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We construct general-dimension series for the random animal problem up to 15th order. These
represent an improvement of five terms in four dimensions and above and one term in three di-
mensions. These series are analyzed, together with existing series in two dimensions, and series
for the related Yang-Lee edge problem, to obtain accurate estimates of critical parameters, in
particular, the correction to scaling exponent. There appears to be excellent agreement between
the two models for both dominant and correction exponents.

I. INTRODUCTION

The “lattice animal” problem' deals with the statistics
of finite clusters, in general, dimension-diluted lattices.
The number A(n), of clusters with n bonds, that can be
embedded in a d-dimensional lattice per site, is believed to
take the form

An)~An K. "(1+Bn %+ ---), a.1n

where 6 and A; are universal exponents, while 4, K., and
B are nonuniversal, lattice-dependent quantities. If one
assigns to each bond a fugacity K, then the generating
function F(K), is given by

F(K)=XA(n)K". (1.2)
n

This may be viewed as the free energy of the problem?

and exhibits critical behavior

[F(K) ) sing~A"(K. —K)° "' 1+ B' (K. —K)*'+ - - - 1,
(1.3)

where K. is the critical fugacity, which is lattice depen-
dent, as are A' and B'. Similar definitions can be made for
the site animal problem when one deals with the question
of how many animals with a given number of sites can be
embedded in a d-dimensional lattice. From universality
one expects the same exponents for both problems.

There has been a great deal of interest in the animal
problem during the last decade. This problem describes
the statistics of dilute branched polymers.? Drouffe, Par-
isi, and Sourlas? also pointed out that there is a connec-
tion between this problem and phase transitions in lattice
gauge theories. This connection implies that this model
has physical relevance also in high dimensions.

Several analytical results have been obtained for the an-
imal problem. The problem is trivial in one dimension
(1D), where A(n)=1. On a Cayley tree, however, it is
nontrivial, and Fisher and Essam* found 6=, with no
nonanalytic corrections. Lubensky and Isaacson? ob-
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tained a field theory, with an upper critical dimension of
8, above which the Cayley tree result should hold. Below
8 dimensions they derived an e expansion for the exponent
6. From their theory, it follows that the exponent 6 corre-
sponds to approaching the critical point through a con-
stant field line and not at constant order parameter.?>
From Eq. (1.2) one can see that the mean-square number
of bonds in a cluster, 22, is given as

2B(K)=0%F/3K*=A"(K.—K)**[1+B'(K.—K)"].
(1.4)

Since K plays the role of a temperaturelike variable,
x8(K) may be identified as the specific heat at constant
H, where H is the field conjugate to the order parameter,
which in this case, is the density of free ends. The sub-
script H indicates an exponent for the case when the criti-
cal exponent is approached along a path of constant H.
From the field theory it is found that the same exponent,
6—3, describes the dominant divergence in ¥S(K), the
mean-square number of sites in a cluster, as well as that of
2H=02F/dH?~ (K. —K) "™, so that yy=3—6. The
distinction between exponents at constant H or constant
order parameter is important here because unlike ordinary
magnetic systems, the line H# =0 does not correspond to
zero, (i.e., constant) order parameter. A big step forward
was taken by Parisi and Sourlas® who showed that in the
critical region the dominant Feynman diagrams in the
field-theoretic formulation of animals in d dimensions are
the same as for the critical behavior of the Yang-Lee
(YL) edge singularity’ ~!2 in d —2 dimensions. The YL
edge problem deals with the singularity which occurs at
the edge of the distribution of zeros of the partition func-
tion in the complex magnetic-field plane for classical n-
vector models. From solving the latter problem in 0 and 1
dimensions, they® obtained the exact results that =1 and
3 in 2 and 3 dimensions, respectively. Moreover, this
identification allows one to use the € expansion®'%in 6 —¢
dimensions for the YL problem, up to third order in ¢, to
obtain an ¢ expansion for 8 in 8 —d dimensions for the an-
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imal problem, which gives?

poS_ € _ 19 2+[4(3)_ 10445

2 12 3888 81 1259712

where ¢£(3) =1.202. .. is the zeta function. Since the re-
lation between the two problems was obtained by noting
that the two field theories have the same most relevant
terms, there are no similar relations between the correc-
tion to scaling exponents. Therefore, the ¢ expansion for
Ay in the YL problem, !

Je3, (1.5)

(1.6)

Ay -§{1 — 1T e+ 1B ¢3)+ 455 163,
although in agreement to first order in ¢ with the ¢ expan-
sion for A, in the animal problem,? may not apply there to
higher order in ¢. Another mapping, between the animal
problem in d dimensions and the directed animal prob-
lem'? in d — 1 dimensions, was derived in a similar way, '3
and was used by Dhar'*® to obtain 6=1 in 4D.
Dhar 4® also obtained a mapping from the directed site
animal problem to the “hard square” problem*® on the
square lattice with negative activity. This mapping en-
ables determination of directed site animals ug) to 42
terms and accurate numerical evaluations of 6. '4¢

