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Critical exponents of the gauge glass
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The spin-glass phase suggested for granular superconductors in an externally applied magnetic
field is discussed in detail. The spin-glass order parameter is an nxn, n—=G Hermitian matrix. As
a consequence, we show, by explicit calculation of the critical exponents to order e' 6 —d, that
the "gauge" glass is not in the same universality class as any of the vector spin-glass models.

It has been suggested' that superconductivity in a
granular material or otherwise suitably disordered
superconducting-nonsuperconducting composite may ex-
hibit the analog of a spin-glass in the presence of an exter-
nally applied magnetic field. In this paper we analyze in

detail the nature of the spin glass in one of the models
widely used to discuss granular superconductivity; the
same model, it has been speculated widely, 3 might de-
scribe the glassy characteristics observed in granular
high-T, superconductors. We shall explicitly demonstrate
that the glass phase that we call the gauge glass is not in
the same universality class as any of the vector spin-glass
models.

The model is a pseudospin model that has been used in
different manifestations to describe regular Josephson
junction arrays as well as granular superconductivity.
Each superconducting grain acquires a gap, as the tem-
perature is lowered below the single-grain transition tem-
perature Tg. In the absence of intergrain coupling the
amplitude of the gap is fixed but its phase is not. The gap,
therefore, behaves as a two-component XY spin. The
weak coupling between grains due to proximity or Joseph-
son effects acts as a ferromagnetic interaction between
spins, with the result that at temperature T„ lower than

Tg, there is a phase-coherent transition. On switching on
a magnetic field, frustration is introduced into the system
leading to the possibility of spin-glass order. If the grains
are large enough such that charging effects can be
neglected this system can be described by the Hamiltoni-
an

H — J;l cos(p —
p

—A") (1)
i,j)

Here p; is the phase of the order parameter of the ith
grain, A;, =2tt/@Oj JA dl, B VxA, 40 h/2e is the ele-
mentary quantum of flux, and Ji is the intergrain cou-
pling. Assuming a random distribution of grains and that
the magnetic field 8 was constant throughout the sample,
Shih, Ebner, and Stroud' found in their Monte Carlo ex-
periments evidence of glassy behavior such as hysteresis
and time dependence of supposedly equilibrium quanti-
ties. Later John and Lubensky studied a random-bond
version of Eq. (1) near the percolation threshold. Analyt-
ic progress was possible after taking the continuum limit
of the resulting replicated Hamiltonian: they were then
able to demonstrate within mean-field theory the oc-

currence of a phase transition from a state of macroscopic
phase coherence to spin-glass order above a critical field.

The transition from normal to spin-glass phase can be
described by the replicated Hamiltonian density 2

H g —(Q,p(r —V2)Q,p+c.c.]+—,u TrQ . (2)
a,p

alap '

Here it is important to recognize that the n&n order-
parameter field, n 0, is a Hermitian matrix in replica
space Q,p Qp, and Q„O. Assuming replica symmetry,
Q,pap;(expip;)(exp i';)/N— We .shall see as a direct
consequence of this description in terms of an Hermitian
order-parameter field that the gauge glass is not in the
same universality class as the vector spin glasses. Decom-
posing the Q fields into real and imaginary parts,
Q,p X,p+i Y,p, the Hamiltonian becomes

H- 4 / [X,p(r —V )X,p+Y,p(r —V )Y,p]
a,P

asap

+—Tr(uX —3vXY )
1

(3)

and

1, a=p y=b,
0 otherwise,

Y,pys= 2 (b,ybps b, bp s).y—
(7)

Notice in particular that (Y,p Y,p)
—(Y,p Yp, )

(k +r) '. Recursion relations can now be obtained as
an expansion in e 6 —d about six dimensions5 by in-

with v u; because Q is Hermitian X,p Xp, but
Y,p

—
Yp, . If follows immediately from this symmetry

that the propagators of the Xand Y field are given by

(X,pXyp) 2 X,pyp
1

(4)k2+r
and

1
(YapYys) 2 Yapys t

k +r
where

Xapys 2 (baybps+ babby 2 Tapyb)
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tegrating out fluctuations with wave vectors between A/b
and A (b ) 1), rescaling all lengths by b ' and fields by
b td+2 "y2. Allowing the two cubic couplings to differ ini-

tially we find the recursion relations

r' =b ~ "[1+2(n—2) (u + v )Kq lnb],

u'=b(' " [u+[(n —2)u +(n —4)v ]Kylnb],

and

b ' " [v+[(n —2)v +(n —4)v u]Kqlnbj.

H«e ri-Kd(u'+v )(n —2)/3 and Kd Qd/(2n)d.

These recursion relations should be compared with those
for the Ising spin glass. s There are three fixed points; the
Gaussian fixed point u =v*=0, and unstable Ising-
spin-glass fixed point Kdu —e/(n —2), v 0, and a
stable gauge glass fixed point

u v =[—e/2(n —4)Kd]' (10)

from which we find in the limit n 0, q= —e/6 and
v I/2+5m/24. This is to be compared with the corre-
sponding results for m-component vector spin glasses of
ri

—me/3(2m —1) and v —,
' +5m'/12(2m —1).

Hence the gauge glass is not in the same universality class
as any vector spin glass with a finite value m.
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