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Series study of random animals in general dimensions
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We construct general-dimension series for the random animal problem up to 15th order. These
represent an improvement of five terms in four dimensions and above and one term in three di-
mensions. These series are analyzed, together with existing series in two dimensions, and series
for the related Yang-Lee edge problem, to obtain accurate estimates of critical parameters, in

particular, the correction to scaling exponent. There appears to be excellent agreement between

the two models for both dominant and correction exponents.

I. INTRODUCTION

F(K) =+A(n)K" (1.2)

This may be viewed as the free energy of the problem
and exhibits critical behavior

[F(K)],;„s-A'(K, —K)e '[1+8'(K, K) '+ ]—
(1.3)

where K, is the critical fugacity, which is lattice depen-
dent, as are A' and 8'. Similar definitions can be made for
the site animal problem when one deals with the question
of how many animals with a given number of sites can be
embedded in a d-dimensional lattice. From universality
one expects the same exponents for both problems.

There has been a great deal of interest in the animal
problem during the last decade. This problem describes
the statistics of dilute branched polymers. Drouffe, Par-
isi, and Sourlas3 also pointed out that there is a connec-
tion between this problem and phase transitions in lattice
gauge theories. This connection implies that this model
has physical relevance also in high dimensions.

Several analytical results have been obtained for the an-
imal problem. The problem is trivial in one dimension
(1D), where A(n) —= l. On a Cayley tree, however, it is
nontrivial, and Fisher and Essam found 8 —,', with no
nonanalytic corrections. Lubensky and Isaacson2 ob-

The "lattice animal" problem' deals with the statistics
of finite clusters, in general, dimension-diluted lattices.
The number A(n), of clusters with n bonds, that can be
embedded in a d-dimensional lattice per site, is believed to
take the form

A(tt)-An eK, "(1+Bn '+ ),
where 8 and d, t are universal exponents, while A, K„and
8 are nonuniversal, lattice-dependent quantities. If one
assigns to each bond a fugacity K, then the generating
function F(K), is given by

tained a field theory, with an upper critical dimension of
8, above which the Cayley tree result should hold. Below
8 dimensions they derived an e expansion for the exponent
8. From their theory, it follows that the exponent 8 corre-
sponds to approaching the critical point through a con-
stant field line and not at constant order parameter. 's

From Eq. (1.2) one can see that the mean-square number
of bonds in a cluster, ga, is given as

x (K) =t) F/aK =A "(K,—K) [1+8'(K,—K) '].
(1.4)

Since K plays the role of a temperaturelike variable,
X (K) may be identified as the specific heat at constant
H, where H is the field conjugate to the order parameter,
which in this case, is the density of free ends. The sub-
script H indicates an exponent for the case when the criti-
cal exponent is approached along a path of constant H.
From the field theory it is found that the same exponent,
8—3, describes the dominant divergence in Z~(K), the
mean-square number of sites in a cluster, as well as that of
X =lJ F/8H =(K, —K) "", so that yH 3 —8. The
distinction between exponents at constant H or constant
order parameter is important here because unlike ordinary
magnetic systems, the line H 0 does not correspond to
zero, (i.e., constant) order parameter. A big step forward
was taken by Parisi and Sourlas6 who showed that in the
critical region the dominant Feynman diagrams in the
field-theoretic formulation of animals in d dimensions are
the same as for the critical behavior of the Yang-Lee
(YL) edge singularity ' in d —2 dimensions. The YL
edge problem deals with the singularity which occurs at
the edge of the distribution of zeros of the partition func-
tion in the complex magnetic-field plane for classical n
vector models. From solving the latter problem in 0 and 1

dimensions, they6 obtained the exact results that 8 =1 and
in 2 and 3 dimensions, respectively. Moreover, this

identification allows one to use the e expansion ' in 6 —e
dimensions for the YL problem, up to third order in e, to
obtain an e expansion for 8 in 8 —d dimensions for the an-
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imal problem, which gives~

((3) 10445
2 12 3888 81 1 259 712

~he~~ g(3) =1.202. . . is the zeta function. Since the re-
lation between the two problems was obtained by noting
that the two field theories have the same most relevant
terms, there are no similar relations between the correc-
tion to scaling exponents. Therefore, the e expansion for
A~ in the YL problem, "

(1.6)

although in agreement to first order in e with the e expan-
sion for 6& in the animal problem, ~ may not apply there to
higher order in e. Another mapping, between the animal
problem in d dimensions and the directed animal prob-
lem'~ in d —1 dimensions, was derived in a similar way, '

and was used by Dhar' t'~ to obtain 8 —", in 4D.
Dhar'~t') also obtained a mapping from the directed site
animal problem to the "hard square" problem'~~b~ on the
square lattice with negative activity. This mapping en-
ables determination of directed site animals u~ to 42
terms and accurate numerical evaluations of 8. ' t'

In order to facilitate comparison between these results
and our calculations and with other critical phenomena
studies, we shall present a brief summary of some of the
above discussed field-theoretic results and the resultant
scaling relations in a slightly different notation to that of
the original results. s The most distinctive feature of the
animal problem is that it has only a single independent ex-
ponent, unlike the usual critical phenomena where v and q
(or Xy and X~) are independent exponents. If we take vg
to be the correlation-length exponent, where subscript Q
indicates an exponent at constant order parameter, Q,
then the other exponents can be expressed in terms of vg
via yg

—2+ (d —2) vg
—ag and if we arbitrarily

define pg to be unity, one has the usual relation
ag+2pg+ yg 2, and hyperscaling with reduced dimen-
sionality: 2pg+ yg (d —2) vg. Note that these rela-
tions imply that yg

—2 at d 2. As we mentioned, the
exponent y~ 3 —8 we will study via our series work cor-
responds to approaching the critical point along a path of
constant H. The exponents at constant H are related to
those at constant Q by Fisher renormalization (Ref. 5)
P~ (1+yg ) ', v~ vg/(1+ yg ), and a~ y~ yg/
(1+yg), so that again a~+2p~+ y~ 2 and 2p~+ y~