In order to facilitate comparison between these results
and our calculations and with other critical phenomena
studies, we shall present a brief summary of some of the
above discussed field-theoretic results and the resultant
scaling relations in a slightly different notation to that of
the original results.> The most distinctive feature of the
animal problem is that it has only a single independent ex-
ponent, unlike the usual critical phenomena where v and n
(or A7 and Ay) are independent exponents. If we take vo
to be the correlation-length exponent, where subscript Q
indicates an exponent at constant order parameter, Q,
then the other exponents can be expressed in terms of vg
via yg=-—2+(d—2)vg=—ap and if we arbitrarily
define Bp to be unity, one has the usual relation
ap+2Bo+ 79 =2, and hyperscaling with reduced dimen-
sionality: 2Bp+7yp=(d —2)vp. Note that these rela-
tions imply that yp = —2 at d =2. As we mentioned, the
exponent yg =3 — 6 we will study via our series work cor-
responds to approaching the critical point along a path of
constant H. The exponents at constant H are related to
those at constant Q by Fisher renormalization (Ref. 5)
ﬂH-(l+yQ) - VH‘VQ/(1+}/Q), and aH‘)/H')'Q/
(1+7y), so that again ay+28y+yy=2 and 28y +yx
=(d—2)vy. For d>2, yy determines vy via
vie=Q2—1yy)/(d—2). Since we will investigate yy nu-
merically, it is of interest to note the implied result for yop,
namely yo =yg/(1 —yy). Thus, yo diverges as yy passes
through unity, and in fact, for yg > 1, yp, if it has any
meaning, becomes negative, reaching the value yp = —2
at d =2. The exact dimension where yg =1 is, therefore,
of some interest and it can be estimated from the Flory ap-
proximation® for vy which leads to the results
ve=5/[2(d+2)], By =3d—14)/[2(d+2)], and
yu =(18—d)/[2(d+2)], so that yy=1 at d=%. The
approximation, although it disagrees with the € expansion,
is remarkable in that it give exact results for d =2, 3, 4,
and 8. The approximation gives 8 =(7d —6)/[2(d +2)].
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In addition to the above-mentioned exact and field-
theoretical results, several numerical calculations have
been made for the animal problem. An analytic expansion
for the critical point, K., of hypercubic lattices, in powers
of 1/o, where o =2d — 1, has been obtained.'>'® We ex-
pect that this expansion will be reliable for higher dimen-
sions. Real-space renormalization-group'’ and Monte
Carlo methods'® have also been applied, but the most ac-
curate extant numerical results have been obtained by
series expansions'>!° ~% and finite-size scaling renormal-
ization methods.?%3° A recent new approach by Dhar and
Lam?3! combined Monte Carlo and series ideas, but does
not apg)ear to lead to particularly accurate numerical
values. *?

A comprehensive summary of previous analytic and nu-
merical analysis for the animal and YL edge problems is
given in Tables I, II, and III. We quote critical exponents
in terms of y=yy =3 — 0, which is the variable in which
our analysis is made.

The literature values in Table I are, to the best of our
knowledge, the most recent estimates for each lattice with
each technique. From a glance at Tables I and II, we ob-
serve that the different dominant exponent estimates for
the animal problem appear to be well converged for d =2
and 3. However, many of the extant animal estimates for
d > 3 have large error bounds on the dominant exponent.
The Monte Carlo series estimates of Lam>? for d > 3 are
quite different from the series and e-expansion values.
There were also several discrepancies in the K, estimates
between different approaches, for higher dimensions,
where the series were relatively short (see Table III).
From the old ten-term series'> even determination of the
upper critical dimension was unsuccessful, and the K. esti-
mates had large error bars. Note also that the Flory-type
estimate for y, on 2-4 dimensions, disagrees with the € ex-
pansion, and cannot be trusted in high dimensions, though
it might serve as a rough estimate. Better estimates for 6
(or any other leading singular exponent) are clearly need-
ed. Moreover, extant estimates for the correction ex-
ponent A; are not accurate enough in all dimensions.
Even in two dimensions, where long series are available,
and there is a general agreement on K, and y values, there
are disagreements between different workers concerning
Ay

These disagreements will be discussed in length below.
In higher dimensions there are fewer estimates, but more
problems. Breuer3} has given e-expansion estimates for
A, from an expansion to order 2 [we quote'! to order ¢*
in Eq. (1.6)]. We did make extrapolations from this ex-
pansion to order €3 but found them to be extremely ill
converged. Some approximants gave negative exponents
and therefore we decided that this expansion may be prob-
lematic and decline to quote the results. However, such
problems do suggest that one cannot know if the estimates
from order €? are any improvement over the simple first-
order estimate A;=¢/4. Breuer®® also gives ratio esti-
mates for A; from the directed site animal series, some of
which agree with his e-expansion results quite nicely.
However, on a closer look it appears that some of the
series A, estimates are apparently biased from older criti-
cal temperature estimates and from y estimates for &2
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TABLE L. Literature values of animal critical exponents in two and three dimensions. s, site; b, bond;
sq, square; tr, triangle; HC, honeycomb; D, diamond; ROG, radius of gyration; MC, Monte Carlo.

