain, the probability to be-
long to the infinite cluster is strongly affected by the
"repulsion" effect of the cutting and the critical behavior
of P (p) is now P' (p):

P' (p)~(p —p, )~, (2)

where p' is a surface-critical exponent, which is numeri-
cally very different from the bulk-critical exponent p. It is
this quantity that we still study in the remainder of this
Rapid Communication in different contexts. The quantity
P' (p) describes an edge singularity, and is a universal
feature of percolation [in the same way as P (p)l. How-
ever, to our knowledge, the critical exponent p' cannot be
related to p by any means. P' (p), for the case of usual
percolation, has been studied in the past by different tech-
niques: Series expansion, invariant embedding Monte
Carlo simulation, 'o renormalization group,

" and Monte
Carlo simulation. ' Very recently, using a conformal in-
variance technique, Vanderzande and Stella" have con-
jectured the value of P'

We can obtain an estimate of p' by a transfer-matrix
method using finite-size scaling. We study bond percola-
tion on a square lattice. Let us consider a strip of
moderate width w (typically from 2 to 32) and of length L
(up to 10 ) and imagine that one longitudinal border of
the strip is free whereas the other one is connected to a
bus bar. The strip consists in a percolation lattice at
threshold. A general finite-size scaling argument gives the
following dependence of the probability P'(w) for a site on
the free border, and far away from the two ends of the
strip, to be connected by a continuous path to the bus bar

P'(w) ~ (p —p, )~'C (w/g),

where g is the correlation length that is known to diverge
at threshold as gcL. (p —p, ) ", and @ is a scaling function.
For w»g, @ tends to a constant and, for w(&( (always
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valid if p p, ), P'(w) should not depend on p —p„there-
fore,

(4)
or

P'(w) ~ w —P'/v,

where v —', in two dimensions.
The strip is created by the junction of two independent

strips along one of their transverse ends (see Fig. 1).Once
the junction is performed, we record whether or not the
site located on the junction row and on the free longitudi-
nal border [A in Fig. 1(b)] is connected to the bus bar. In
order to test the connectedness, we use two matrices (one
for each strip) whose Boolean elements are the connected-
ness between any pair of sites (the bus bar may be one of
these sites) on the junction border. ' The element (i,j)
of these matrices is 1 if the sites i and j are connected by a
continuous path, and 0 if not. It is thus a simple series of
logical operations that finally gives 1 if the site A is con-
nected to the bottom border and 0 otherwise on the
geometry of Fig. 1(b). Afterwards, we disconnect again
the two strips [Fig. 1 (c)] and add two independent trans-
verse rows to each strip along the old junction border, and
update accordingly the connectedness matrices. We then
reiterate the process over again. We begin to record the
connectedness of the border site once the two strips have a
length equal to 100 times their width so as to avoid spuri-
ous bias due to the proximity of the ends. We estimate
the error bars on each value by computing the mean devi-
ation of the probability P'(w) obtained for ten pieces of
the strip whose lengths are equal to one-tenth of the com-
plete length.

Figure 2 shows a log-log plot of this surface probability
as a function of the strip width w. We can extract from
the slope of the curve, the critical exponent P'/v 0.32
+ 0.02 or P' 0.43~ 0.03 (using v —'). The error bar
on the exponent is a rather subjective appreciation on the
uncertainty of the determination of the slope (see Fig. 2)

which has been done without taking into account the
smallest-width data which clearly displays corrections to
scaling. This value agree with the recent conjecture'3
P'/v —,

' and is consistent with other numerical estimates
of P' published so far in the case of usual percolation9
(see Table I). This demonstrates the ability of the method
to give reliable results.

