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Superexchange mechanism and d-wave superconductivity
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We have formulated an auxiliary-boson mean-field theory consistent with the SU(2) symmetry
of the Heisenberg model. At half filling, we find an infinite number of solutions related by the
symmetry. Away from half filling the kinetic energy, acting as a symmetry-breaking field, selects
a superconducting state of d-wave symmetry. The mean-field theory describes bosons and fer-
mions with finite kinetic energy close to half filling. We derive self-consistent equations for the
superconducting transition temperature T,. We find that T, vanishes at large and small filling

factors.

The discovery of superconductivity in the rare-earth-
based copper oxides, ' followed by Anderson's suggestion
of the relevance of the large-U limit of the Hubbard mod-
el to this problem, has triggered a renewed interest in
strongly correlated electron systems. Hirsh and Gros,
Joynt, and Rice have shown that, in the large-U limit, the
Hubbard model is equivalent to the model Hamiltonian

H t —(f;t fj +fjt fj )
(ij cr

+1 (cr; oj n;ttj) —p—pQ f;
lj ai

acting on the subspace of empty and single occupied sites.
tr; is the spin of electron, (ij) denotes the summation over
the nearest neighbors, and 1 2t 2/U.

Anderson suggested that the ground state of the rare-
earth copper oxides can be described by a correlated wave

I

function of the form

I &» -PoII(ttk+ Ukfi', lfk', —i ) I 0&.
k

(2)

PG is a Gutzwiller projection operator, and N(1 —b)
gk (fkt Jk ) is the average number of electrons. At

half filling i.e., b 0, I e) describes a disordered phase of
the quantum Heisenberg antiferromagnet, e.g., the
resonating valence bond (RVB) state. At finite 8, @)de-
scribes a superconducting state that evolves smoothly
from the insulating state at b 0.

The main difficulty in the investigation of these wave
functions is the evaluation of the Gutzwiller projection.
The exact calculation of observable matrix elements in the
states described by Eq. (2) can only be done numerically
using Monte Carlo technique. 4 6 Alternatively, one can
transform (1) into an equivalent auxiliary-boson Hamil-
tonian

(f'&b'f +f'4b'f ) —ispZf'f
&ij,cr l, O'

+1 '(o'"o") '(1 b b. )(l b b )+/X; haft J;, +b;tb; —1
lJ l, Cr

In this formalism, one introduces a boson operator b; to
keep track of the empty sites. The inequality constraint
PJ;oaf;, ~ 1 is replaced by an equality constraint
PJ";f f;, +b;tb; 1 enforced by the Lagrange multiplier
A,;, Kotliar and Ruckenstein have shown that in a certain
auxiliary-boson formulation of the Hubbard model, treat-
ing the auxiliary-boson Hamiltonian in the mean-field
theory is equivalent to evaluating matrix elements of the
Hamiltonian in projected wave functions using the
Gutzwiller approximation, suggesting the connections be-
tween the Gutzwiller and the auxliary-boson approach. It
is important to emphasize however that the auxiliary-
boson provides a systematic treatment of the problem. Its
mean-field theory can be improved by including the fluc-
tuations around it. The first mean-field theory of the
RVB due to Baskaran, Zou, and Anderson'p factorized
the particle-particle channel by introducing an order pa-
rameter hk h(cos(k„a)+cos(kya)), which describes a
RVB phase with no gap to spin excitations (hk vanishes

along a line called the pseudo-Fermi surface). Their re-
sults were independently derived and extended by Ruck-
enstien, Hirshfeld, and Appel. " Kotliar'2 found that the
stable solutions of the mean-field theory at half filling is a
mixture state describing a coherent superposition of s- and
d-wave order parameters. Aflleck and Marston '3

developed a different mean-field theory by decoupling in
the particle-hole channel and found a flux phase as a
stable solution at half filling. The equivalence between
Kotliar's mixed phase and Affleck and Marston's flux
phase has been clarified by using a hidden SU(2) local
gauge symmetry by Aflleck, Zou, Hsu, and Anderson. '4

A related approach, derived by Anderson, Baskaran, Zou,
and Hsu 5 Zou and Anderson s Isawa, Maekawa, and
Elisawa 7 and Suzumura, Hasegawa, and Fukuyama'
emphasized the importance of treating the boson and the
fermion degrees of freedom in the same footing.