Reference y A v Method/model
d=2
6 2 Exact
18 2.0+0.2 0.752 MC
20 2.00£0.01 04+0.3 Series/sq(s)
2.00+0.02 0.7+0.2 Series/tr(s)
1.3+0.2 Series/tr(b)
1.0+0.2 Series/sq(s)*®
0.75+0.1 Series/tr(s)?
1.1+0.5 Series/HC(b)?
1.1£0.3 Series/sq(b)?
22 2.00 £0.02 0.8x0.15 Series/sq(s)
23 0.86 £0.05 Series/tr(s)?
26 0.83 0.6412+0.035 Finite size
30 1.15+0.2 0.64075+0.00015 Transfer matrix
27 0.87 £0.07 0.655+0.010 Series/ROG
0.87 £0.06 0.640 = 0.004 Series/ROG
28 0.93%0.15 Series/sq,tr(b)®
29 0.50+0.05 Series/ROG?
d=3
6 3 Exact
15 1.49 £0.02 € exp
20 1.45+0.05 <18 Series/sc(s)
1.5%0.1 0.8+0.3 Series/fcc(s)
1.55+0.1 1.4%0.1 Series/bec(b)
1.6 £0.1 >1.2 Series/fcc(b)
1.55 1.4+0.4 Series/D(s)®
1.50 1.0+0.3 Series/sc(b)®
1.53 0.6+0.5 Series/bee(s)®
1.53 0.65+0.2 Series/fcc(s)®
1.55 1.25+0.15 Series/sc(b)®
1.58 1.2+0.1 Series/bee(b)®
1.58 1.3+0.2 Series/fcc(b)®
27 0.64 £0.06 Series/ROG?
29 0.45+0.1 Series/ROG*®

“Biased by the exact value of the leading exponent.
®Stability analysis.

series, and therefore, their apparent convergence may be
spurious. We think that the #0.005 error that Breuer
places on his y estimates from the €2 series is clearly too
small since it excludes the 3 order estimates from Ref. 10
in some cases. Thus, the £ 0.1 that he places on his final
A; estimates must also be questioned, especially since
some of his d =6 estimates from different methods differ
by more +0.1. Breuer®? concludes that longer series are
needed in order to determine correction exponents for
these problems. Since we have considerably longer series
in the higher dimensions, we can see that a comprehensive
analysis of correction terms from these series in all dimen-
sions is highly desirable.

At the upper critical dimension, the critical behavior
(1.3) becomes

[F(K))ing~A"(K,—K)° ! In(K. —K) | ?,

where 6= 3 is the mean-field value and z is believed to be

(1.7

+ from field theory.? This form can be used to extract
the upper critical dimension, or alternatively to evaluate
K, and z if we set the upper critical dimension equal to 8.
In this paper, we report on extensive studies of series for
the animal problem. We constructed the series for the
free energy [Eq. (1.2)] up to 15 terms in general dimen-
sion, which is an improvement of one term in 3D and 5
terms in 4D and above. This was done using a method of
constructing series from diagrams with no free ends. '3
The coefficients of these series are listed in Table IV. We
analyzed the new series and the existing series in 2D using
improved methods, and obtained reliable estimates for K,
0, and A, in Eq. (1.3) and K, in Eq. (1.7). Our results are
summarized in Tables V and VI and an overall summary
of the best lattice animal exponents is given in Table VII.
The outline of this paper is as follows: In Sec. II we
give details of the series construction, while Sec. III con-
tains a detailed report of our analysis. We concentrated
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TABLE II. Literature values of critical exponents for the isotropic animal problem, the Yang-Lee edge problem, and the directed
animal problem in four to seven dimensions.

Reference y(d=4) y(d =5) y(d =6) y(d=17) Method/model
14(a) i Exact?
14(c) 1.1663 cee Series?®
5 & » i T Flory®
10 1.15+0.01 0.915+0.006 0.736 = 0.002 0.600 + 0.001 € expansion
(third order)°®
9 1.1645 +0.002 0914 +0.015 coee s Series®
15 1.1 £0.07 0.8%+0.1 0.7+0.2 0.6+0.2 Series®
32 1.05+0.225 0.75%+0.20 0.55+0.25 0.325%0.125 MC series®
33 SR 0.926 +0.005 0.744 £ 0.005 0.603 +0.005 € expansion
(second order, biased)®
Reference A(d=4) A (d=5) A(d=6) AM(d=T) Method/model
14(a) & SR S ce Exact®
33 0.6500 0.4501 0.2336 € expansion
(second order, biased)®
33 0.72%x0.10 0.48 +£0.10 0.32+0.10 0.15%x0.10 Series, 1?2
33 =~=0.65 =~=0.5 =04 =0.35 Series, 11*¢
33 =~0.8 =0.6 ~=0.45 ~=0.35 Series, 111%4

2Directed animalsind — 1.
®Isotropic animals.

our efforts on the clarification of K. estimates for
4=<d =<8 and y values for 5=<d =<7 and on the estima-
tion of A, for 2<d <7. In addition to the new animal
series, we have reanalyzed several extant animal series
and the Yang-Lee series of Ref. 9 for purposes of compar-
ison. Section IV contains our conclusions.