(d —2)v~. For d & 2, y~ determines v~ via

v~ (2 —y~)/(d —2). Since we will investigate y~ nu-

merically, it is of interest to note the implied result for yg,
namely yg y~/(I —y~). Thus, yg diverges as y~ passes
through unity, and in fact, for y~ & 1, yg, if it has any
meaning, becomes negative, reaching the value yg

- —2
at d 2. The exact dimension where y~ 1 is, therefore,
of some interest and it can be estimated from the Flory ap-
proximation 5 for v~ which leads to the results
v~ 5/[2(d+2)], pyg (3d —14)/[2(d+2)], and

y~ (18 —d)/[2(d+2)], so that y~ 1 at d —", . The
approximation, although it disagrees with the e expansion,
is remarkable in that it give exact results for d 2, 3, 4,
and 8. The approximation gives 8 (7d —6)/[2(d+2)].

In addition to the above-mentioned exact and field-
theoretical results, several numerical calculations have
been made for the animal problem. An analytic expansion
for the critical point, K„ofhypercubic lattices, in powers
of I/a, where a 2d —1, has been obtained. ' '6 We ex-
pect that this expansion will be reliable for higher dimen-
sions. Real-space renormalization-group ' and Monte
Carlo methods' have also been applied, but the most ac-
curate extant numerical results have been obtained by
series expansions"'~ ~~ and finite-size scaling renormal-
ization methods. 0 A recent new approach by Dhar and
Lam~' combined Monte Carlo and series ideas, but does
not appar to lead to particularly accurate numerical
values.

A comprehensive summary of previous analytic and nu-

merical analysis for the animal and YL edge problems is

given in Tables I, II, and III. We quote critical exponents
in terms of y= y~ =3 —8, which is the variable in which
our analysis is made.

The literature values in Table I are, to the best of our
knowledge, the most recent estimates for each lattice with

each technique. From a glance at Tables I and II, we ob-
serve that the different dominant exponent estimates for
the animal problem appear to be well converged for d =2
and 3. However, many of the extant animal estimates for
d & 3 have large error bounds on the dominant exponent.
The Monte Carlo series estimates of Lam for d & 3 are
quite different from the series and e-expansion values.
There were also several discrepancies in the K, estimates
between different approaches, for higher dimensions,
where the series were relatively short (see Table III).
From the old ten-term series'5 even determination of the
upper critical dimension was unsuccessful, and the K, esti-
mates had large error bars. Note also that the Flory-type
estimate for y, on 2-4 dimensions, disagrees with the e ex-
pansion, and cannot be trusted in high dimensions, though
it might serve as a rough estimate. Better estimates for 8
(or any other leading singular exponent) are clearly need-
ed. Moreover, extant estimates for the correction ex-
ponent h~ are not accurate enough in all dimensions.
Even in two dimensions, where long series are available,
and there is a general agreement on K, and y values, there
are disagreements between different workers concerning

These disagreements will be discussed in length below.
In higher dimensions there are fewer estimates, but more
problems. Breuer" has given e-expansion estimates for
A~ from an expansion to order e [we quote" to order t.

~

in Eq. (1.6)]. We did make extrapolations from this ex-
pansion to order e~ but found them to be extremely ill

converged. Some approximants gave negative exponents
and therefore we decided that this expansion may be prob-
lematic and decline to quote the results. However, such
problems do suggest that one cannot know if the estimates
from order e are any improvement over the simple first-
order estimate A~ e/4. Breuer~~ also gives ratio esti-
mates for h~ from the directed site animal series, some of
which agree with his e-expansion results quite nicely.
However, on a closer look it appears that some of the
series A~ estimates are apparently biased from older criti-
cal temperature estimates and from y estimates for e
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TABLE I. Literature values of animal critical exponents in two and three dimensions. s, site; b, bond;
sq, square; tr, triangle; HC, honeycomb; D, diamond; ROG, radius of gyration; MC, Monte Carlo.

Reference Method/model

6
18
20

22
23
26
30
27

28
29

2
2.0+ 0.2

2.00 ~ 0.01
2.00 w 0.02

2.00+ 0.02

d 2

0.75'
0.4 ~0.3
0.7+' 0.2
1.3+' 0.2
1.0+' 0.2

0.75 +' 0.1

1.1 + 0.5
1.1 +' 0.3
0.8+ 0.15

0.86+' 0.05
0.83

1.15 +' 0.2
0.87 +' 0.07
0.87 +' 0.06
0.93 W 0.15
0.50 W 0.05

0.6412+' 0.035
0.640 75 +' 0.000 15

0.655 +' 0.010
0.640+' 0.004

Exact
MC
Series/sq(s)
Series/tr(s)
Series/tr (b)
Series/sq(s) '
Series/tr (s) '
Series/HC (b) '
Series/sq(b) '
Series/sq(s)
Series/tr(s) '
Finite size
Transfer matrix
Series/ROG
Series/ROG
Series/sq, tr (b) '
Series/ROG'

6
15
20

27
29

2

1.49 +' 0.02
1.45+ 0.05

1.5 + 0.1

1.55 +' 0.1

1.6+' 0.1

1.55
1.50
1.53
1.53
1.55
1.58
1.58

d 3

& 1.8
0.8+' 0.3
1.4+' 0.1

& 1.2
1.4+' 0.4
1.0 ~ 0.3
0.6+' 0.5

0.65 +' 0.2
1.25+' 0.15
1.2+' 0.1

1.3 ~ 0.2
0.64+' 0.06
0.45 ~ 0.1

Exact
6 exp
Series/sc(s)
Series/fcc(s)
Series/bcc(b)
Series/fcc(b)
Series/D(s)
Series/sc(b)
Series/bcc(s) b

Series/fcc(s)
Series/sc(b)
Series/bcc(b) b

Series/fcc(b)
Series/ROG'
SeriesOG'

'Biased by the exact value of the leading exponent.
Stability analysis.

