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Angular dependence of the upper critical field of Bi2.2Sr2Cao. gCu208+g
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We have measured the electrical resistivity of Bi2.2Sr2Ca0. 8Cu208+& in the vicinity of T, for
various angles between the [CuOzl double layers of the crystal and the magnetic field. Defining

T, at the transition midpoints, we have measured values for dH,l—/dT 45 T/K and dH,—2/
dT 0.75 T/K for the magnetic field parallel and perpendicular to the [Cu02] planes, respec-
tively. This results in an anisotropy of a factor 60. The numerical results are sensitive to the
definition of T, and larger values for the anisotropy cannot be excluded. The results are com-

pared with the anisotropic three-dimensional Ginzburg-Landau theory.

The common presence of the [Cu02] planes not only
in (La,Sr)2Cu04 (Ref. 1) and Ba2YCu307, but also in

the recently discovered bismuth3 and thallium4 com-
pounds, strongly suggests that the superconductivity origi-
nates from these [Cu02] planes. Therefore, one might
expect a dimensional crossover to two-dimensional super-
conductivity if the coherence length along the c axis, („
becomes smaller than the [Cu02] layer separation. In
fact, the separation between the [Cu02] planes in

(La,Sr)2Cu04 and Ba2YCu307 seems insufftciently large
to give rise to two-dimensional superconductivity, in spite
of an extremely short coherence length. Experiments
probing the anisotropy of Ba2YCu307 (Ref. 6) are well
described by the three-dimensional anisotropic Ginzburg-
Landau (GL) theory, which incorporates the anisotropy
into the quasiparticle effective mass. Two-dimensional su-

perconductivity might be more likely in the recently
discovered compound Bi2 2Sr2Cae sCu20s+s, because of a
much larger [Cu02] double-layer separation of about
12 A, and, as we will show below, an even smaller value
of the coherence length (, than that found for
Ba2YCu307.

In search of two-dimensional superconducting behavior
or a dimensional crossover, we have investigated the an-

gular dependence of the electrical resistivity of
Biq2$r2CaesCu20s+s in a magnetic field. Near T, we ex-
pect the sample in the three-dimensional Ginzburg-
Landau regime because of the divergence of the coherence
length, (, at T,. We anticipate a dimensional crossover in

the temperature regime where the coherence length,

g, (T) g, (0)(1 —T/T, ) '/, is comparable to the
[Cu02] double-layer separation. Such a dimensional
crossover, previously observed in'intercalated compoundss
and metallic multilayers, 9 has as its signature a strong
temperature dependence of the ratio H,'2/H, 2, or devia-
tions in the angular dependence of —dH, 2/dT from the
predictions of the anisotropic Ginzburg-Landau theory.

Defining T, at the conventional 50% value of the extra-
polated normal-state resistivity, yields a good correspon-
dence for the angular dependence of H,'2 with the predic-
tions of GL theory. This definition results in a large value
of 60 for the anisotropy of H,'2 for the magnetic field
parallel and perpendicular to the [Cu02] double layers.
Still, larger values of the anisotropy cannot be excluded,
as a result of limited angular resolution of 0.5'. If we

define T, as the temperature at which the linear regime of
p(T) extrapolates to p 0, we obtain an anisotropy in
&&2 dH, 2/dT of 25. But if we choose this definition,
the angular dependence of H,'2 is sharper than expected
from GL theory.

The high-quality single crystal used in this investigation
was grown from an alkali chloride flux, as described by
Schneemeyer etal 'o E.xtensive characterization of these
crystals has been described elsewhere. 'e An optically flat
piece of a crystal was obtained by cleaving the crystal
along the a and b axis to a rectangle of 2.1x0.64 mm2.
We estimate the thickness of the crystal to be between I
and 2 pm.

Four Ag contacts were sputtered on the crystal in
-0.2-mm strips spanning the entire width of the sample
resulting in a conventional bar-shaped geometry. The dis-
tance between the voltage contacts was 0.72 mm. The
contact resistance was about 2 0 at room temperature.
The sample was glued with a minute amount of GE var-
nish onto a sapphire substrate and four 25-pm-diam. Ag
wires were attached with Ag epoxy.