We now turn to the problem of CFP. At threshold,
there exists an infinite rigid cluster. Therefore, the proba-
bility to be considered is whether or not the site added is
rigid. However, in this problem there can exist intermedi-
ate states where a site is allowed to move freely in one
direction and is constrained in any other direction. We
shall denote those sites as being not-free, whereas com-
pletely constrained will be referred to as rigid. For bonds,
the situation is richer since they have three degrees of
freedom, (compared to two for sites). Thus, one can en-
counter bonds which have from 0 to 3 constraints on their
degrees of freedom. Wang and Brooks-Harris have sug-
gested that there could exist a splay-rigid phase below the
CFP threshold, i.e., there could exist an infinite set of
bonds that cannot rotate, but are free to translate in any
direction. Then in addition to the probability for a site on
the border of a semi-infinite domain to be rigid P,', or to
be not free P„'f,one can also study the probability for a
bond sitting on the edge of the semi-infinite domain to be
splay-rigid P,'&. If the conjecture of Wang and Brook-
Harris is correct then at the CFP threshold we should ex-
pect that P,' and P„'fscale with the lattice size whereas P,',
is not critical and thus should saturate at a finite nonzero
value.

We study this problem numerically using a transfer-
matrix algorithm which is very similar in spirit to the one
presented above. However, because of the nonlocality of
CFP, it is not possible to use a Boolean formulation, '4 i.e.,
to obtain a yes/no answer to the question: Is the site rigid-
ly connected to the border? Therefore, we were obliged to
use a slightly indirect way: We considered two strips
made out of a triangular lattice of springs free to rotate at
their junctions. One longitudinal border is attached to a
rigid bar whereas the opposite border is free. For each of
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FIG. 1. Geometry of the strips used to compute the probabili-
ty for a site to be connected to the lo~er border. Two strips are
considered (a) and joined along a transverse direction (b). Then
the connected of the site A is tested, and two strips are again
disconnected (c). A row is added to each strip [double lines in
(c)] and the process is repeated again.
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FIG. 2. A log-log plot of the probability for a site to be con-
nected to the lower border at bond percolation threshold on a
square lattice. The lower line is the best linear fit estimated on
the last points where the slope is 0.32.
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TABLE I. Summary of the results obtained about the estimates of P'/v for usual percolation and
central-force percolation (CFP). Our data for usual percolation agrees with the exact result and is con-
sistent with previous numerical estimates. There are two possible definitions of P'/v for central-force
percolation: probability for a site to be rigidly connected, or not free. For the latter, our result is in
agreement with the above quoted values for usual percolation, whereas the former seems to scale with a
new exponent. In addition, it seems that the probability for a bond to be splay-rigid saturates to a finite
nonzero value for the rigidity threshold.

Problem

Usual percolation
Usual percolation
Usual percolation
Usual percolation
Usual percolation
Usual percolation
Usual percolation
CFP (not free)
CFP (rigid)

Technique used

Series expansion
Series expansion
Invariant embedding
Renormalization group
Monte Carlo
Conformal invariance
Transfer matrix
Transfer matrix
Transfer matrix

Estimate of P'/v

0.286+' 0.004
0.322+' 0.02
0.298 +' 0.004

0.36
0.326+' 0.01

I

0.32+' 0.02
0.31 +' 0.03
0.51 +' 0.03

Reference

9
9
10
11
12
13

This work
This work
This work

these strips, we compute the rigidity matrix R;/, which re-
lates the forces F to be applied onto the site i in the direc-
tion a so as to obtain a unit displacement of the site j in
the direction p. i and j are two sites on the transverse side
of the strip (eventually on the rigid bar or on the free bor-
der). As in the previous case, we connect the two strips
and calculate the rigidity matrix R'~, relative to the site A
located on the junction line and on the free border. This
matrix R relates to the force F to be exerted on A so as to
obtain a displacement U: F R U. Now, if the deter-
minant of R is nonzero then the site A is rigidly connected
to the rigid bar; if the trace of R is zero then, on the con-
trary, A is completely free (since the trace is the sum of
the two positive eigenvalues, in this case R, is null). Fi-
nally if the trace of R is nonzero, but the determinant is
null then it means that one eigenvalue of R is zero and the
other is not. The site A is allowed to move freely, with no
force applied, in the eigendirection associated to the ei-
genvalue 0, but not in any other direction. It is "not free."