[F(K)j„,s-A'(K, —K) '
~
ln(K, K)

~

'—(1.7)

where 8 —', is the mean-field value and z is believed to be

series, and therefore, tlteir apparent convergence may be
spurious. We think that the + 0.005 error that Breuer
places on his y estimates from the e2 series is clearly too
small since it excludes the e3 order estimates from Ref. 10
in some cases. Thus, the + 0.1 that he places on his final
A~ estimates must also be questioned, especially since
some of his 2 =6 estimates from different methods differ
by more + 0.1. Breuer concludes that longer series are
needed in order to determine correction exponents for
these problems. Since we have considerably longer series
in the higher dimensions, we can see that a comprehensive
analysis of correction terms from these series in all dimen-
sions is highly desirable.

At the upper critical dimension, the critical behavior
(1.3) becomes

from field theory. 2 This form can be used to extract
the upper critical dimension, or alternatively to evaluate
K, and z if we set the upper critical dimension equal to 8.

In this paper, we report on extensive studies of series for
the animal problem. We constructed the series for the
free energy [Eq. (1.2)] up to 15 terms in general dimen-
sion, which is an improvement of one term in 3D and 5
terms in 4D and above. This was done using a method of
constructing series from diagrams with no free ends. '

The coefficients of these series are listed in Table IV. We
analyzed the new series and the existing series in 2D using
improved methods, and obtained reliable estimates for K„
8, and 6& in Eq. (1.3) and K, in Eq. (1.7). Our results are
summarized in Tables V and VI and an overall summary
of the best lattice animal exponents is given in Table VII.

The outline of this paper is as follows: In Sec. II we
give details of the series construction, while Sec. III con-
tains a detailed report of our analysis. We concentrated



4944 ADLER, MEIR, HARRIS, AHARONY, AND DUARTE 38

TABLE II. Literature values of critical exponents for the isotropic animal problem, the Yang-Lee edge problem, and the directed
animal problem in four to seven dimensions.

Reference

14(a)
14(c)
5

10

9
15
32
33

y(d =4)

6

1.1663
7
6

1.15+ 0.01

1.1645 + 0.002
1.1 +' 0.07

1.05+ 0.225

y(d -s)

13
20

0.915~ 0.006

0.914~ 0.015
0.8+' 0.1

0.75 +' 0.20
0.926 ~ 0.005

y(d -6)

0.736+' 0.002

0.7+ 0.2
0.55 +' 0.25

0.744 +' 0.005

y(d -&)

0.600+' 0.001

0.6 ~ 0.2
0.-325 ~ 0.125

0.603 ~ 0.005

Method/model

Exact'
Series'
Flory
t. expansion
(third order)'
Series'
Series
MC series
E expansion
(second order, biased)'

Reference

14(a)
33

33
33
33

~, (d-4)

0.72+' 0.10
=0.65
~P 8

~, (d -S)

0.6500

0.48 ~ 0.10
=0.5
=0.6

5) (d 6)

0.4501

0.32+' 0.10
~~p 4
~045

a) (d 7)

0.2336

0.15+' 0.10
=0.35
=0.35

Method/model

Exact'
t. expansion
(second order, biased)'
Series, I'
Series, [I'
Series, III'

'Directed animals in d —1.
Isotropic animals.

'Yang-Lee edge problem in d —2.
Approximate readings from graphs.

our efforts on the clarification of K, estimates for
4 & d & 8 and y values for 5 & d & 7 and on the estima-
tion of A~ for 2& d & 7. In addition to the new animal
series, we have reanalyzed several extant animal series
and the Yang-Lee series of Ref. 9 for purposes of compar-
ison. Section IV contains our conclusions.

II. CONSTRUCTION OF THE SERIES

In order to generate the series for the free energy [Eq.
(1.2)], on the d-dimensional hypercubic lattice, we use the
scheme proposed by Harris'6 in which the sum over all
animals is replaced by a sum over only diagrams with no
free ends, i.e., diagrams with no valence one sites. This is
done by implementing Eq. (78) of that reference. The
free energy is then written as

F(K) =FCT(K)+gbF(I, K),
r

(2.1)

where FCT(K) is the free energy for the Cayley tree hav-

ing the same coordination number, 2d, as the d-
dimensional hypercubic lattice and the contribution to the
free energy from the diagram I, denoted bF(I,K), is

bF(I,K) lim —g Trh;p ""
n 0

x j3 KZS'Si'+1 —h ohio
&ij) er, a

(2.2)

where here and below sums over the replica index a run
from I to n Also, (ij) e. I indicates that the product is

h;p 1+an+b g S
a 1

where b satisfies the self-consistent equation

b K(1+b)'

(2.4)

(2.5)

For diagrams with more than one bond we may drop
the term an in Eq. (2.4). The simplest way to evaluate
(2.2) is to substitute (2.4) for h;p inside the product in
(2.2) over (ij) We then .write the factor in this product as

KgS S& +1 —h;ohi, =KgS Si' b+S—
a a a

-bZS;-b'ZS'S' (26 )
a a,P

=KQS; S;+V. (2.6b)

To evaluate (2.2), we substitute (2.6b) into (2.2) and ex-
pand in powers of V, identifying the first term in (2.6b)
with the presence of a bond and V with the absence of a
bond.

