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The phase diagram of a model bcc binary alloy with one magnetic component is studied using

the tetrahedron approximation of the cluster variation method. The model includes first- and

second-nearest-neighbor chemical and magnetic interactions between atoms of spin 2. The

ground-state structures at zero magnetic field and their ranges of stability with regard to the in-

teraction parameters are obtained using the method of linear inequalities introduced by Kanamori

and by Allen and Cahn. Temperature-composition phase diagrams are calculated for ordering al-

loys with antiferromagnetic interactions.

I. INTRODUCTION

Several theoretical and experimental studies have
shown that the interplay between magnetism and chemi-
cal order has pronounced effects on the equilibrium and
metastable phase diagrams of binary transition metal al-
loys. ' For example, it is well documented that spatial
long-range order in the Ni-Pt system reduces appreciably
the Curie temperature relative to that of the disordered al-
loys. 2 A similar effect has been reported in the Fe-Al sys-
tem. 3 Conversely, magnetism has a strong effect on the
alloy spatial order. For example, it is generally agreed
that the order-disorder transition observed at low temper-
atures in Co3Pt is a consequence of the magnetic interac-
tions3. Another example is the Fe-Co system where it has
been shown that the order-disorder transition is intimately
linked to magnetism4 and, in particular, that the asym-
metry with concentration in the order-disorder transition
temperature is dictated by the asymmetry in the Curie
temperature.

In recent years, bcc alloys with one magnetic com-
ponent have attracted considerable theoretical interest. 3 6

These studies were largely motivated by the complex be-
havior observed in the Fe„Alt-„(Refs. 7 and 8) and in
the Fe„Si~—„(Refs. 9 and 10) systems which, at low tem-
peratures, adopt either the DO3 or the B2 structure de-
pending on the concentration of the transition-metal com-
ponent.

Owing to the complexities involved in the first-
principles treatment of alloy phase equilibrium, particu-
larly for the magnetic transition metals, theoretical stud-
ies are generally based on simple phenomenological mod-
els. Despite the intrinsic limitations of these phenomeno-
logical models, they have been very valuable in the study
of general trends of magnetic and nonmagnetic systems.
For example, many features related to the interplay be-
tween magnetism and spatial order can be satisfactorily
modeled by considering only short-range interactions be-
tween nearest-neighbor (NN) and next-nearest-neighbor
(NNN) atoms. ' 6 These simple models have been inves-

tigated extensively at finite temperatures using the
Bragg-Williams approximation. Recently, higher-order
approximations as well as Monte Carlo simulations have
been used to study magnetic alloys with both the bcc"
and the fcc2'2 structures.

Here we present a systematic study of the ground-state
structures and of the equilibrium properties at finite tem-
peratures for a model bcc binary alloy with one spin- —,

'

magnetic component. Both NN and NNN chemical and
magnetic pair interactions are included in the model. In
the absence of an external magnetic field, we find 12
different ground-state configurations. The ranges of sta-
bility of the 12 ground-state configurations are obtained
using a method of linear inequalities similar to that intro-
duced originally by Kanamori'3 and by Allen and Cahn, '

and more recently by Sanchez and de Fontaine. '5 The
method of linear inequalities has been used by several au-
thors to investigate the ground states of nonmagnetic fcc
(Refs. 13-15) and bcc (Ref. 16) binary alloys with pair
interactions up to fifth neighbors. In Sec. II we briefiy
present the method used to determine the ground states
and discuss the results obtained for the magnetic bcc al-
loys.

The temperature-composition phase diagrams for pro-
totype magnetic alloys are calculated by means of the
cluster variation method'7 (CVM) using, as the basic
cluster, the irregular tetrahedron formed by NN and
NNN pairs. The results of the finite-temperature calcula-
tions together with a brief outline of the CVM is given in
Sec. III. Concluding remarks are presented in Sec. IV.

II. GROUND STATES

Most of the ordered superstructures reported experi-
mentally in magnetic bcc alloys can be obtained as ground
states of an Ising model Hamiltonian with only NN and
NNN pair interactions, the latter being essential in order
to stabilize the commonly observed DO3 structure. Thus,
in the present model, we assume that the energy of the
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system is given by
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where V„and J„are, respectively, the chemical and mag-
netic interactions between nth neighbors (n 1,2), and
where N;~"~ is the number of nth-neighbor pairs of species
i and j. In Eq. (1), A is the magnetic component and 3 f
AJ represent the two allowed spin configurations. The
effective chemical interactions V„are defined in terms of
the atomic interaction Vji"i between atomic species i and j
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where K is the total number of vertices of the polyhedron,
Ek is the energy corresponding to vertex k, and pk are
non-negative barycentric coordinates obeying the relation

K

positive magnetic interactions J„ favor aligned magnetic
moments between nth neighbors, whereas a positive value
of the chemical interaction V„ favors nth-neighbor pairs of
unlike chemical species.