Of course, because of round-off errors, neither the trace
nor the determinant can be zero in most cases. Therefore,
we recorded a joined histogram of the trace and the deter-
minant of all R matrices. The example of Fig. 3(a) shows
that, indeed, we can easily distinguish between the three
different cases. We used an estimate of the threshold

p 0.642 obtained previously using different numerical
methods (conjugate gradient, 7 transfer matrixs). Figure
4 shows the log-log plot of both P,' and P„'ras a function of
the strip width, w. We obtained the estimates of the ex-
ponents

P'/v-0. 31+ 0.03 for P„'f, (6)

p'/v 0.51 ~ 0.03 for P„'. (7)

The scaling of P„'fseems indistinguishable from that of
P' in usual percolation (see Table I). This suggests that
the appropriate order parameter of this problem, so as to
compare it to the case of usual percolation, is the proba-
bility for a site to be not free. With this definition, the
critical exponents seem identical in both problems.

P,' scales also with a well-defined exponent (see Fig. 4),
but the value of this exponent is clearly different from the

previous ones (see Table I). We were not able to relate
this apparently new exponent with other ones encountered
in the framework of percolation.

One major point in the issue of identifying the univer-
sality class of CFP is the determination of the rigidity
threshold. The latter had been estimated to be of order
0.65 in some studies. Using this threshold, it is possible
to obtain numerically a seemingly good power-law rela-
tion between the elastic modulus and the size of the sys-
tem as shown in particular in Ref. 8 (for p 0.653). This
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FIG. 3. (a) An example of a joined histogram of the loga-
rithm of the trace and determinant of the rigidity matrix of the
border site A in central-force percolation. One clearly distin-
guishes the free, not-free, and rigid sites. (b) An example of a
histogram of the splay rigidity modulus of a bond close to the
free border of the strip.
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FIG. 4. A log-log plot of the probability for a site to be rigid
(a) or to be not free (r) as a function of the strip width and for
a bond to be splay rigid (0). The length of each side of the strip
is 5&10 which amount to a total length of 10 . We are at
threshold p 0.642. The probability of a bond to be splay rigid
seems to saturate whereas the other two probabilities scales with
an exponent reported in Table I (the slope is indicated by a
line).

computation had been performed with an algorithm very
close in spirit to the one used here. In the present study,
for this value of the threshold, p 0.653, we observe that
the probabilities P'(w) did not scale with the width of the
strip, whereas they should have followed a power-law rela-
tion with w Eq. (5) if this was the actual rigidity thresh-
old. If, instead of evaluating the threshold by the scaling
of the elastic modulus versus the size of the system, one
relies on other critical properties such as the mass of the
force-carrying part of the lattice7 or the elastic modulus
of the super-rigid-elastic problem, s then the best estimate
of the threshold is 0.642 ~ 0.002. Indeed, for this value of
p, the two probabilities P„'iand P,' scale with the width of
the strip, which confirm our previous estimate of the
threshold.

Still using the same program it is possible to check for
the existence or lack of existence of a splay-rigid phase
below threshold. We considered the last bond on the junc-
tion line near the free border. We computed the elastic
modulus for an applied pure torque; i.e., we calculated the
torque to be applied so as to achieve a unit rotation. We
can therefore record the probability P,', by analyzing the

FIG. 5. Plot of the probability for a bond to be splay rigid as
a function of the inverse of the strip width. The probability con-

verges to the nonzero value 0.55.

histogram of this modulus along the strip, in order to dis-
tinguish between what is fioppy from what is rigid [see
Fig. 3(b)]. A log-log plot of this latter probability is
displayed on Fig. 4. Clearly the probability P,', seems to
saturate to a finite value. More precisely, the plot of this
probability versus the inverse of the strip width can be
well fitted by a straight line (see Fig. 5). This procedure
indicates that P,', tends to the value 0.55~0.05. There-
fore, our results suggest that P,', is not critical for

p 0.642. And thus, it a rees with the suggestion of
Wang and Brooks-Harris that there exists a second
threshold specific of splay rigidity, lower than the rigidity
threshold.

In summary, our determinations of the exponents seem
to corroborate three conclusions: The exponent obtained
for the property of being not free in CFP is indistinguish-
able from its value in usual percolation; the exponent ob-
tained for the property of being completely rigid in CFP
seems to be a new critical exponent unrelated to others;
the splay rigidity threshold is distinct from the rigidity
threshld in CFP.
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