Thus, (2.2) is given in terms of the 2 ) possible
choices of occupying or not occupying a bond of I, where
b(I ) is the number of bonds in I . To each such covering

over all bonds (ij) in I, z is the coordination number of
the pure lattice, z;(I ) is the number of bonds of I which
intersect site i, S; are operators which obey the trace rules
that

Tr(S )v=bqp+bq2 (2.3)

and all other traces [(e.g., Tr(S;S,. ), with a~P] vanish.
The quantity h;p is constructed so as to vanish if I has any
free ends. To order n one has
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TABLE III. Estimates of the critical threshold, A.,- I/K„ for animals in 2 ~ d ~ 8. (See Table I for
abbreviations. )

4
(hypercubic)

5

(hypercubic)

6
(hypercubic)

7
(hypercubic)

Lattice

sq(s)

sq(b)

tr(s)

tr(b)
HC(b)
sc(s)

sc(b)

fee(s)
fee(b)
bee(s)
bee(b)
D(s)

$

b

4.065 +' 0.005
4.063 +' 0.02

4.0625 +' 0.001
4.062 56+' 0.00017

5.21 +' 0.006
5.25 +' 0.1

5.208 +' 0.004
5.183~ 0.01

5.18336+' 0.000 27
8.62 ~ 0.02

3.367 +' 0.002
8.33 +' 0.02

8.368 +' 0.04
10.62+' 0.08
10.63 +' 0.05
13.94+' 0.05
23.9+' 0.1

11.18 +' 0.11
15.3 ~ 0.01
5.55 +' 0.01

13.48 +' 0.02
16.3 +' 0.4

15.8
18.924+ 0.29

22. 1+' 0.8
21.9

24.475 +' 0.5
27.75 +' 0.1

27.6
30.3+ 0.3

33.25 +' 1.0
33.27

Reference

20
20
22
26

5
20
20
20
26
20
20
20
30
15
10
20
20
20
20
20
32
15
16
32
15
16
32
15

, 16
32
15
16

y of I we can easily associate a factor. In so doing, we
consider diagrams with more than two bonds, for which
the covering y with no bonds does not contribute. First of
all, note that any free sum over a gives a factor of n. A di-
agram must have at least one such sum, and it is this term
linear in n which survives the n 0 limit in (2.2). Terms
proportional to higher powers of n drop out. One can veri-
fy that to give a contribution linear in n a covering y must
be (a) connected (so as not to have more than one replica
sum), and (b) any site in I must either be a site in y or a
nearest neighbor to a site in y (with reference, of course,
to bonds in I and not in the original lattice). Such adja-
cent sites are allowed, because in V we may take the term
which refers to either site of a bond. As long as one site in
the bond belongs to y, we get a linear in n contribution
from y. For each such allowable covering yof I we classi-
fy sites and bonds (of y) as follows. Sites which are in y
are denoted i 6 y. The number of bonds in y is denoted
b(y). Bonds not in y must have one end at least in y and
can therefore be classified as either "external" in which
case one end of the bond is in y and the other not, or they
are "internal, " i.e., the bond, although not occupied, con-
nects two sites in y. For a given y the numbers of internal

bF(I,K) gK~" ( —b) "'"(—2b —b ) '""
y6 I

Q (I yb)z zi( (2.7)

To illustrate this, we show in Fig. 1 the possible coverings,
y, of a square and give the various diagrammatic quanti-
ties associated thereto. For the square the final results us-
ing (2.5) can be written as

bF(r, K) - [b/(I+b)]'[I —4(l+b)' '] (2.8)

where b is given in terms of K via (2.5). One can also
check that if Eq. (2.7) is applied to a diagram I i (like a
chain of three bonds) which does have free ends
bF(I &,K) 0. It is relatively easy to implement (2.7) for
any given diagram with no free ends. In Eq. (2.7), note
that since every bond I must intersect y, one has that
b(r) -b(y)+p, „,(y)+p;„,(y). Thus, bF(y, K) is a series
in powers of K, whose leading term is of order Kb(r). The

and external bonds are denoted p;„&(y) and p,„t(y), re-
spectively. Then we have
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TABLE IV. Series coefficients of the free-energy equation (1.2), F(K,d) g' „a(m,n)K d" .

1

2
3
4
4
5

5
5

6
6
6
7
7
7
8
8
8
8
9
9
9
9
9

10
10
10
10
10
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13
13
14
14
14
14
14
14
14
15
15
15
15
15
15
15

1

2

2
1

3
1

3
5

2
4
6
2
4
6
1

3
5
7
1

3
5
7
9
2
4
6
8

10
2
4
6
8

10
1

3
5
7
9

11

3
5
7
9

11
13
2
4
6
8

10
12
14
2
4
6
8

10
12
14

a(k, &)

o.I oooooooo oooooooooooo ooo[+oi)
0.200000000000 000000000 000[+01]

—0.600 000000 000000000000000[+01]
—0.200 000000 000 OQQ Q00000 OOQ [+01]
—0.300000000000 000 000000 000[+02]
—o.56o ooooooooo oooooooooooo[+ oi]

0.118000000000000000000000[+03]
0.576 000000 000 000000000 000[+02]

—0.754 777 777 777 777 777 777 778 [+02]
0.760 555 555 555 555 555 555 556[+031
0.213422 222 222 222 222 222 222[+03]
0.552 466 666 666 666 666 666 667 [+03]

—0.225 466 666 666 666 666 666 667[+04]
—0.327 680000000000000000000[+ 04)
—0.56Q 25000000000000000000Q[+03]

0.453 898 333 333 333 333 333 333[+04]
—0.180393333 333 333 333 333 333[+05]
—0.157464000000000000000000[+ 051
—0.270 577 777 777 777 777 777 778 [+04]
—0.358 315855 379 188 712 522046[+04]

0.174482 962 962 962 962 962 963[+05]
0.156091 792 592 592 592 592 593[+06]
0.141 093474426 807 760 141 093[+05]

-0.142072 187460 317460 317460 [+06]
—0.969636 874 779 541 446 208 113[+05]

0.282 519027 037 037037 037 037[+06]
0.883 192 569 312 169 312 169 312[+06]
0.604 892 785 890652 557 319224 [+05]
0.744 393 352 380952 380952 381 [+06]
0.181645889841 269841 269841[+07]
0.731 053 022 222 222 222 222 222 [+06]

