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Using a modified Lanczos method we have studied the two-dimensional Heisenberg antiferro-
magnetic model (at zero temperature) with lattices up to 24 sites. The ground-state and first-
excited-state energies are evaluated. We show that the model is gapless in the thermodynamic
limit in agreement with recent Monte Carlo simulations. Accurate results for the “square ladder”
are also presented showing that this model is massive. The finite-size dependence of the results is
discussed. In addition, we calculate the energy of a resonating-valence-bond state on finite lat-

tices and its overlap with the exact ground state.

The discovery of superconductivity at high tempera-
tures in some special oxide compounds' induced a consid-
erable theoretical effort in the study of purely electronic
models. This renewal of interest in old problems is due to
the recent suggestion? that the CuO; planes of the new su-
perconductors may be described by the two-dimensional
(2D) Hubbard model (in the strong-coupling region) with
a small fraction of holes. For the undoped case and with a
strong Coulomb repulsion, the model reduces to the anti-
ferromagnetic Heisenberg (AFH) model.

La,CuO4 has been studied experimentally® showing
that it has two-dimensional antiferromagnetic properties
at low temperature. On the theoretical side, not much is
known about the AFH model in two dimensions. Is there
long-range order at zero temperature? Spin-wave calcula-
tions* suggest the existence of Néel order. Or course, this
method assumes that Néel order exists and the quantum
fluctuations around it are studied. It is clear that better
techniques are required. Besides, recently, the whole idea
that the ground state of the two-dimensional 2D AFH
model is Néel-like has been challenged by Anderson,
Baskaran, Zou, and Hsu.® They suggested that a new
state [resonating-valence bond (RVB)] may actually be
the gound state of the theory at least when doping is add-
ed to the system.

We clearly need a better theoretical understanding of
the 2D AFH model. Since there are no reliable analytical
methods to study it, there is a great interest in the numeri-
cal analysis of this model. Oitmaa and Betts® did an exact
calculation using finite lattices up to 16 sites finding anti-
ferromagnetic order in the ground state. Recent Monte
Carlo studies’ also support this picture.

It is the purpose of this Rapid Communication to fur-
ther analyze the 2D AFH model using a recently proposed
modified Lanczos technique.® Using this method we can
exactly study zero-temperature properties of the model
with lattices up to 24 sites. This technique is complemen-
tary to the Monte Carlo (MC) methods that can attack
larger systems than ours, but with statistical errors due to
the stochastic importance sampling (besides some MC
techniques have the problem that they are actually work-
ing at a small but finite temperature introducing an addi-
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tional error in the calculation’"%).
The Hamiltonian of the 2D AFH model is defined as

H=2J3S;'S,.j. m
x,/

where S, is a spin-3 operator at site x of a two-
dimensional square lattice with periodic boundary condi-
tions. I denotes unit vectors in the two directions. In this
paper, we take J =1. For the ground-state energy, we will
work in the subspace with total magnetization equal to
zero.

The modified Lanczos method® that we use in this pa-
per has proved to be a very efficient technique in the study
of the spin- # AFH chain. It has been recently successful-
ly applied to the analysis of spin-1 and -+ chains, dynami-
cal problems, and other systems. 10 The method starts
with some initial state (that we take as a Néel state for
simplicity; the only constraint is that the starting
configuration needs a nonzero projection over the exact
ground state). Applying the Hamiltonian to the initial
state, we can construct a vector orthogonal to it and by di-
agonalizing the 2x2 Hamiltonian matrix in that subspace
we improve the initial values of the energy and ground
state as in a variational technique. We repeat this process
many times until we achieve the required accuracy in the
ground-state energy and wave function. We have mea-
sured observables with an accuracy of 10 ~’. For more
details, we refer the reader to Ref. 8.

In Table I, we present the results for the ground-state
energy for different lattice sizes. To obtain a numerical
estimation of the gound-state properties of the two-
dimensional model in the thermodynamic limit we did the
following: first we obtain results for lattices of N XL sites
keeping fixed NV and increasing L, and only at the end take
the limit N — oo,

Following these ideas, first we study the case of lattices
2xL and try to make the extrapolation L— oo. In this
case, we can get the ground-state energy with great accu-
racy, since the results for L odd and even converge (to the
same value) from above and from below, respectively, giv-
ing upper and lower bounds to the energy in the L =oo
limit. In fact, from a simple inspection of the results for
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TABLE I. Ground-state energy per site of the 2D AFH mod-
el on a N x L lattice (absolute value).

final result for the 2D model is that it is gapless). We be-
lieve that the crossover between critical and noncritical
behavior for the *“square ladder” deserves further study.