II. CONSTRUCTION OF THE SERIES

In order to generate the series for the free energy [Eq.
(1.2)], on the d-dimensional hypercubic lattice, we use the
scheme proposed by Harris'® in which the sum over all
animals is replaced by a sum over only diagrams with no
free ends, i.e., diagrams with no valence one sites. This is
done by implementing Eq. (78) of that reference. The
free energy is then written as

F(K)=Fcr(K)+ X 6F(T,K), .1
r

where Fcr(K) is the free energy for the Cayley tree hav-
ing the same coordination number, 2d, as the d-
dimensional hypercubic lattice and the contribution to the
free energy from the diagram T, denoted 6F (T',K), is

n—0 i€r

SF(T,K) = lim H I1Teri; =@

x KY.S8Se+1—hiohio |,
<,-,Qr[ PRy h,oh,o]]

a

(2.2)

where here and below sums over the replica index a run
from 1 to n. Also, {ij) €T indicates that the product is

“Yang-Lee edge problem in d —2.
dApproximate readings from graphs.

over all bonds ¢ij) in ', z is the coordination number of
the pure lattice, z;(I") is the number of bonds of I" which
intersect site i, Sf are operators which obey the trace rules
that

Tl‘(Sf)q=5q‘0+5q,2 (23)

and all other traces [(e.g., Tr(S,”Sf ), with a=p] vanish.
The quantity k;o is constructed so as to vanish if I has any
free ends. To order n one has

hio=1+an+b Y S¢, 2.4)

a=1
where b satisfies the self-consistent equation
b=K(1+b) 7!, (2.5)

For diagrams with more than one bond we may drop
the term an in Eq. (2.4). The simplest way to evaluate
(2.2) is to substitute (2.4) for h;q inside the product in
(2.2) over (ij). We then write the factor in this product as

KX SSF+1—hiohjo =KX SFSF—b2.SF
—bXSF—b 2%3,#5;? (2.62)

=KY SESE+V . (2.6b)

To evaluate (2.2), we substitute (2.6b) into (2.2) and ex-
pand in powers of ¥, identifying the first term in (2.6b)
with the presence of a bond and V with the absence of a
bond.

Thus, (2.2) is given in terms of the possible
choices of occupying or not occupying a bond of I', where
b(r) is the number of bonds in I'. To each such covering

2b(I‘)
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TABLE III. Estimates of the critical threshold, A. =1/K_., for animals in 2 <d <8. (See Table I for

abbreviations.)

d Lattice Ac Reference
2 sq(s) 4.065 £0.005 20
4.063 £0.02 20
4.0625 £ 0.001 22
4.06256 £0.00017 26
sq(b) 5.21 £0.006 5
5.25%0.1 20
5.208 = 0.004 20
tr(s) 5.183 £0.01 20
5.18336 +0.00027 26
tr(b) 8.621+0.02 20
HC(b) 3.367 = 0.002 20
3 sc(s) 8.331+0.02 20
8.368 =0.04 30
sc(b) 10.62 = 0.08 15
10.63 £0.05 10
fec(s) 13.94£0.05 20
fec(b) 23.9+0.1 20
bee(s) 11.18 £0.11 20
bee(b) 15.3£0.01 20
D(s) 5.55%0.01 20
4 s 13.48 £0.02 32
(hypercubic) b 16.3+0.4 15
15.8 16
5 s 18.924 +0.29 32
(hypercubic) b 22.1+0.8 15
21.9 16
6 s 24.475%0.5 32
(hypercubic) b 27.75%0.1 15
27.6 16
7 s 30.3+0.3 32
(hypercubic) b 33.25%1.0 15
33.27 16

y of T we can easily associate a factor. In so doing, we
consider diagrams with more than two bonds, for which
the covering y with no bonds does not contribute. First of
all, note that any free sum over a gives a factor of n. A di-
agram must have at least one such sum, and it is this term
linear in n which survives the n— 0 limit in (2.2). Terms
proportional to higher powers of n drop out. One can veri-
fy that to give a contribution linear in n a covering y must
be (a) connected (so as not to have more than one replica
sum), and (b) any site in I must either be a site in y or a
nearest neighbor to a site in y (with reference, of course,
to bonds in I' and not in the original lattice). Such adja-
cent sites are allowed, because in ¥ we may take the term
which refers to either site of a bond. As long as one site in
the bond belongs to y, we get a linear in n contribution
from y. For each such allowable covering y of I" we classi-
fy sites and bonds (of y) as follows. Sites which are in y
are denoted i € y. The number of bonds in y is denoted
b(y). Bonds not in y must have one end at least in y and
can therefore be classified as either “external” in which
case one end of the bond is in y and the other not, or they
are “internal,” i.e., the bond, although not occupied, con-
nects two sites in y. For a given y the numbers of internal

and external bonds are denoted pin(y) and pex(y), re-
spectively. Then we have

SF(T,K) =Y KPP (—p)P="(=2p —p2)Pul?