—0.627 173 793015 873015 873 016[+07]
—0.182002 834 285 714285 714286 [+07]
—0.368 696900000000000000000[+07]

0.104 202 663 773 809 523 809 524[+07]
0.206 356 581 118386 243 386 243[+08]
0.528 025 890000000000000000[+06]
0.407 557 116730 158 730 158 730[+081

-0.897 735 396656084656084656[+07]
—0.163399048461 538461 538462[+08]

0.174 189679 132708 032 708 033[+09]
—0.164271 147834591416813639[+09)
—0.993430415 748 971 193415 638[+08]

0.209 831 402 980 176366 843 034[+09)
0.151 529 232 858 788 947 677 837[+09]
0.532743 328 396903508014619[+07]

—0.137455818969 968 761 397 333[+10]
0.145 379 324 653 851 891 935 225 [+10]

—0.117593685 539005 731 922 399[+10]
—0.672 513085077 902494 331 066[+09]

0.157 728 396091 128 747 795414[+10]
0.832 673 136673 028 699695 366[+09)
0.243 840980448 123 305 266 162[+08)
0.458 427 605 735 690 309690310[+10]
0.220 799945 936 209 764 309 764[+ 11]

—0.707 774 542 132315696 649 030[+10]
0.112435367 278 408 112874 780[+11]

—0.534 707 784 681 481 481 481 481 [+10]
—0.982 884 308 320 697 771 364438 [+10]
—0.111088 901 897 374 132040799[+10]

2
3
3

4
5

5
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9

10
10
10
10
10
11
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15

1

1

3
2
4
2
4
1

3
5

3
5

7
2
4
6
8
2
4
6
8
1

3
5
7
9
1

3
5
7
9

11
2
4
6
8

10
12
2
4
6
8

10
12

1

3
5
7
9

1l
13

1

3
5
7
9

11
13
15

a(k, l)
—0.100000000000000000000000[+01]

0.166666 666 666 666 666 666 667 [+01]
0.533 333 333 333 333 333333 333[+01]
0.163 333 333 333 333 333 333 333[+02]
0.166666 666 666 666 666 666 667 [+02]

—0.250000000000000 000000 000[+02]
—0.144000000000000000000 000[+03]

0.423 333 333 333 333 333 333 333[+02)
-0.253 833 333 333 333 333 333 333[+03]
—0.686 000000000000 000000 000[+03)
—0.317 142857 142857 142857 143[+02]
-0.445 377 777 777 777 777 777 778 [+03]

0.462 488 888 888 888 888 888 889[+04]
0.832 203 174603 174 603 174 603[+03]

-0.154702 3809S2 38095238Q952[+02]
-0.720425 000000000000000000[+03]

0.271 696 666 666 666 666 666 667 [+05)
0.337422 857 142 857 142 857 143[+04)

-0.226 849 047 619047 619047 619[+04]
0.306 893 333 333 333 333 333 333[+05]

-0.133589 866 666 666 666 666 667[+06)
—0.761 904 761 904 761 904 761 905[+05)

0.507 106000000000000000000[+05)
0.937 136067 460 317460 317460[+05]
0.174399980555 555 555 555 556[+06]

—0.934 803 977 777 777 777 777 778 [+06]
-0.371 184 209 523 809 523 809 524 [+06]

0.117271 181 818 181 818 181818[+06]
-0.219370920063492 063492 063[+07]
—0.129701 401 269 841 269 841 270[+07)

0.296518 967 111 111 111 111 111[+07)
0.494 339296 507 936507 936508[+07]
0.264 731 395 324675 324675 325[+06]
0.101 434 066 717051 467 051 467 [+08)

—0.211 969437 211037624926 514[+08]
-0.125 493 513405 276 308 054086 [+08]

0.261 878 505 326 102 292 768 959[+08]
0.274 505 183970 605 526 161 082 [+08)
0.117884446025 546469990914[+07]

—0.477 016Q44 422 799422 799 423[+08]
—0.643 950 146 258 553 791 887 125[+08]

0.187515471600000000000000[+09]
—0.334 51 I 671 839 153439 153439[+08]
—0.258 369 217 331 922 398 589 065 [+09]
—0.445 221 210 160269 360 269 360[+08]

0.403034995714285 714285714[+09]
0.653 325 052 806 284 271 284 271 [+09]

—0.897 608 291 695 216049 382 716[+09]
0.150903 692427 279 100529 101[+10]

—0.504 843 066 255 291 005 291 005 [+09]
—0.160617663 363 506 172 839 506[+ 10]
—0.221 895 292 207 792 207 792 208 [+09]

0.262057485080000000000000[+ 10]
—0.261060304132440220484982[+ 11]

0.532 529 960625 964 958 224 217[+10]
—0.850042 746 362 549402 312365[+10]
—0.388 272420227 795 526441 029[+101

0.113275807532832482853224[+ 11]
0.455 962 264 350406 641 369 604[+ 10]
0.1 12 852 217800 507 054 771 605 [+09]
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TABLE V. Results of our analysis.

Series y(M1) Ai (M1)

Two dimensions

y(M2) hi(M2) Figure

Square site'

Square bond'

Triangular site
Bond weighted tri site"

4.0625
4.0627
5.2085 b

5.2070
5.183
5.183

2.00+' 0.01
1.98 + 0.02

1.98 +' 0.01

1.98 +' 0.02

0.85+ 0.15
0.70+' 0.10

0.75+ 0.10

0.80+' 0.20

2.00+ 0.01
1.99+ 0.01

1.995 ~ 0.005
1.99+ 0.01
2.00+' 0.01
2.00+' 0.01

0.85 +' 0.10

0.87 % 0.05
0.85 +' 0.05
0.90+' 0.10
0.87 +' 0.05

2(a),2(b)
2(d)
2(c)

Three dimensions

sc bond~ io.6isb
10.616
10.6175

1.50+' 0.02 1.10+' 0.01 1.50+ 0.01
1.49 ~ 0.01
1.47 W 0.01

1.30+' 0.20
1.00+ 0.10
0.90 ~ 0.20

3(a)