L/N 2 3 4 A model with a coupling constant J between the two
2 2.000000 1.666 666 1.733583 chains can interpolate between a gapless theory J=0)
3 1.666 666 1.228036 and a massive one (J =J) with probably a critical point in
4 1.733583 1.228036 1.403560 between.

5 1.713657 1.330769 In Table II we show the staggered correlation function
6 1.720471 1.175699 1.379376 7 oz
7 1718017 wy =(S3S3+y), ()
g i;’:ggg; 1.159269 for the 2x L lattices. The results for L =12 can be ap-
) proximated very well by an exponential fit, giving addi-
10 1.718735 . . .
1 1718673 tional support to the idea that this model has a mass gap.
12 1.718699 Now let us study the 4xL and 6L lattices. For the

L=11 and 12 we obtain
Ejyxeo=—1.718686 = 0.000013. )

Since for the 4X L and 6x L lattices we cannot reach such
an accuracy by simple inspection, it is important to ana-
lyze the L dependence of the results. We fitted the data
with a polynomial

Ejx; -sz‘»"'za;- 3)

a and E;x - are obtained using a least-squares-fit subrou-
tine for a fixed a. We choose the value of a that maxi-
mizes the correlation of the fit. For the special case of
2x L lattice we found that the optimal a takes a large
value (a=4 if the results from L =2 to 12 are con-
sidered). This is not surprising since from Table I we ob-
serve that the convergence is very fast. (In fact, we found
that we can also fit the data very well with an exponential,
ie., Ezxy =Ejxw+ae “%.) We explicitly checked that
using the ground-state energy results for the one-
dimensional AFH chain [see Ref. (8)] we correctly repro-
duced the well-known result that the optimal a is 2. Us-
ing the energies for L even between 2 and 12, we found an
extrapolated energy —1.718 £0.003, in good agreement
with the more accurate result Eq. (2).

Note that the 2x L lattice can be thought of as a one-
dimensional chain with two spin degrees of freedom per
site and an involved nearest-neighbor interaction. The
fact that there are no 1/L? corrections to the ground-state
energy tells us (from conformal invariance) that the
theory is not critical and there should be a mass gap (we
have checked below this prediction; however, note that our

case 4x L, we have only three numbers for the extrapola-
tion to L = oo (L =3,5 are not very useful here). We found
that they can be fit with the polynomial Eq. (3) again us-
ing a=4. Our extrapolated ground-state energy is
E4xeo=—1.371£0.02. For the 6XL system we assume
that @ =4 works here as well as in the previous cases. The
extrapolated result is E¢xco ™= —1.36 £0.02. We have re-
peated our analysis for the N XL lattices with N =3, 5.
The best fits are obtained with a =2 and 3, showing a
slower convergence than for N even. The extrapolated re-
sults are Ejxeo=—1.15%£0.02 and Esxe=—1.28
+0.03.

With the knowledge of the energy for lattices IV X oo, we
can obtain a rough estimation of the ground-state energy
in the bulk limit. In fact the energies for N =2, 4, and 6
can again be fit with an optimal a=4. Our result is
Eooxoo=—1.35%£0.02. It compares well with the more
accurate prediction of Barnes and Swanson!!
(E oxoo=—1.344+0.002) using a random-walk tech-
nique. These results show that the previous estimation of
Oitmaa and Betts (Ewxe=—1.31+0.01) had too op-
timistic error bars.