Measurements were performed in a quick-insert cryo-
stat, with the insert warmed to ambient temperature while
changing the angle between the crystal and the magnetic
field. The angles have a relative accuracy of 0.5' and we
defined the angle p 0 for the run with the highest value
of H,'q. During the experiments, the room-temperature
resistance increased less than 3'/0.

The resistance was measured using a dc current of 0.5
mA perpendicular to the magnetic field for all angles.
The temperature was measured with a calibrated Pt ther-
mometer, and accurate corrections for its magnetoresis-
tance were performed. A magnetic field up to 10 T was
applied using a superconducting solenoid.

In Fig. 1, we show the temperature dependence of the
electrical resistivity up to room temperature in zero mag-
netic field. Above 150 K, the normal-state resistivity is
linear and fits R„0.385+(5.307x10 )T. Assuming a
sample thickness of 1 pm, we obtain a room-temperature
resistivity p„(300 K) 220 p 0 cm. Below 150 K, there is
pronounced rounding of the resistance curve, continuously
progressing into the superconducting transition, although
the transition of p(T) near p 0 is very sharp.

Figure 2 shows the resistive transitions when applying a
magnetic field H 0, 2, 5, and 10 T for three different an-
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FIG. 1. Temperature dependence of the electrical resistivity

of Bi2.2Sr2Cap. sCu208+g.

gles p 0', 4.5', and 35'. Unfortunately, it is impossible
to define an onset temperature of the superconducting
transition, even in zero magnetic field. Still, this figure
clearly shows that the sample becomes more resistive with
increasing magnetic field, and with increasing angle p
from p 0, where the [Cu02] double layers are parallel
to H, to p 90'.

To determine the angular dependence of H,'2—dH, 2/dT, we deplaned T, in two ways. First, T, was
defined as the temperature at which p 0, as extrapolated
from the linear regime of p(T) in the transition. An ex-
ample is shown in Fig. 2 for p(H 2 T, p 35'). The re-
sulting H, 2(T) phase diagram is shown in the inset of the
upper part of Fig. 3 for various angles p, exhibiting a con-
cave upturn of H, 2(T). This upturn is probably not
caused by dimensional crossover, but is likely due to the
onset of fiux-fiow resistivity. The main upper part of Fig.
3 shows the angular dependence of H,'2 defined as 5/[T, (5
T) —T, (10 T)]. The resulting anisotropy of H,'2 is

H~2 (p 0)/H~2 (p 90' ) 9.1/0. 37 25. For comparison
we show the curves as calculated from the anisotropic GL
theory

H,' (p2) H,'2(90)(cos p+e sin p)

for e[ g,/(, (m, /m, ) '~ l 0.001, 0.040, and 0.100,
fixing H,'2(p 90') 0.37 T/K, as measured. Clearly,
the measured points do not fit the GL expression but have
a more peaked angular dependence. Also the slopes H,'2
between 2 and 5 T or 0 and 2 T yield a more peaked angu-
lar dependence than expected from the GL expression.

The temperature at which the resistance has half the
value of the extrapolated normal-state resistivity was used
for the second definition of T„as shown in Figs. 1 and 2.
The resulting H, 2(T) phase diagram is shown in the inset
of the lower part of Fig. 3 for various angles p, resulting in

convex curves for H, 2(T). Using the same definition for
H,'2 as above, we obtain the angular dependence of H,'2 (p)
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FIG. 2. Temperature dependence of the electrical resistivity

of Bi2.2Sr2Cap. sCu208+q in magnetics fields of 0, 2, 5, and 10 T
for three angles p between the magnetic field and the lCu02]
planes. Also indicated are the half values of the extrapolated
normal-state resistivity, and one example of the extrapolation to

p Ofora 2Tatp 35 .

shown in the lower part of Fig. 3. Again for comparison
three anisotropic GL curves are shown, now for e 0.001,
0.014, and 0.020 fixing H,'2(90') 0.75 T/K. The an-
isotropy resulting from this definition of T, is
H,'2 (p 0')/H, '2 (p 90') 45/0. 75 60, but the GL
curves clearly show that an even larger anisotropy may be
possible.