Four dimensions

YL(d 2) "

Hypercubic bond~

Di~
D2~

0.088 964b
0.088962
0.088950

16.327
16.325
16.322
16.320
16.3175

1.0
1.0

1.166 ~ 0.01
1.160+' 0.01
1.160~ 0.01

1.10+' 0.02

1.15 W 0.02

1.00+' 0.02
0.80+' 0.20
0.75 +' 0.01

o.6o ~ o.oi

0.80+' 0.10

1.166 +' 0.02
1.160+' 0.02

1.15+ 0.02
1.10~ 0.02
1.12 +' 0.02
1.13 +' 0.02
1.14 ~ 0.02
1.15 +' 0.02

1.115+' 0.25
0.96 +' 0.06

0.75 +' 0.20
0.75+ 0.15
0.80+' 0.10
0.75+ 0.50
0.80+' 0.50
0.85 +' 0.15
0.85 +' 0.15
0.90+' 0.15
0.65 +' 0.05
o.6s+ o.is

4(a)

4(b)
4(c)

Five dimensions

YL(d 2) "'

Hypercubic bond

0.052026
0.052 022 b

0.052018
0.052016

22.060
22.040
22.042
22.043 b

22.044
22.100

1.0

0.92+ 0.02
0.91 +' 0.01
0.89 +' 0.02
0.88 ~ 0.02

0.80+' 0.10
0.70+' 0.10
0.60+' 0.20
0.60+' 0.20

0.92 +' 0.02
0.91 +' 0.01
0.89 +' 0.01
0.88 +' 0.01
0.85 ~ 0.02
0.89 ~ 0.02
0.90+' 0.02
0.90+' 0.02
0.90 ~ 0.02
0.90+ 0.10
0.90 ~ 0.06

0.70+' 0.15
0.70+' 0.10
0.60+ 0.20
0.60+' 0.20
0.80+' 0.20
0.75 ~ 0.10
0.70+ 0.15
0.65 +' 0.20
0.65 +0.20

0.80+' 0.10

5(a),5(b)

5(c)

Hypercubic bond~

Hypercubic bond

27.720
27.710
27.707 b

27.690
1.0

33.315
33.312
33.310

Six dimensions

Seven dimensions

0.66 +' 0.02
0.69 ~ 0.02
0.70+ 0.02

0.76 +' 0.02
0.70+' 0.025

0.58+ 0.02
0.57 W 0.02
0.59 ~ 0.02

0.50~ o.is
0.50+' 0.15
0.50+' 0.20

or 0.30+'0.10
and 0.55 ~0.10

0.80 ~ 0.10
0.50 W 0.05

0.50+ 0.15
0.45 W 0.20
0.40 W 0.20

6(a)

D2~
33.305

1.0
0.62 +' 0.02
0.62+ 0.06

or
and

0.30 ~ 0.05
0.50+ 0.10
0.50 ~ 0.15
0.60+' 0.10

'Reference 21.
Best X,

'Reference 15.
References 19 and 23.

'Reference 28.
The exponent y+ 1 was actually calculated for these series.

IExtended hypercubic series from Table I.
"Reference 9.
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TABLE VI. z estimates for eight dimensions from 15-term hypercubic series.

38.950
38.895
38.885
38.880
38.875
38.873'
38.870
38.865
38.845

8'z/Bp'

0.0-1.5
0.7- 1 ~ 5

1.2-1.6

1.25-1.75
1.4-1.9

8'z/8p'

0.6-1.125

8'z/Bp'

0.1-0.85
0.2-0.75

0.35-0.75
0.27-0.40
0.4-0.75
0.4-0.75
0.8

8'z/Bp'

—0.06-2.7
0.1-0.35

0.22-0.40

0.44-0.505

8'z/Bp'

0.06-0.36

'Best X,

III. ANALYSIS
A. Methods

For comparison with other literature analyses, our
analysis was made in terms of A, K ' for the animal
series and in terms of K for the YL series. The animal
series are assumed to take the form F()L,) F„s(A,)
+F„„s(X),with F„s(A,s .™regular part, and

(~)-a(~-~ )"-" i+ciF() -) )"

for de8 and

+C2F(~ —),) '+

(3.ia)

(3.lb)

at d-8.
We note that the greek letter 8 has been used to denote

both the dominant exponent and the correction exponents
hi and z in references on the animal problem. Our usage
is as defined above. In this "free energy,

" we had reason
to suspect that F„s, the nondivergent analytic back-

sum over all such diagrams is done using the tabulation of
Harris and Meir which extends to all such diagrams
with less than 16 bonds. In Table IV, we list the
coefficients of the series up to order K's in general dimen-
sions.

x-() -)L.,)- Ii ()L. -),) I' (3.ld)

for d 8, with y 3 —8.
Taking derivatives strengthens the singular part of the

series under study but, of course, loses some information.
For de8 two derivatives appeared to be the best all round
choice. For no or one derivative d In Pade analysis35 gave
dominant exponents of zero (i.e., no divergence), but for
two or more derivatives the critical behavior was no longer
sensitive to the number of derivatives. Convergence was
best for two derivatives. For d 8 more derivatives were
required and this will be discussed in detail below.

An analysis of the systematic errors caused by analytic
backgrounds in Pade based analysis has been made by
Adler.

For series of the form of Eq. (3.lc), the simple din
Pade method, although easy to apply, does not take into
account nonanalytic confluent corrections to scaling, since
it assumes hi 1. Thus, not only no estimates for the
correction exponent hi can be extracted, but the values of
the leading critical exponent y and the singular point k,
are also shifted. In order to account for the corrections we

ground, is quite considerable. This was borne out by pre-
liminary din Pade analyses and thus we have chosen to
study the second derivative X of F in depth. We have

Z-(X —
)I,, ) "[1+C,(Z —Z, )"+C () —),)"] (3.1c)

for d~8 and

TABLE VII. Summary of our results for lattice animals.