In this Rapid Communication, we explore a complete
Hartree-Fock-Bogolubov factorization of Hamiltonian
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(3). The motivation for this work is twofold. First, in the
previous treatment, ' ' the bosons and the fermions in
(3) have very little kinetic energy close to half filling,
since the hopping amplitude turned out to be proportional
to b. As has been emphasized by Anderson' and Zou
and Anderson, '6 in the RVB state the holes represented
by the boson operators here should gain kinetic energy of
order t T. he spin degrees of freedom should also have a
kinetic energy of order J. These results should come from
the mean-field theory. Second, it is well known that at
half filling, the large-U Hubbard model is equivalent to
the Heisenberg model, which has a global SU(2)
particle-hole symmetry. 2o The mean-6eld theory of fac-
torization in the particle-particle channel violates such
symmetry.

In the paper, we do a consistent Hartree-Fock-
Bogolubov factorization of (3). The resulting mean-field

I

«. -3J&f;tJ;+,, &/2,

~» -3J&ft.f;+»,&/2,

3J&f,tf+., -l —fi, -tft+. , &/2,

~y 3J&fi,di+y, l fi, —Ifi+y, l&l2 ~

we obtain from (3) the mean-6eld Hamiltonian

(4a)

(4b)

Hamiltonian has the SU(2) symmetry of the original
model and the kinetic energy of the bosons and the fer-
mions are finite close to half filling, resolving the difficulty
of previous mean-field theory.

In the mean-field approximation, A, ; are replaced by its
static value A, . At 6rst approximation, we assume that
b;tbj I b I b. Introducing the order parameters

Ho Q[(—,fthm+, , +tr„ftJ;+, )+c.c.l+gh, (fttft+„, i
—ft -tft+, , )-+c.c.l

ia l

+pl&y(fttf~+», i
—ft t-ft+», i)—+c.c.l —bt (ft fj, +c.c.) —p~t f;,

and the corresponding Landau-Ginzburg free energy

F 2T+—Incosh(pEk/2) pN+2N(l rex I + I «» I + It4 I + l~» I )l(3J),
k

with the notations «.„ I tr„ I exp(ia„), xy I «y I exp(ia»), 6„ I 6, I exp(iP„), Ay I Ay I exp(iP»), 8 P»
—P„,

Ek «(sk s-k)+ [(sk+s—k 2P) +'4
I t4 I ««/2

2[ I «x I cos(k, a —a„)+ I
«'y I cos(k»a —a») j,

2[a„cos(k,a)+A» cos(kya)),

(5)

(6)

(7b)

(7c)
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FIG. 1. «(b) (dot-dashed line) and 6 (b) (dotted line) in
units of J at T 0 for t 10J.

and K(k) 2[cos(k„a)+cos(k a)]. The chemical poten-
tial p is determined by 1 —b &ftJ'; &.

We find numerically that the minimum of the free ener-
gy (6) is at a, a» 0, «.„«y, Id, l Ih»l, and 8 x.
The order parameter „trnad t4 as functions of b are
shown in Fig. 1. Notice that «„J/2 clo-se to half filling,
and, hence, the effective boson hopping amplitude 2t«„/3J

I

is of order t/3 . At half filling, we 6nd an in6nite number
of solutions. In these solutions, the excitation spectrum
has four point zeros, even away from half filling.

These results can be understood by using a Landau ex-
pansion of the free energy (6). When b 0, the free-
energy (6) has a global SU(2) symmetry, 20 i.e., defining
as in Ref. 14, U~ 3J&tt»;y)+y;pj's&/2, with tie (foal,
f; i) and pt (ft i, —f; ~), we -find that F(U„U»)

F(gU, g ',gU»g ') for an arbitrary SU(2) element g.
The infinite number of solutions that we found are all the
SU(2) rotations from the mixed phase (r„ry 0, 5„

1, t)y i) Here we. address the question which of these
state is selected as one moves away from half filling. The
hopping term induces a term linear in the order parame-
ters r, and «y

AF —bA(«~+«y),

where A is a temperature-dependent positive factor. This
term acts as a symmetry-breaking field in the SU(2)
space and selects the direction U„ 1/J2(a, —a, ) and
U»

—1/&2(o, + ty, ). This corresponds to «, «y 1,
1, i.e., a d-wave solution with finite hopping.

This is in agreement with the Monte Carlo calculations of
Gros, which indicate that the d-wave state has the lowest
energy.