In Table III, we show results for the square of the stag-
gered magnetization in the ground state defined as

<M2>-<[iV};(—1)'x's,]2>. )

The Néel state has vAM?) =0.5 in this notation. The re-
sults for the magnetization (M ?) of the 2x L lattice can be
extrapolated again using Eq. (3) with an optimal a =1
(using L =4, ...,12). In the L— oo limit, we obtain a
result compatible with zero (=0.008) showing that the
square ladder has a very small staggered magnetization.
Next, we should try to obtain the bulk two-dimensional

TABLEII. Correlation functions (wy) for 2x L lattices. y is along the long direction of the lattice.

y 2x12 2x10 2x8 2x6 2x4 2x2

1 0.295221 0.295404 0.296313 0.301034 0.328 604 0.666 666
2 0.088943 0.089375 0.091522 0.102731 0.168020

3 0.036816 0.037849 0.043116 0.072459

4 0.015848 0.018176 0.030386

5 0.007971 0.013302

6 0.005877
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TABLE III. Ground-state expectation value of (M?) as
defined in Eq. (5) for lattices of size N xL.

L/N 2 4
2 0.500000 0.203522
4 0.203 522 0.276 527
6 0.160385 0.0459
8 0.116915
10 0.086530
12 0.066751

limit, hoping to find a good convergence as with the
ground-state energy. However, we observed a peculiar be-
havior: The magnetization has a maximum for the square
lattices (N =L). For example, the results for the 4x2 and
4x6 lattices are much smaller than for the 4x4 one, in
spite of the fact that, intuitively, we would have expected
the 4x 6 lattice to be closer to the bulk limit. Then for the
magnetization the order of the limits towards the two-
dimensional bulk is very important. One-dimensional-like
lattices probably do not have a spontaneous magnetiza-
tion. The Néel order is a genuine two-dimensional effect,
i.e., the bulk two-dimensional limit is very singular. These
details deserve further study. Other calculations’ support

the idea that there is a staggered magnetization (~/AM2))
in the 2D AFH with a value around 0.30.

In Table IV, we present our results for the mass gap
defined as the difference in energy between the triplet and
singlet states. As in the case of the ground state, special
care must be taken with the quantum numbers of the first
excited level. For both N and L even, the momentum is =
in both directions. For lattices where NV or L is odd, there
are no general rules, but, for example, on a 2% L and 3xL
we found that the momentum is O along the “even” direc-
tion and #(V —1)/N in the “odd” direction (where N is
the length in that direction).

As we did with the ground-state properties, let us first
begin with the 2% L lattice. In this case, we cannot get a
very accurate result by simple inspection as we did in Eq.
(2) for the ground-state energy, mainly because the L odd
results converge very slowly (probably because in this case
a Néel state does not fit corréctly on the lattice). For this

TABLE IV. Mass gap for lattices of size Nx L.

L/N 2 3 4

2 4.000000 3.725083 2.745559
3 3.725083 1.783 380
4 2.745559 1.783380 1.157198
5 3.216230 1.395900
6 2.595551 1.223028 0.848 042
7 2.952831
8 2.569085
9 2.814183

10 2.563948

11 2.735942

12 2.562905

reason, we need to make some extrapolation. The results
for L even follow the polynomial behavior Eq. (3) with
a=13 while for L odd we obtain that the optimal a is 1.
Our best estimate for the mass gap (AE) comes from L
even and gives AE;x.™=2.561 £0.002. It is then clear
that the *“‘square ladder” has a finite mass gap as suggest-
ed by the analysis of the ground-state properties.

Using again the L even results for the 4xL and 6XL
lattices we obtain the extrapolated values AE xo
=(0.6210.01 and AE gx =0.27 £0.02 (for the 4L lat-
tice the best extrapolation is obtained with a =2; for the
6x L lattice we assumed the same behavior). We can see
that the mass gap decrease very quickly with the size N of
the N x oo lattice. In fact, we found that the results for
N =2, 4, and 6 are fit very well by a polynomial with a =2
and the extrapolated value is

AEcoxoo-_0.0zio.Oz, (6)

which is compatible with a gapless theory in the bulk
two-dimensional limit. In Ref. 11, a similar result was
found with lattices of 4x4, 6x6, and 8 X8 sites. The ap-
proach to the bulk limit is very different in this paper (first
one direction is sent to o and then the other) from that in
Ref. 11 (they approach the two-dimensional case with
square lattices). It is remarkable that the conclusions of
both are the same.