Dimension )'H +H

2'
3
2
7 a
6

0.90+' 0.03
0.70+' 0.04
0.59 ~ 0.03

1

2

vH (2 —y&)/(d —2)

0.641 +' 0.005
1

2
5
12

0.367+ 0.011
0.325 +' 0.010
0.282+ 0.006

1

0.85 +0.10'
1.3 +' 0.2
0.8 + 0.2
0.65+ 0.15
0.5+ 0.2
0.4 ~ 0.2

'Exact.
Selected literature average; see Table I.
Literature average biased by our results; see discussion in Sec. III.
Field theory which gives logarithmic corrections, z
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approximants to

(a) (c)
(3.5)

FIG. 1. Possible coverings y„yb, and y„when I is a square.
The contribution to bF(l, k) from y, is K (l+b) ', from
the 4 coverings equivalent to yb is —4K b(2+b)(l+b)
and from the 4 equivalent to y, is 4K2b 2 (l +b) 't*

have used two methods of analysis which have been intro-
duced previously. 37

In the first method, denoted below as Ml, we study the
logarithmic derivative of

(3.2)

which has a pole at k, with residue y
—h~. For a given

value of k, we have graphs of hl vs input y, for all Pade
approximants, and we choose the triplet X„y, h~ where all
Pade's converge to the same point. In the second method,
denoted below as M2, we first transform the series in A,

into series in the variable y, where

y 1— (3.3)

and then take Pade approximants to

G(y) a)(y —1) Iru, (3.4)

which should converge to —y.
Here we plot graphs of y versus the input d ~ for

different values of A,, and choose again the triplet )l,„y, &~

where all Pade's converge to the same point. Both these
methods have proven very useful for many problems, but
do require the simultaneous deter'mination of three critical
quantities.

A different type of analysis method relies on the
fact3s 39 that when one divides term by term two series,
both of which diverge at the same point, the resulting
series diverges at k 1. In this way one does not have to
rely on estimates for the critical point. In the animal
problem, there is only one independent exponent, and thus
we have only one independent series. We obtain series
with A., 1 by either dividing the logarithmic derivative of
the series term by term, by the original series (denoted by
Dl below) or, alternatively, dividing the square of the
series term by term, by the series itself (D2). The pro-
cedure of dividing series term by term introduces a strong
analytic correction. Thus, as long as this term is
stronger than the nonanalytic corrections, one can use
methods Ml and M2, with 6& 1. There is no way, how-
ever, to estimate which correction will dominate, and thus
this method may fail when the nonanalytic correction is
too strong.

These methods can be used when the critical behavior is
like Eq. (3.1c). In the upper critical dimension, the criti-
cal behavior changes to that of Eq. (3.1d). Here we used
the method of Adler and Privman, where one takes Pade

B. Two and three dimensions

In two and three dimensions our main aim is to settle
the question of the correction exponents.

In 2D one can see from Table I that most recent esti-
mates for d, ~ lie in the range 0.7-0.9, except Lam's value
of 0.50+ 0.05. Privman2 found in the finite-size series a
correction of order L, where L is the size. If this
correction represents a nonanalytic term, it gives rise to
(A,, —

)I, )'~", with v 0.65. We reanalyzed four existin
series, including the square site series of Redelmeir2
which contains 24 terms. Figures 2(a) and 2(b) illustrate
resulting plots of y vs h~ for X, 4.0625, for Ml and M2
methods, respectively. This value of X, corresponds to one
of Guttman's2o choices. Both methods give the same y
and 5& estimates, but M2 gives slightly smaller error
bounds on h~. From M2 we see a second correction
62-1.2. Plots for the square bond series'5 are given in

Fig. 2(c) for the M2 method at A,, 5.2085. We sampled
A,, at intervals of 0.0005 and this value appeared to give
the tightest convergence. While the best convergence at
this k, is clearly near b, ~

-0.87, we see that there is some
possibility of a confluence near 6~-0.4. For A,, 5.207
(not pictured), this region has moved to 6~-0.6 and we
conjecture that this region may correspond to either or
both Lam's estimates of h~-0.5 or Privman's26 lower es-
timate of 0.65. We then attempted to look for improved
convergence of this former region. This improved conver-
gence was seen best in the square site series at X, 4.0627
[Fig. 2(d)], where we obtained a weak convergence for
d ~-0.4 and stronger convergences near h~ 0.7, 0.9, and
1.2. Ml gives h~ 0.7+ 0.1. The value of 0.7 is close to
that of Privman. At X, 4.0627, however, if we take
A~ -0.7 we get y & 2.0 and we therefore conclude that op-
timal convergence for this series is closer to A,, 4.0625.
The triangular site series' 23 also appears to have a strong
convergence at 6~-0.9 and a weak convergence for
A~-0.6. Similar results were obtained for the bond-
weighted triangular site series, and are displayed in
Table V.

Analyzing the series D 1 and D2 gives rise to
y 2.00+ 0.05 with A~ 1.00. For the other series, we
quote y 2.00 ~ 0.03 as an overall estimate and we see a
correction of the order A~-0.85. There is some evidence
of a correction below 0.8 in these series, but it appears to
have a small amplitude.