YE€ET

x TI(1+5)" "0,

i€y

.7

To illustrate this, we show in Fig. 1 the possible coverings,
7, of a square and give the various diagrammatic quanti-
ties associated thereto. For the square the final results us-
ing (2.5) can be written as

SF(,K)=[b/(0+b)11 —4(1+b)*71], (2.8)

where b is given in terms of K via (2.5). One can also
check that if Eq. (2.7) is applied to a diagram I'; (like a
chain of three bonds) which does have free ends
8F(I'3,K) =0. It is relatively easy to implement (2.7) for
any given diagram with no free ends. In Eq. (2.7), note
that since every bond I' must intersect y, one has that
b() =b(y)+pext(y) +pine(y). Thus, §F(y,K) is a series
in powers of K, whose leading term is of order K*™. The
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TABLE V. Series coefficients of the free-energy equation (1.2), F(K,d) =X, ,a(m,n)K™d".
k I} a(k,!) k / a(k,l)

O OO OWOVO0OWWWIIITAAANANUNULULE D WN -

—

—

—
GJO\ANL&J'—'\O\IU!b-l'—"—'\D\llJ!Lu'—OWO\&NOOOO\AN\O\IUiu'—\lmw'—ON&NO\&NUlW'—bJ—NN'—'

—

_——
0N ENRANO

——
& N O

0.100000000 000 000000000000[+01]
0.200000000 000 000000 000 000[+01]
—0.600 000000000000 000000000[+01]
—0.200 000000000 000000 000000[+01]
—0.300 000000000 000000000000[+02])
—0.560000000 000 000000000 000[+01]
0.118 000000 000 000000 000 000[+031]
0.576 000 000 000 000 000 000 000[ +02]
—0.754777777777777777777778[+02]
0.760555555555555555555556[+03]
0.213422222222222222222222[+03]
0.552466 666 666 666 666 666 667[+ 03]
—0.225466 666 666 666 666 666 667[+04]
—0.327 680000 000 000000 000 000[ +04]
—0.560 250000 000 000000000 000[ + 03]
0.453898333333333333333333[+04]
—0.180393333333333333333333[+05]
—0.157 464 000 000 000000 000 000[ +05]
—0.270577777777777777777778[+04]
—0.358315855379188712522046[+04]
0.174482962962962962962963[+05]
0.156091792 592592592592 593[+06]
0.141093474426 807760141 093[+05]
—0.142072187460317460317460[+06]
—0.969636874779 541446208 113[+05]
0.282519027037037037037037[+06]
0.883192569312169312169312[+06]
0.604892785890652557 319 224[+05]
0.744393352380952380952381[+06]
0.181645889841269841269841[+07]
0.731053022222222222222222[+06]
—0.627173793015873015873016[+07]
—0.182002834 285714285714 286[+07]
—0.368 696 900 000 000000 000 000[ +07]
0.104202663 773809 523 809 524[+07]
0.206356581 118 386243 386 243[+08]
0.528025 890000000000 000000[+ 06]
0.407557116730158730158730[+08]
—0.897735396 656084 656084 656[+07]
—0.163399048461 538461 538 462[+08]
0.174189679 132708032708 033[+09]
—0.164271147834591416813639[+09]
—0.993430415748971193415638[+08]
0.209831402980176 366 843034[+09]
0.151529232858788947677837[+09]
0.532743328396903508014619[+07]
—0.137455818969968761397333[+10]
0.145379324653851891935225[+10]
—0.117593685539005731922399[+10]
—0.672513085077902494331066[+09]
0.157728396091 128747 795414[+10]
0.832673136673028699695366[+09]
0.243840980448 123305266 162[+08]
0.458427605 735690309 690310[+ 10]
0.220799945936209764 309 764[+11]
—0.707774542132315696 649 030[+ 10]
0.112435367278408112874780[+11]
—0.534707784 681 481481481481[+10]
—0.982884 308320697771 364 438[+10]
—0.111088901897374132040799[+ 10]

O OOV O0OOWWTIIIITAANAULWLE D WWN

— — — —
\O\lmw'—-u'—'\D\IMWP-NOOOO\&NNOOOG\AN—\O\IMUJ—ND\)U\U)'—‘OOO‘\ANOOO\AN\IU!LQ'—U\M—‘hN&Nw—'—

——

—
—

13
15

—0.100000 000000 000 000000 000[+01]
0.166 666 666 666 666 666 666 667[+011
0.533333333333333333333333[+01]
0.163333333333333333333333[+02]
0.166 666 666 666 666 666 666 667[+02]

—0.250000000000000000000000[+02]

—0.144 000000 000 000 000000 000[ +03]
0.423333333333333333333333[+02]

—0.253833333333333333333333[+03]

—0.686 000000000 000 000000 000[+ 03]

—0.317142857142857142857143[+02]

—0.445377777777777777777778[+03]
0.462488 888 888 888 888 888 889[+04]
0.832203174603 174603 174603[+03]

—0.154702380952380952380952[+02]

—0.720425000000000000000000[+03]
0.271 696 666 666 666 666 666 667[+051]
0.337422857142857142857143[+04]

—0.226849047619047619047619[+04]
0.306893333333333333333333[+05]

—0.133589866 666 666 666 666 667[+ 061

—0.761904 761904761904 761 905[+05]
0.507 106 000000 000 000 000 000[+ 051
0.937136067460317460317460[+05]
0.174399980555555555555556[+06]