Before addressing the anisotropy of the H, (p2) data, it
is appropriate to discuss the resistive behavior in the vicin-
ity of T,. Figure 2 shows that there is considerable mag-
netoresistance in the onset of the superconducting transi-
tion. The data extend to higher temperatures and show
that the p-T curves for different values of the magnetic
field do not give a distinct resistive anomaly at the temper-
ature where the magnetoresistance vanishes, but rather
the p(T) curves smoothly fan out at —105 K. The round-
ing of p(T) starts at even higher temperatures (-140 K).

We suggest two sources for the magnetoresistance and
the rounding of p(T). First, the crystal may contain in-
tergrowths, resulting in local inhomogeneities of higher T,
phases of the Bi-Sr-Ca-Cu-0 system. " Second, the devi-
ations from linearity of p(T) can be the result of fluctua-
tions, ' which can extend to temperatures far above T, in
the high-T, superconductors. A combination of both
effects is also possible. We addressed the possibility of
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FIG. 3. Angular dependence of the upper critical-field slope
of Bi2.2Sr2Ca0. 8Cu208+g. The upper part of the figure uses the
extrapolated zero-resistivity definition of T„and the lower part
uses the transition midpoints. The thick line in the upper part is
a guide to the eye through the data points. The thin lines are
GL curves for three values of s. The insets show the correspond-
ing H, 2(T) phase diagram.

fluctuations by fitting the excess conductivity cr'(T),
defined as the difference between the extrapolated
normal-state values and the measured conductivity, to a
power law: rJ'ra (T/T, —1)'. Although this power law fits
the data very well, the accuracy in determining T, is
insufficient for the determination of H,'2(T). Further-
more, we obtained large negative values for a,
(—3 & a & —1), which is inconsistent with the appropri-
ate theories of direct or indirect contributions to the con-
ductivity due to fluctuations. ' To determine a possible
contribution of inhomogeneities to p(T) above 86 K, we
tried to determine the normal-state resistivity from the
functional dependence of p p(H) and then taking the
limit for H eo or H H, 2. This attempt was unsuc-
cessful and thus we have not been able to separate both
contributions. We expect however, that inclusions of a
105-K phase should have extremely high critical-field
values in the temperature regime where we extract our
values of T, and therefore would not appreciably affect
the resistance drop at 85 K.

Below T, the p(T) behavior is also complicated. First,
we found that the pinning force must be very low as no

change in the resistivity was found upon varying the
current by four orders of magnitude between 0.5 pA and 5
mA, between 60 and N10 K for p 90' and H 2 T. Also,
the flux-flow resistance pf does not follow the rule'
pf/p„H/H, 2(0). Instead, dpf/dH decreases signi-
ficantly for relatively low fields (compared to an estimate
of H, 2), but does not saturate below 10 T.

These results led us to choose two definitions of T, .
First, we used an extrapolation scheme of p(T), as shown
in Fig. 2 for p(H 2 T, p 35'). This scheme was suc-
cessfully used for Ba2YCu307, where inhomogeneities can
give rise to a "resistance foot,"preventing the definition of
T, at the value where p(T) 0. Better data for single-
crystal data justified the use of this procedure, '4 although
this definition for T, results in a low value of T, and a
lower limit to the anisotropy. Second, we used the more
conventional definition of T, at the arbitrary value
p(T) 0.5p„(T), extrapolating p„ from the high-
temperature behavior. We note that flux flow sets in
below 0.5p„(T) and thus criteria using smaller values of
p(T)/p&(T) 0.15 and 0.30 as reported by Juang et al
give results that are influenced by this flux-flow resistance.