For three dimensions, the situation is somewhat
different. Here there is no accepted literature value for h, ~

and the few estimates that exist vary from A~ =0.45 to
1.44 with large error bars. For the newly extended

15 terms, simple cubic bond animal series optimal conver-
gence is seen at A,, 10.615 (using the M2 method, Fig.
3), with convergence region near A~ —1.3, which appears
not to have been observed in the past and a weaker region
near d ~-0.6, which appears to correspond to the value of
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2.12 2.12

2.04— 2.04—

1.96— 1.96—

1.88
0.0

I

0.4
I

0.8
I

1.2

(a)

1.6 1.88
0.0

1

Q4
I

0.8
I

1.2 1.6

2.1 2 2.12

2.04- 2.04—

1.96— 1.96—

1.88
0.0

I

0.8
1

1.6
I

2.4

(c)

3.2
1.88

0.0
I

Q4
I

0.8
I

1.2 1.6

FIG. 2. Graphs of different central and near diagonal Fade approximants to y and 5& in two dimensions at (a) X, 4.0625 [Ml,
square site animal series (Ref. 21)l; (b) )I,, 4.0625 [M2, square site animal series (Ref. 21)]; (c) X, 5.2085 [M2, square bond an-

imal series (Ref. 15)l; and (d) A., 4.0627 [M2, square site animal series (Ref. 21)l.

Ref. 27. As we raise k, the regions coalesce, but y falls
well below the exact —,

' value. We see no clear conver-

gence near 6~-0.45, which is the central estimate of
Lam, 29 but could agree with the upper limit of his range.
The lower A~ correction definitely has a smaller ampli-
tude, as in two dimensions. We cannot exclude the possi-
bility that these lower h~ convergences are "resonances"
of the higher value (see Ref. 41 for details of this
phenomenon).

Note that the corresponding YL problems in 0 and 1 di-
mensions have only analytic corrections. Although our
analyses cannot entirely exclude these corrections, they do
tend to suggest that the corrections in the YL model are
not the same as in the animal problem in 2 and 3 dimen-
sions. Analyzing D 1 and D2 series gives rise to
y 1.5+ 0.05.

C. From four to seven dimensions

In four and five dimensions, we undertook parallel but

independent analysis of the (hypercubic d —2 dimensions)

YL and animal series. Kurtze and Fisher found "little
positive indication of the presence" of confiuent singulari-
ties in the YL series but suspected that they may be play-

ing a role in the observed slow convergence. We began
our analysis of the YL series by looking at the central
Kurtze-Fisher9 E, choices and found that in two dimen-

sions their choice of E, 0.088963+2 was very reason-
able. In Fig. 4(a) we show the results of our M2 analysis
at E, 0.088964, where for y+1, which is closer to the
exact 2.166, we find A~ 0.75+ 0.20. The spread of the
h~ estimates is quite large (for E, 0.08895 Ml gives
nice convergence to b, ~ 0.7), but it would appear to be
distinguishable from 1.0 for most of the A,, 's that gave
reasonable convergence. We prefer E, 0.088964 as the
central K, choice. For four-dimensional animals, the con-
vergence is not as good as for the YL. Different y esti-
mates for the various X, choices are illustrated in Table V.
In Fig. 4(b) we show the best M2 convergence at

16.3200, which gives a central y estimate below the
exact result. For lower k, choices (which correspond to
higher y values), the M2 convergence downgrades. How-

ever, for Ml we show in Fig. 4(c) the situation at
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1.2

0.8—

0.4

0.0

-04
3.54

I

3.52
1

3.50
y+3

3.48 3.46

FIG. 7. Graph of diH'erent central and near diagonal Pade
approximants to z as a function of y for d 8 at A,, 38.873.

ing tabulations by five terms in 4D and above and enabled
us to extract reliable estimates of the singular quantities
even in high dimensions.

Our X, results for the higher dimensions are in excellent
agreement with the I/o expansion. '6 The y results for the
lower dimensions are in excellent agreement with the ex-
act and other series calculations and those for the higher
dimensions agree well with the e expansion values for the
Yang-Lee problem'o and are considerably more precise
than the older series values. Our values are y 0.59
~0.03, y=0.70+'0.04, y=0.90~0.03, y=1.15+ 0.03,
y=1.50+'0.02, and y 2.00~0.02 for seven, six, five,
four, three, and two dimensions, respectively. These
values exclude the Flory-type estimate5 at d=5 and
confirm the deviation of the e expansion result from the
Flory value at d =6.

We were also able to determine the correction to scaling
exponents in all dimensions. The values of these ex-
ponents d~ =0.4+'0.2, 0.5+ 0.2, 0.65 ~0.15, 0.8+'0.2,
and 1.3+ 0.2, in seven, six, five, four, and three dimen-
sions, res ectively, are very close to the leading
expansion value of e/4. The values are fairly close to
Breuer's33 method III results, but like this method III
values are considerably higher than his other estimates in
the higher dimensions. We also determined the correction
to scaling exponent for the Yang-Lee edge problem in two
and three dimensions and found values that are very close

to those of the animals problem in two more dimensions.
However, in low dimensions where the YL problem is ex-
actly solved, the agreement is not that good. This may be
because the YL corrections are analytic and the situation
may resemble that of the 2D Ising model, 4' where the ex-
actly solved spin- —,

' model has only analytic connections,
but other members of the same universality class have
nonanalytic corrections. It is also possible that the two
problems differ beyond the leading singularity. The fact
that the leading diagrams and hence the leading singulari-
ty are equivalent does not prevent one of the problems
from having additional corrections terms. This is an intri-
guing possibility. Although our numerical analysis sug-
gests that the values of the corrections for the animal and
YL problems are very close, it is not enough to determine
whether the two problems have identically the same
correction to scaling exponents or not. The best way to
resolve this question would be to carry the e expansion for
the animals problem to e and compare with the available
e expansion ' for the correction exponent for the YL
problem, and we plan to do so in the future.

Our results are consistent with the predictions of the
field theory as regards the behavior in eight dimensions,
which is the upper critical dimension. Our analysis en-
ables accurate determination of X, at d 8 and together
with the new X, estimates for d 6 and 7 demonstrates
that excellent agreement exists between series and I/a es-
timates for k, . Close agreement with the e-expansion ex-
ponents is also found.

A summary of the best current results for lattice an-
imals is given in Table VII. Exact results are cited wher-
ever possible. Where these are not available literature
averages have been cited for two dimensions. For higher
dimensions we have quoted our results in the absence of
exact values since these include the third-order e-
expansion results in every case.
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