—0.934803977777777777777778[+06]

—0.371184209523809 523809 524[+06]
0.117271181818181818181818[+06]

—0.219370920063492063492063[+07]

—0.129701401269841269841270[+07]
0.296518967111111111111111[4+07]
0.494 339296 507936 507936 508[+07]
0.264731395324675324675325[+06]
0.101434066717051467051467[+08]

—0.211969437211037 624926 514[+08]

—0.125493513405276 308054086+ 08]
0.261 878 505326 102292768 959[+08]
0.274505 183970605 526 161 082[+08]
0.117884 446025546 469990914[+07]

—0.477016044422799422799423[+08]

—0.643950146258 553791887 125[+08]
0.187515471 600000000000 000[+ 091

—0.334511671839153439153439[+08]

—0.258369217331922398589065[+09]

—0.445221210160269 360269 360[+08]
0.403034995714285714285714[+09]
0.653325052806284271284271[+09]

—0.897608291695216049382716[+09]
0.150903692427279100529 101[+10]

—0.504 843066255291 005291005[+09]

—0.160617663363 506 172839 506[+ 101

—0.221895292207 792207792 208[+091]
0.262057 485080000000 000 000[+ 101

—0.261 060304 132440220484982[+11]
0.532529960625964958224217[+10]

—0.850042746362549402312365[+10]

—0.388272420227795526441029[+10]
0.113275807532832482853224[+111]
0.455962264 350406 641 369 604[+ 10]
0.112852217800507054771605[+091]
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TABLE V. Results of our analysis.
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Series Ae y(M1) A1 (M1) y(M2) A1 (M2) Figure
Two dimensions
Square site® 4.0625" 2.00 £ 0.01 0.85*0.15 2.00+0.01 0.85+0.10 2(a),2(b)
4.0627 1.98 £0.02 0.70x0.10 1.99 +0.01 2(d)
Square bond® 5.2085" 1.995 £+ 0.005 0.87 £0.05 2(c)
5.2070 1.98 £0.01 0.75%0.10 1.99 +0.01 0.85%+0.05
Triangular site? 5.183 2.00+0.01 0.90%+0.10
Bond weighted tri site®f 5.183 1.98 £0.02 0.80+0.20 2.00+0.01 0.87 +£0.05
Three dimensions
sc bond® 10.615° 1.50+£0.02 1.10£0.01 1.50%0.01 1.30+£0.20 3(a)
10.616 1.49 £0.01 1.00X+0.10
10.6175 1.47 £0.01 0.90+£0.20
Four dimensions
YL(d=2)"h 0.088 964" 1.166 £0.01 1.00 £ 0.02 1.166 =0.02 0.75%0.20 4(a)
0.088962 1.160 £ 0.01 0.80+0.20 1.160 £ 0.02 0.75%0.15
0.088950 1.160 £0.01 0.75£0.01 1.15+0.02 0.80£0.10
Hypercubic bond® 16.327 1.10+0.02 0.75%0.50
16.325 1.10+£0.02 0.60 £0.01 1.12+0.02 0.80 £ 0.50
16.322 1.13+0.02 0.85+0.15
16.320° 1.14 £0.02 0.85+0.15 4(b)
16.3175 1.15+0.02 0.80%x0.10 1.15%0.02 0.90%0.15 4(c)
D18 1.0 1.115%0.25 0.65%0.05
D28 1.0 0.96 +0.06 0.65*0.15
Five dimensions
YL(d=2)nf 0.052026 0.921+0.02 0.80%0.10 0.92+0.02 0.70x0.15
0.052022° 0.91 £0.01 0.70x£0.10 0.91 £0.01 0.70+£0.10 5(a),5(b)
0.052018 0.89 +0.02 0.60 £0.20 0.89 +0.01 0.60 £0.20
0.052016 0.88 £0.02 0.60 +0.20 0.88 £0.01 0.60 £0.20
Hypercubic bond® 22.060 0.85+0.02 0.80%£0.20
22.040 0.89 +0.02 0.75%x0.10
22.042 0.90 £0.02 0.70+0.15
22.043% 0.90 £0.02 0.65%0.20 5(c)
22.044 0.90 +0.02 0.65%0.20
22.100 0.90+0.10
D18 1.0 0.90 £ 0.06 0.80%0.10
Six dimensions
Hypercubic bond? 27.720 0.66 +0.02 0.50+0.15
27.710 0.69 +0.02 0.50*+0.15 6(a)
27.707° 0.70 £0.02 0.50%0.20
or 0.30*+0.10
and 0.55*0.10
27.690 0.76 £0.02 0.80%0.10
D18 1.0 0.70 £0.025 0.50£0.05
Seven dimensions
Hypercubic bond? 33.315 0.58 £0.02 0.50*+0.15
33.312 0.57 £0.02 0.45+0.20
33.310" 0.59 +0.02 0.40%0.20 6(b)
or 0.30%0.05
and 0.50%0.10
33.305 0.62+0.02 0.50*+0.15
D28 1.0 0.62+0.06 0.60 +0.10

“Reference 21.

bBest Ac.