The problem of characterizing the ground states con-
sists of minimizing the energ E, which is linear in the
configurational variables N,&~", for all possible values of
the interaction parameters V„and J„. For a given cluster
approximation, in our case the irregular tetrahedron, it
can be shown that all possible states of order of the system
are located inside a convex polyhedron in configurational
space. The configurational polyhedron is defined by the
condition that all cluster probabilities must be positive
and properly normalized to unity. The dimension of con-
figuration space is determined by the number of indepen-
dent probabilities corresponding to the maximum cluster
or, alternatively, by the number of all possible cluster
correlation functions. 's Since the configurational po-
lyhedron is convex, the energy for any state of order may
be written as'5

FIG. 1. The tetrahedron configurations for all possible
ground states of the bcc alloy with one magnetic component.

ponent in the tetrahedron approximation gives 13 vertices
of the configurational polyhedron. The tetrahedron
configurations for all 13 ordered structures (Z,m

1, . . . , 13) are depicted in Fig. 1. We find that the ver-
tex corresponding to the ferrimagnetic structure Z2 is not
stable for zero magnetic field, which reduces the total
number of possible ground states to 12. The structures
corresponding to the 12 ground states can be described in
terms of the four interpenetrating sublattices shown in
Fig. 2. For pure component A, there are three ground

I
I
I

I
I
I
I
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In addition to Eq. (4), the barycentric coordinates pk gen-
erally obey a linear constraint arising from the fixed con-
centration of the alloy. As seen from Eqs. (3) and (4), the
vertices of the configurational polyhedron correspond to
all possible ground-state superstructures.

The range of stability with respect to the interaction pa-
rameters V„and J„ is given by an hypercone with extreme
rays defined by the normals to all faces of the
configurational polyhedron converging to the vertex in
question. ' The hypercone forms the so-called dual of the
configurational polyhedron. Finally, ground-state phase
diagrams may be constructed by means of lower dimen-
sional sections of the dual polyhedron in interaction space.

The analysis of the binary alloy with one magnetic com-

FIG. 2. The four interpenetrating sublattices in the bcc struc-
ture. Also shown is the irregular tetrahedron straddling sublat-
tices, a, P, y, and b.
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FIG. 3. Ground-state phase diagram for bcc nonmagnetic
binary alloy with NN (V&) and NNN (V2) chemical interac-
tions (Ref. 14).

FIG. 5. Ground-state phase diagram in the NN (J~) and
NNN (J2) magnetic interactions space for a bcc binary alloy
with one magnetic component and chemical interactions given

by V& &Oand V2&0.

states corresponding to the ferromagnetic phase (Z 1) and
to two antiferromagnetic states with the same symmetries
as the 832 (Z3) and 82 (Z4) ordered alloys. For
stoichiometry 338, there are also three ground states cor-
responding to ferromagnetic ordering (Zq) and to antifer-
romagnetic ordering (Zq and Z7) on the magnetic sublat-
tices. At stoichiometry A8 there are ferro- and antiferro-
magnetic phases with chemical ordering that corresponds,
in the paramagnetic state, to the 832 (Zs and Z9) and 82
(Z1o and Z11) structures. Finally, for alloys rich in the

nonmagnetic component 8 the ground state is the DO3
structure (Z12) and, for pure 8, the disordered A2 struc-
ture (Z13).

In Fig. 3, we include the round-state phase diagram
obtained by Allen and Cahn' for nonmagnetic bcc alloys
with chemical NN and NNN pair interactions Vt and V2,

4' IS I s IS

FIG. 4. Ground-state phase diagram in the NN (J~) and
NNN (J2) magnetic interactions space for a bcc binary alloy
with one magnetic component and chemical interactions
Vl V2 ~0.

FIG. 6. Ground-state phase diagram in the NN (J~) and
NNN (J2) magnetic interactions space for a bcc binary alloy
with one magnetic component and chemical interactions given

by V~ & 0 and 2V~+ 3V2 & 0.
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FIG. 7. Ground-state phase diagram in the NN (J~) and

NNN (Jq) magnetic interactions space for a bcc binary alloy
with one magnetic component and chemical interactions given

by V~ &0 and 2V~+3V~ &0.