We have also evaluated the energy of the “resonating-
valence-bond” (RVB) state that Anderson proposed some
time ago as a candidate for the ground-state energy of a
triangular lattice.'? In the square lattice it is believed that
this state may have an energy very close to that of the
ground state. A small amount of frustration (through
next-nearest-neighbor interactions or by the introduction
of holes) may then induce a phase transition to a new re-
gime where the RVB state is the exact ground state.

The RVB state is defined as

yrve=X | a), @)

where the states {| @)} are “dimer” coverings of the lattice
(for details, see Ref. 13). Each dimer involves nearest-
neighbor sites coupled in a singlet (|1])—||1))/v/2).
The state | ) represents a product of singlets involving all
the spins of the lattice. For a two-dimensional lattice, the
number of coverings grows exponentially. !4~ 16

We have measured the energy of the RVB state in a
straightforward way: first we generate all the possible
coverings and then we transform each covering into the S,
basis. With the help of the programs used to get the exact
energy, we can now evaluate the RVB energy. Since in
the RVB calculation, we have not implemented the sym-
metries used in the evaluation of the ground state, we have
computer memory problems to go beyond a 4x4 or 2x8
lattice but these lattices are big enough to extract some
qualitative information for the state. Special care must be
taken on the boundary of the lattice with the sign of each
bond singlet. The “orientation™ of the bond must be the
same as in the rest of the lattice.

In Table V, we present the energy of the RVB state.
For a 2X2 lattice, it is the exact ground state. Increasing
the size of the lattice the energy remains very close to the
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TABLE V. Results for the RVB state for Nx L lattices: Ervp denotes the energy, Ny is the number
of dimers of each state, O1=|{yrva|Wexa)| is the overlap with the exact wave function.
02 | (yneet | Wexacr? | is the overlap between the Néel state defined in the text and the exact ground

state.
Ervs 0 (%) 0, (%)
L/N 2 4 2 4 2 4 2 4
2 2.000000 1.571429 2 9 100 75 82 55
4 1.571429 1.337274 9 272 75 57 55 41
6 1.630435 20 3108 71 36
8 1.646139 49 60 23

gound-state one. For example, for a 2x8 lattice the
difference is only 4.24% and for a 4x4 4.72% (by the way
note that the RVB energy for a 4x4 lattice has also been
evaluated in Ref. 17). In Ref. 18, the RVB state energy
for the 2 x L lattice has been estimated using a variational
calculation but we cannot compare results since we used
periodic boundary conditions (PBC’s) in all directions
while the authors of Ref. 18 used PBC’s only along the
longer direction.

In Table V, we also show the number of dimer cover-
ings of each lattice. For the 2x L system they grow like
e O4T3LHOIL (46 get this asymptotic formula, we also used
results not quoted in Table V, i.e., the number of dimers
for 2x10 and 2x12 lattices are 125 and 324, respective-
ly). Our lattices are not big enough to test the two-
dimensional bulk prediction of Ref. 14. Note also that the
number of dimers is greatly reduced if free boundary con-
ditions are used.

Also in Table V, we present the overlap of the RVB
state with the exact ground state defined as
| (wrvB | Wexact) | Where both states are normalized to 1.
The overlap is remarkable high and, at least for the 2xL
lattice, it may converge asymptotically to a nonzero con-
stant. We have also evaluated the overlap between the ex-
act ground state and a Néel state defined as the symmetric
sum of the two states with staggered magnetization 0.5 in
the z direction. The results are also shown in Table V.
They are systematically smaller than the RVB overlaps

but that does not mean that the exact state is “RVB-like.”
It simply means that the Néel state that we used repre-
sents just one of the possible directions in which the sys-
tem can develop a staggered magnetization. Without the
introduction of a staggered external field, each direction
in spin space has equal probability (that goes to zero in
the thermodynamic limit). So we can say that the ground
state has Néel order (from the nonzero staggered magne-
tization result of Ref. 7) but it does not resemble what it is
usually called, a Néel state. In fact, the exact ground
state is a singlet so it would be more interesting to make a
projection of the Néel state into that subspace and study
its overlap. Recently, that state has been formally con-
structed 'S in terms of long-range dimers (with a length-
independent weight). !

After completion of this work, we received a paper by
Tang and Hirsch?® where exact diagonalizations of finite
lattices for the 2D AFH model are also presented.
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