°Reference 15.
dReferences 19 and 23.

“Reference 28.
The exponent y+ 1 was actually calculated for these series.
EExtended hypercubic series from Table I.

hReference 9.
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TABLE VI. z estimates for eight dimensions from 15-term hypercubic series.

Ae 8%x/dp’ a’x/ap’ 32/8p* 8°1/8p* 3%/8p*
38.950 0.0-1.5
38.895 0.7-1.5
38.885 0.1-0.85 —0.06-2.7
38.880 0.2-0.75 0.1-0.35 0.06-0.36
38.875 1.2-1.6 0.35-0.75 0.22-0.40
38.873° 0.27-0.40
38.870 0.4-0.75
38.865 1.25-1.75 0.6-1.125 0.4-0.75 0.44-0.505
38.845 1.4-1.9 0.8
*Best A.

sum over all such diagrams is done using the tabulation of
Harris and Meir®* which extends to all such diagrams
with less than 16 bonds. In Table IV, we list the
coefficients of the series up to order K '° in general dimen-
sions.

III. ANALYSIS
A. Methods

For comparison with other literature analyses, our
analysis was made in terms of A=K ~! for the animal
series and in terms of K for the YL series. The animal
series are assumed to take the form F(A)=F,(1)
+ Fing(1), with Freg(X) .= regular part, and

Fsing) =BG.—2,) @D [1 +Cirh =20

+C2F(7L—7\.C)A2+"']

(3.1a)
for d=8 and
FiingW) =B'0.—1.) "V |In( —2.) | (3.1b)
at d =8.

We note that the greek letter 6 has been used to denote
both the dominant exponent and the correction exponents
A) and z in references on the animal problem. Our usage
is as defined above. In this “free energy,” we had reason
to suspect that F., the nondivergent analytic back-

ground, is quite considerable. This was borne out by pre-
liminary dIn Padé analyses and thus we have chosen to
study the second derivative X of F in depth. We have

2~ —2.) T+ Cr (A —2) 4+ Cr L —2)™  (3.1¢)
for d=8 and
2~G—=21.) "7 In(a—2) | ? (3.1d)

for d =8, with y=3 —6.

Taking derivatives strengthens the singular part of the
series under study but, of course, loses some information.
For d#=8 two derivatives appeared to be the best all round
choice. For no or one derivative dIn Padé analysis*® gave
dominant exponents of zero (i.e., no divergence), but for
two or more derivatives the critical behavior was no longer
sensitive to the number of derivatives. Convergence was
best for two derivatives. For d =8 more derivatives were
required and this will be discussed in detail below.

An analysis of the systematic errors caused by analytic
backgrounds in Padé based analysis has been made by
Adler. %

For series of the form of Eq. (3.1c), the simple dIn
Padé method, although easy to apply, does not take into
account nonanalytic confluent corrections to scaling, since
it assumes A;=1. Thus, not only no estimates for the
correction exponent A} can be extracted, but the values of
the leading critical exponent y and the singular point A,
are also shifted. In order to account for the corrections we

TABLE VII. Summary of our results for lattice animals.

Dimension Y =ay v =Q2—yy)/(d—2) A
2 22 0.641 +0.005° 0.85*+0.10°¢
3 3 i 1.3+0.2
4 i 5 0.8+0.2
5 0.90+£0.03 0.367 £0.011 0.65*0.15
6 0.70 +0.04 0.325+0.010 0.5%+0.2
7 0.59 +£0.03 0.282 +0.006 0.4+0.2
“Exact.

®Selected literature average; see Table I.

‘Literature average biased by our results; see discussion in Sec. III.
dField theory which gives logarithmic corrections, z = + .
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ta) (b) (c)

FIG. 1. Possible coverings 7a, 75, and 7., when I is a square.
The contribution to 8F(T,k) from 7, is K*(1+5)*¢~2 from
the 4 coverings equivalent to 75 is —4K3b(Q+b)(1+5)*C~2)
and from the 4 equivalent to 7. is 4K 262 (1+5)3¢ "2,

have used two methods of analysis which have been intro-
duced previously.*’

In the first method, denoted below as M1, we study the
logarithmic derivative of

BO) =y1+0—2) % (.2)
d\

which has a pole at A, with residue y—A;. For a given
value of A, we have graphs of A, vs input 7, for all Padé
approximants, and we choose the triplet A., v, A; where all
Padé’s converge to the same point. In the second method,
denoted below as M2, we first transform the series in A
into series in the variable y, where

A
y==1— _7\:—1] ) (3.3)
and then take Padé approximants to
=A(—1)4
Gy)=A(—-1) i Inx, (3.4)

which should converge to —y.

Here we plot graphs of y versus the input A, for
different values of A, and choose again the triplet A, 7, A;
where all Padé’s converge to the same point. Both these
methods have proven very useful for many problems, but
do require the simultaneous determination of three critical
quantities.