FIG. 8. Ground-state phase diagram in the NN (J&) and

NNN (Jz) magnetic interactions space for a bcc binary alloy
with one magnetic component and chemical interactions given

by V~ & 0 and 2V~ —3' & 0.

J =-V ]L
2 Jl =Y]

Z4 Zl5 Z4. ZIO .ZI5 Zl ~ ZIO ~ Zf ZI,ZI5

J2=Y2

FIG. 9. Ground-state phase diagram in the NN (J~) and NNN (Jz) magnetic interactions space for a bcc binary alloy with one

magnetic component and chemical interactions given by Vz & 0 and 2V& —3Vz & 0.
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respectively. A similar phase diagram for a system with

only magnetic interactions (for zero magnetic field) is
shown in Fig. 4. As can be seen in Fig. 3, there are five

distinct regions for different values of V1 and V2.. (i)
V1 &0, Vz&0; (ii) V1 &0, 2V1+3V2&0; (iii) V1 &0,
2V1+3V2 & 0; (iv) V1 & 0, 2V1 —3V2 & 0; and (v)
V2 & 0, 2V1 —3V2 & 0. The ground-state phase diagrams

ZS, ZS ~ ~)S

(ZS, ZI, ZIS)

V) &J)

ya l)) (y, = J, )

FIG. 10. Ground-state phase diagram in the NN (Vl) and

NNN (V2) chemical interactions space for a bcc binary alloy

with one magnetic component and magnetic interactions given

by J»0 and J2&0. The ground-state structures shown in

parentheses are for magnetic interactions obeying J& &0 and

J» 0.

I Vi ~ Ji i S/2 Jf
I ( Vi = -Ji ~ 5/2 Jf )

FIG. 12. Ground-state phase diagram in the NN (Vl) and

NNN (Vz) chemical interactions space for a bcc binary alloy
with one magnetic component and magnetic interactions given

by J2 & 0 and 2J &
+3J2 & 0. The ground-state structures shown

in parentheses are for magnetics interactions obeying J2 & 0 and

2JI —3J2 & 0.

corresponding to regions (i) to (v) are, respectively, shown

in Figs. 5 to 9. These diagrams depict the range of mag-
netic interactions, J1 and J2, for which a set of ordered
phases Z (see Fig. 1) are the ground states for alloys
with compositions ranging from pure A to 8. The
ground-state phase diagrams in terms of the chemical in-

teractions V1 and V2 are shown in Fig. 10 for J1&0,
J2&0 (J1&0, J2&0); in Fig. 11 for J1&0,
2J1+3J2 &0 (J1&0, 2J1 —

3J2 & 0); and in Fig. 12 for
J2 & Of/ 2J1+3J2 & 0 (J2 & oy 2J1 —3J2 & 0).

Z)S

ZS, ZIS

( ZS, Z, S)

Zs ZI Z)s

( ZS, ZII, ZIS )

y)f & -Jg

V)

FIG. 11. Ground-state phase diagram in the NN (Vl) and
NNN (V2) chemical interactions space for a bcc binary alloy
with one magnetic component and magnetic interactions given

by JI & 0 and 2J&+3J2 & 0. The ground-state structures shown

in parentheses are for magnetics interactions obeying JI & 0 and

2Ji —3J3 & 0.

III. FINITE-TEMPERATURE
CALCULATIONS

In this section we describe the calculations of the
temperature-composition phase diagrams for prototype
magnetic alloys with positive NN chemical interactions
(V1 &0), and NNN chemical interactions V2 0.5V|.
We investigate two cases characterized by antiferromag-
netic exchanges J1 (NN) and J2 (NNN) given by (i)
Ji —0.125V1, J2 —0.1Vt and (ii) J1 —0.125V|,
J2- —0.05V|. The set of interactions used in both cases
correspond to the ground-state diagram shown in Fig. 9:
For case (i), the ground states are Z3, Zq, Zlt, Z|2, and

Z|3 whereas for case (ii) the set of ground states are given

by the structures Z4, Z7, Z12, and Z|3.
The free energy of the magnetic alloy as a function of

temperature and composition is calculated using the
tetrahedron approximation of Kikuchi's CVM. The basic
configurational variables in this approximation are the
probabilities z;/k1 of finding an irregular tetrahedron, con-
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necting sublattices a, P, y, and b shown in Fig. 2, respec-
tively occupied by atomic species i, j, k, and l. In the
present case of a binary alloy with one magnetic com-
ponent, the indices i, j, k, and i can take three values cor-
responding to atoms A t, A ), and 8. The relevant sub-
cluster probabilities, obtained trivially from the z;jkt, are

