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Critical exponents of the gauge glass
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The spin-glass phase suggested for granular superconductors in an externally applied magnetic
field is discussed in detail. The spin-glass order parameter is an nxn, n=0 Hermitian matrix. As
a consequence, we show, by explicit calculation of the critical exponents to order ¢=6 —d, that
the “gauge” glass is not in the same universality class as any of the vector spin-glass models.

It has been suggested!'? that superconductivity in a
granular material or otherwise suitably disordered
superconducting-nonsuperconducting composite may ex-
hibit the analog of a spin-glass in the presence of an exter-
nally applied magnetic field. In this paper we analyze in
detail the nature of the spin glass in one of the models
widely used to discuss granular superconductivity; the
same model, it has been speculated widely,’> might de-
scribe the glassy characteristics observed in granular
high-T. superconductors. We shall explicitly demonstrate
that the glass phase that we call the gauge glass is not in
the same universality class as any of the vector spin-glass
models.

The model is a pseudospin model that has been used in
different manifestations to describe regular Josephson
junction arrays as well as granular superconductivity.
Each superconducting grain acquires a gap, as the tem-
perature is lowered below the single-grain transition tem-
perature T,. In the absence of intergrain coupling the
amplitude of the gap is fixed but its phase is not. The gap,
therefore, behaves as a two-component XY spin. The
weak coupling between grains due to proximity or Joseph-
son effects acts as a ferromagnetic interaction between
spins, with the result that at temperature 7, lower than
T, there is a phase-coherent transition. On switching on
a magnetic field, frustration is introduced into the system
leading to the possibility of spin-glass order. If the grains
are large enough such that charging effects can be
neglected this system can be described by the Hamiltoni-
an

H=—%)J,-,~cos(¢,-—¢j—A,-j). 1)

Here ¢; is the phase of the order parameter of the ith
grain, A;; =2n/®of{A-dl, B=VXA, ®=h/2e is the ele-
mentary quantum of flux, and J;; is the intergrain cou-
pling. Assuming a random distribution of grains and that
the magnetic field B was constant throughout the sample,
Shih, Ebner, and Stroud! found in their Monte Carlo ex-
periments evidence of glassy behavior such as hysteresis
and time dependence of supposedly equilibrium quanti-
ties. Later John and Lubensky? studied a random-bond
version of Eq. (1) near the percolation threshold. Analyt-
ic progress was possible after taking the continuum limit
of the resulting replicated Hamiltonian: they were then
able to demonstrate within mean-field theory the oc-
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currence of a phase transition from a state of macroscopic
phase coherence to spin-glass order above a critical field.

The transition from normal to spin-glass phase can be
described by the replicated Hamiltonian density

H=% %[Qap(r—VZ)Q:ﬁ+c.c.]+%uTrQ3 NG
a;:tp ’

Here it is important to recognize that the nxn order-
parameter field, n=0, is a Hermitian matrix in replica
space Qqs =Qp and Q,, =0. Assuming replica symmetry,
Q.paXilexpig;Xexp—ig;)/N. We shall see as a direct
consequence of this description in terms of an Hermitian
order-parameter field that the gauge glass is not in the
same universality class as the vector spin glasses. Decom-
posing the Q@ fields into real and imaginary parts,
Qop =X+ 1Y 5, the Hamiltonian becomes

H= l_ Z LXap(l' _VZ)Xap+ Yaﬁ(r—Vz)Yaﬂ]
a,p
a*p

+%Tr(uX3 —30XY?) 3)

with v=u; because Q is Hermitian X,3=2Xp, but
Yop= —Yp,. If follows immediately from this symmetry
that the propagators of the X and Y fields are given by

1
(XapXys) =————k2+rXaﬁ,5 4)
and
1
(YaﬂYy&)-mYaﬂyj , (5)
where*
Xaﬁy&’ ;_ (8a75ﬂ6+6a65ﬁ7_2Taﬁ76) (6)
1 , a sﬁ = y -6’
Taprs= {0 otherwise , ™
and
Yapys = ;_ (6,,,6,35 - 5‘,5557) . (8)
Notice in particular that (Y,5Y,p) = —(Y,5Y5)

=(k2+r) ~'. Recursion relations can now be obtained as
an expansion in e=6—d about six dimensions® by in-
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tegrating out fluctuations with wave vectors between A/b
and A (b> 1), rescaling all lengths by b ~! and fields by
b@*+2=n)/2 Allowing the two cubic couplings to differ ini-
tially we find the recursion relations

r=p2""M14+2(n—2)W*+v2)K41nb]l,
()
w=bC 32y 4+ [(n—2)u3+(n—4)v31K,1nb} ,

and

o' =bC€ 302, 4 [(n—2)v3+ (n —4)v2ulKy1nb} .

Here n=K;u?+v?)(n—2)/3 and K;=04/Qn)"

These recursion relations should be compared with those
for the Ising spin glass.> There are three fixed points; the
Gaussian fixed point u* =v*=0, and unstable Ising-
spin-glass fixed point Kju*?=—¢/(n—2), v*=0, and a
stable gauge glass fixed point

u*=p*=[—¢2(n—4)K;1'2, (10)

from which we find in the limit n— 0, n=—¢/6 and
v=1/2+5¢/24. This is to be compared with the corre-
sponding results for m-component vector spin glasses of
n=—me/32m—1) and v=73+5me/12Q2m—1).
Hence the gauge glass is not in the same universality class
as any vector spin glass with a finite value m.
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