The critical temperature TRva of the pairing field d,k is
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determined by solving numerically the self-consistent
equations

we obtain a set of self-consistent equations

QK(k) tanh
8N k 2TRVB

1- gg. (k)'/(ak —p)tanh
81V k 2TRVB

b —gtanh
k TRVB

(9a)

(9b)

(9c)

tf QK(p)&btp bp&+ QK(k)&fk Jktp tp

tb- g&b, b, &+
'

QK(k)&fkgk. &,

~k
N

ZK(k k')—&fk', If k, -I&, -
k'

—X&fktj» &

1

(loa)

(lob)

(10c)

(lod)

where g, (k) 2[cos(k„a) —cos(k~a)] for d wave and

g, (k) K(k) for s wave. We find that only the d wave
has nonzero TRyB, and the results for TRyB and x„at
TRyB as functions of b are shown in Fig. 2. The s-wave
solution has vanishing TRyB and, therefore, the mixture of
s and d wave does not exist away from half filling. This
can be understood in the light of previous work which fac-
torized the particle-particle channel. It was shown in Ref.
12 that the s-wave transition temperature vanishes as soon
as the effective hopping bt is of order J. In the present
SU(2) invariant approach, the effective hopping is of or-
der J+bt, and, therefore, the s-wave state is completely
suppressed.

The physical meaning of the critical temperature calcu-
lated above is the temperature below which there is a
significant singlet pair formation. To obtain a supercon-
ducting state, one has to establish phase coherence be-
tween the singlet pairs, and this is determined by a
different characteristic temperature TBC, which is
significantly lower than TRya, very close to half filling.
This idea appears naturally in the auxiliary-boson formu-
lism. '7 The physical electron is represented by the opera-
tor f~J;, and the superconducting order parameter is
given by &b ftIbjfjt I&=&b;bj&&fthm~~ I&. The supe-rcon-
ducting state is a state with both &b;bf&e0 and

&f~ If; -I&~0. The nonvanishing &b;bJ& can be obtained
either by one boson condensation &b;&a0, or by boson pair
condensation. Here we investigate the first possibility.
Performing a Hartree-Fock-Bogolubov factorization for
both the boson and the fermion degrees of freedom in (3),

s-—g&b,tb, &,
tp

(10 )

where tf (tb) is the eff'ective hopping amplitude of the fer-
mions (bosons) which determine the kinetic energy
8» tfK(k) [a~ t»K(—p)] of the fermions (bosons).
We solved (10) by assuming a small interlayer hop-
ping term in the z direction2 2' K(k) 2[cos(k„a)
+cos(k~a)+r, cos(k, a)] to obtain a finite boson conden-
sation temperature TBc and TRyB. As expected from the
T 0 study, the pairing has d-wave symmetry. The corre-
sponding TRyB and TBC as functions of b are shown in

Fig. 3, we find that for small b, TBc&TRyB, and
T, TBc increases almost proportional to b. For large b,
TRyB & TBC, attd T TRyB decreases as b increases. The
boson condensation temperature is not very sensitive to
the value of small interlayer hopping amplitude since it
depends on r, logrithmically.

In conclusion, we formulated a mean-field theory which
has all the symmetries of the original Hamiltonian at half
filling. Away from half filling, the ground state has a d-
wave symmetry. Both bosons and fermlons have finite ki-
netic energy close to half filling. The hopping amplitude
for the bosons is of order t/3 while that of the fermions is
of order J/2. In the language of wave functions, our ap-
proach is equivalent to studying states (2) with three vari-
ational parameters. Finding a minimum of the free ener-

gy at half filling optimizes the exchange energy, while
minimizing the free energy in the manifold of states relat-
ed by an SU(2) operation is equivalent to optimizing the
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FIG. 2. s'~(b) (dot-dashed line) and TRva(b) (dotted line} in
units of J at Typal for t 10J.

FIG. 3. Tac(b) (dot-dashed line) and Tava(b) (dotted line)
in units of J for t 5J.
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kinetic energy of the holes. We calculated the Bose con-
densation temperature self-consistently, and found a su-
perconducting critical temperature which vanishes for
large and small filling factors. In this paper, we restrict
ourselves to translationally invariant solutions. We are
currently investigating possible solutions which break the
translational invariance. In our view, it is important to
clarify the stability of the different mean-field solutions as

a first step to understanding the effect of fluctuations
around the mean-field theory.
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