I

the single-site probability (x;"), the NN (y~j") and NNN
(u j") pair probabilities, and the triangle probability t,",$",
where i, j, and k refer to atomic species and where v, v',

and v" refer to the four sublattices a, P, y, and k
The configurational entropy for a general ordered state

is given by

5 —Nk 6+L(z; kt) —3+[L(t jest')+L(t f~)+L(tfj) )+L(t/&t, )]
ijkl ijk

+ ', g[L—(u jj'+L(ups')]+g[L(yj")+L(y, ", )+L(ytj")+L(ytj~)] ——,
' g[L(x )+L(xt')+L(x()+L(x )]

lj V

(5)

with k Boltzmann's constant, N the total number of points
in the lattice, and where L(x) x ln(x).

The number of pairs N~jt"~ required to compute the
configurational energy [see Eq. (1)] are given by

N~j&" -N(y'"+ y"+yt'"+ yt") (6a)

N ~ —'N"(u'~+u" ) (6b)

The free energy for a general ordered structure as a
function of the variational tetrahedron probabilities zjkt
follows directly from Eqs. (1), (5), (6a), and (6b), and
from the fact that the subcluster probabilities appearing
explicitly in the free energy are given by partial traces, or
sums, of the tetrahedron variables. The final minimiza-
tion step, required to calculate the equilibrium free energy
and probability distribution z;jkt is usually carried out at
constant chemical potential and magnetic field; the latter
will be taken equal to zero in all our calculations.
Different minimization algorithms as well as convenient
procedures to construct the phase diagram have been dis-
cussed extensively in the literature. In order to solve the
minimization equations we have used a successive itera-
tions scheme introduced by Kikuchi. '7 Critical lines in
the equilibrium phase diagram were obtained by deter-
mining the vanishing of the smallest eigenvalue of the
SOx80 matrix of second derivatives of the free energy.
The dimension of the second derivatives matrix is given by
the number of linearly independent tetrahedron variables
z;,kt(3 —1). First-order transition lines in the tem-
perature-chemical potential space were obtained from the
equality of the grand potentials for different phases. In
general, these transitions occur between phases of either
the same or different symmetry but having different con-
centrations.

In the tetrahedron approximation used here, all minima
of the configurational free energy can be fully character-
ized using four sublattice magnetizations (m„), the aver-
age concentration of the nonmagnetic component (xjt),
and three chemical long-range order parameters (rt, )
defined, respectively, by

0.8

0.6
LJJ

0.4
LLJ

0.2
Dog (AF2

In the paramagnetic state (m„0, for v a, P, and b),
the different types of chemical ordering are given by (i)
g/ rt2 rt3 0 for A 2 structure; (ii) rti&0, rt2 rt3 =0 for
the 82 structure; (iii) rt2e0, rji ri3 0 for 832 structure;
and (iv) rtiWO, rt2 rt3&0 for the DO3 structure. In what
follows we will use the notation A2, 82, 832, and DO3 to
indicate chemical order corresponding to cases (i), (ii),
(iii), and (iv) above, irrespective of the magnetic ordering.
We note that, in general, the magnetic ordered phases will
have lower symmetry than suggested by our simplified no-
tation. The magnetic order itself will be characterized by
indicating the sublattices magnetization m„.

The calculated phase diagrams —using Vi & 0,
V2 0.5V~, and Ji —0.125Vi—are shown in Fig. 13 for
the case of J2/Ji 0.8 and in Fig. 14 for the case of
J2/Ji 0.4. We see from Figs. 13 and 14 that the transi-
tion between the paramagnetic phases A 2(PM) to
82(PM) is of second order for all temperatures and con-
centrations, whereas the A2(PM) to DO3(PM) ordering
transition occurring at low temperatures is of first order.
We see that for both cases shown in Figs. 13 and 14, the
transition from 82(PM) to DOi(PM) is of first order over
a small temperature and composition range becoming
second order, at a tricritical point, towards the center of
the phase diagram. Another feature common to the phase
diagrams of Figs. 13 and 14 is the temperature at which

m„-xgt -xgt (v-a, P, y, b), (7a)
0.0

0.0
I

0.2
I

0.4
I

0.6
I

0.8 1.0

xti -(x]I+xg+xg+xg)/4,

rti -(xg+x$ —x$ —xg)/2,

rt2- (xl[+x$ —xg —xg )/2,

rt3 (x]I+xg —xg —x$)/2.