Using these definitions for T„we see that the first
choice suggests an anisotropy of H,'2 of 25, but fails to
give agreement with the angular dependence predicted by
the anisotropic GL theory. The second choice yields an
anisotropy of H,'2 of 60 or even larger, and the data points
are in agreement with GL theory, as expected (see below).
We emphasize that anisotropy values larger than 60 fit the
data equally well as clearly shown in Fig. 3. From this
plot it is obvious that the anisotropy we measured could be
limited by the experimental angular resolution. In con-
trast to these results on Bi22SrzCao. sCu20s+s, results for
Ba2YCu20q show that both T, definitions gave results
consistent with the GL angular dependence. 6 For
Ba2YCu307 the zero-resistance criterion yielded an an-
isotropy in H,'2 of 3.0 and the midpoints yielded a value of
4.7. Apparently the anisotropy of Bi2 2Sr2Cao sCu20s+s is
much larger than that observed for Ba2YCu307. The de-
viations from GL theory, obtained using the zero-
resistance definition, are most likely due to the large flux-
flow resistance for large values of the angle p.

The angular dependence of H,'2 implies that extremely
good alignment of the crystal is required to obtain reliable
data. An error of 2' reduces the value of H, 2 by about a
factor 2. Using our values of H, 2 as conservative
estimates, we obtain, using the Werthamer-Helfand-
Hohenberg theory, '6 values for H, 2(0) 22(44) T and
H, 2(0) 533(2640) T for the zero-resistance and mid-
point definition, respectively. From these values we calcu-
late zero-temperature coherence lengths g, (0) 38(27) A
and g, (0) 1.6(0.45) A.. This is in agreement with our
earlier conclusion that (,(0) becomes smaller than the
(Cu02] double-layer separation' leading us to expect
the dimensional crossover at that temperature at which
g, (T) equals the double-layer separation.

We can estimate the temperature of the dimensional
crossover from our measurements, where (,(T) =s/4&
with s the interlayer spacing: s=12 A. By calculating
the coherence length g, from (,(T) po/2', 2(T) and
&, from &, (T)&,(T) pn/2', 2(T), we estimate the di-
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mensional crossover for (,(T) (pp/2z) (H,$/H, 2)
&(I/H, 2) s /2. Using our value of the anisotropy of
H, 2/H, q 25(60), we expect the dimensional crossover
for H, 2=17(7) T. This means that the dimensional
crossover should be on the borderline of our experimental
regime, and accessible experimentally. If the anisotropy
we have measured is indeed not intrinsically limited, but
limited by the angular alignment of the crystal, the re-
quired magnetic fields would be even smaller. In this case
it is possible that we have already entered the two-
dimensional regime accounting for the high value of H, q.

However, to observe the dimensional crossover as an up-
ward curvature in the 45 T/K slope H, 2(T) remains an
experimental challenge.

Finally, we want to compare the value of the anisotropy
of the upper-critical fields of 25(60) with other anisotro-
pies. First, the Fermi velocity anisotropy, derived from
calculated band structures, 's is approximately 13. In the
clean limit this would result in an H, 2 anisotropy of -3.6.
The present experimental values are an order of magni-
tude larger and thus point to additional contributions,
such as mean-free-path anisotrogies. Secondly, resistivity
measurements by Martin et al yield. ed resistivity anisot-
ropy values of the order of 105, which is at least two or-
ders of magnitude larger than expected from our value of
the H, 2 anisotropy. We note, however, that these large
values of p&/ps might be, at least partly, due to the nature
of the samples: they contain various intergrowth layers

some of which might be insulating. These sample imper-
fections affect the macroscopic current flow along the c
axis. In contrast, the upper-critical field is associated with
microscopic currents on a length scale given by the vortex
size. Therefore the present H, 2 anisotropy is intrinsic to
the superconductor.

In conclusion, our measurements indicate a large an-

isotropy of the superconducting properties of Bi22Sr2-
Cap sCu20s+s. Depending on the definition of T, we find
an anisotropy of H,'q of 25 or 60 and even larger values for
the anisotropy cannot be excluded. In spite of the devia-
tions from anisotropic Ginzburg-Landau theory, a clear
dimensional crossover has not been observed. Our results
indicate that the magnetic fields required to observe a di-
mensional crossover should be experimentally accessible.
It is clear that attempts to measure the anisotropy of
Bi22Sr2Cap sCu20s+s will be seriously complicated by the
large flux-flow resistance which makes the determination
of T, (H) very difficult.
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