(7b)

(7c)

(7d)

(7e)

CONCENTRATION OF B

FIG. 13. Temperature-composition phase diagram for a bcc
alloy with one magnetic component, calculated using the
tetrahedron approximation of the cluster variation method. The
pair interactions are V& &0, V2 0.5VI, JI —0.125VI, and
J2/J) 0.8.
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0.8 1.0

FIG. 14. Temperature-composition phase diagram for a bcc
alloy with one magnetic component, calculated using the
tetrahedron approximation of the cluster variation method. The
pair interactions are VI &0, V2 0.5V~, J~ —0.125VI, and
JgJ) 0.4.

the magnetic transition takes place in the stoichiometric
B2 phase (xs 0.5): in both cases, the transition temper-
ature correlates closely to that of a simple cubic lattice
with magnetic interactions given by J2.

The equilibrium antiferromagnetic phases for the case
JJJ1 0.8, shown in Fig. 13, are A 2(AF1) with
m, ms —

mp m„e—0; DO3(AF2) with rn, m& 0
and rn„—ms&0; and B2(AF2) with rn, mp 0 and
rn„—mse0. We note that all transitions between anti-
ferromagnetic phases are of second order. This is also the
case for transitions between para- and antiferromagnetic
phases, except for the A 2(PM) and A 2(AF1) to
DO3(AF2) transitions which entail simultaneous changes
in chemical and magnetic ordering.

A different set of antiferromagnetic phases is seen in

Fig. 14 for the case of JQJ1 0.4: A2(AF3) with
rn, mp

—m„msa0; —DO3(AF4) with m, 0,
mal&0, and m„ms) 0; DO3(AF2) with m, mlt 0
and rn„msw0; a—nd B2(AF2) with m, mrt 0 and
rn„—rnse0. Unlike the case of Fig. 13, we see that the
chemically ordered DO3 phase now exists with two
different antiferromagnetic structures, referred to above
and in Fig. 14 as AF2 and AF4. The DO3(AF4) phase is
one of the ground states listed in Fig. 1 (Z7) and, for con-
centrations of the nonmagnetic component B near 0.25, it
is favored by the configurational energy. For higher con-
centrations of B, the equilibrium phase is DO3(AF2)
which mediates the transition from the DO3(AF4) struc-
ture to the B2(AF2) ground state (Z11). Since the mag-
netic structures of the DO3(AF2) and B2(AF2) are the
same, the transition can be of second order as indicated in
Fig. 14. We note, however, that the portion of these tran-

sitions which are shown by broken lines in Fig. 14 are un-
certain due to numerical difftculties encountered in the
computation of eigenvalues in this temperature and com-
position range.

IV. CONCLUSIONS

The stability of ordered superstructures for bcc binary
alloys with one magnetic component was investigated for
a simple pairwise model with NN and NNN chemical and
magnetic interactions. The energy minimization at T 0
K was carried out using the method of linear inequalities
from which all ordered ground states were obtained: for
zero magnetic field, the analysis reveals 12 possible
ground states displaying chemical, ferro- and antiferro-
magnetic ordering. Despite the simplicity of the interac-
tion Hamiltonian, we find that the most commonly ob-
served ordered structures in real magnetic alloys are rep-
resented among the ground states of the model. Further-
more, depending on the sign and relative strength of the
chemical and magnetic pair energies, a large number of
distinct sets of ground states are possible.

The equilibrium states, free energies, and relative sta-
bility at finite temperatures were investigated using the
tetrahedron approximation of the CVM. We studied two
alloys that, in the paramagnetic state, order in the
B2(PM) and DO3(PM) structures. The antiferromagnet-
ic interactions J1 and J2 were chosen so as to stabilize the
same (Fig. 13) and different (Fig. 14) magnetic structures
in the chemically ordered phases. For the case,
JQJ1 0.4 (Fig. 14), the chemically ordered phase of the
DO3 type exists with two different antiferromagnetic
structures: DO3(AF2) and DO3(AF4) having zero and
finite total magnetizations, respectively. General symme-
try considerations show that a phase transition between
these two phases must be of first order, as shown in the
low temperature region of Fig. 14, and therefore these
phases can coexist over a range of average concentrations
Xg.
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