A different type of analysis method relies on the
fact3%3 that when one divides term by term two series,
both of which diverge at the same point, the resulting
series diverges at A =1. In this way one does not have to
rely on estimates for the critical point. In the animal
problem, there is only one ind¢gpendent exponent, and thus
we have only one independent series. We obtain series
with A, =1 by either dividing the logarithmic derivative of
the series term by term, by the original series (denoted by
D1 below) or, alternatively, dividing the square of the
series term by term, by the series itself (D2). The pro-
cedure of dividing series term by term introduces a strong
analytic correction.’® Thus, as long as this term is
stronger than the nonanalytic corrections, one can use
methods M1 and M2, with A;=1. There is no way, how-
ever, to estimate which correction will dominate, and thus
this method may fail when the nonanalytic correction is
too strong.

These methods can be used when the critical behavior is
like Eq. (3.1c). In the upper critical dimension, the criti-
cal behavior changes to that of Eq. (3.1d). Here we used
the method of Adler and Privman, *’ where one takes Padé

approximants to

Xy v |

Ry (3.5)

LO)=0,—A)In(A.—21)

B. Two and three dimensions

In two and three dimensions our main aim is to settle
the question of the correction exponents.

In 2D one can see from Table I that most recent esti-
mates for A, lie in the range 0.7-0.9, except Lam’s value
of 0.50 +0.05. Privman?® found in the finite-size series a
correction of order L ~', where L is the size. If this
correction represents a nonanalytic term, it gives rise to
(. —2)"", with v=0.65. We reanalyzed four existin%
series, including the square site series of Redelmeir?
which contains 24 terms. Figures 2(a) and 2(b) illustrate
resulting plots of y vs A for A, =4.0625, for M1 and M2
methods, respectively. This value of A, corresponds to one
of Guttman’s? choices. Both methods give the same y
and A; estimates, but M2 gives slightly smaller error
bounds on A;. From M2 we see a second correction
Ay~1.2. Plots for the square bond series'® are given in
Fig. 2(c) for the M2 method at A, =5.2085. We sampled
Ac at intervals of 0.0005 and this value appeared to give
the tightest convergence. While the best convergence at
this A, is clearly near A;~0.87, we see that there is some
possibility of a confluence near A;~0.4. For A, =5.207
(not pictured), this region has moved to A;~0.6 and we
conjecture that this region may correspond to either or
both Lam’s estimates of A;~0.5 or Privman’s2® lower es-
timate of 0.65. We then attempted to look for improved
convergence of this former region. This improved conver-
gence was seen best in the square site series at A, =4.0627
[Fig. 2(d)], where we obtained a weak convergence for
A1 ~0.4 and stronger convergences near A; =0.7, 0.9, and
1.2. M1 gives A;=0.7%0.1. The value of 0.7 is close to
that of Privman.?® At A.=4.0627, however, if we take
A1 ~0.7 we get y <2.0 and we therefore conclude that op-
timal convergence for this series is closer to A. =4.0625.
The triangular site series 23 also appears to have a strong
convergence at A;~0.9 and a weak convergence for
A;~0.6. Similar results were obtained for the bond-
weighted triangular site series,”® and are displayed in
Table V.

Analyzing the series DI and D2 gives rise to
y=2.00+0.05 with A; =1.00. For the other series, we
quote y=2.00%0.03 as an overall estimate and we see a
correction of the order A;~0.85. There is some evidence
of a correction below 0.8 in these series, but it appears to
have a small amplitude.

For three dimensions, the situation is somewhat
different. Here there is no accepted literature value for A;
and the few estimates that exist vary from A} =0.45 to
Ay =1.44 with large error bars. For the newly extended
15 terms, simple cubic bond animal series optimal conver-
gence is seen at A, =10.615 (using the M2 method, Fig.
3), with convergence region near A;~ 1.3, which appears
not to have been observed in the past and a weaker region
near A;~0.6, which appears to correspond to the value of
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FIG. 2. Graphs of different central and near diagonal Padé approximants to y and A, in two dimensions at (a) A. =4.0625 [M1,
square site animal series (Ref. 21)]; (b) A, =4.0625 [M2, square site animal series (Ref. 21)]; (c) A =5.2085 [M2, square bond an-
ima] series (Ref. 15)]; and (d) A. =4.0627 [M2, square site animal series (Ref. 21)].

Ref. 27. As we raise A, the regions coalesce, but y falls
well below the exact 3 value. We see no clear conver-
gence near Aj~0.45, which is the central estimate of
Lam,? but could agree with the upper limit of his range.
The lower A; correction definitely has a smaller ampli-
tude, as in two dimensions. We cannot exclude the possi-
bility that these lower A; convergences are “resonances”
of the higher value (see Ref. 41 for details of this
phenomenon).

Note that the corresponding YL problems in 0 and 1 di-
mensions have only analytic corrections.® Although our
analyses cannot entirely exclude these corrections, they do
tend to suggest that the corrections in the YL model are
not the same as in the animal problem in 2 and 3 dimen-
sions. Analyzing D1 and D2 series gives rise to
y=1.5%0.05.

C. From four to seven dimensions

In four and five dimensions, we undertook parallel but
independent analysis of the (hypercubic d—2 dimensions)

YL and animal series. Kurtze and Fisher® found “little
positive indication of the presence” of confluent singulari-
ties in the YL series but suspected that they may be play-
ing a role in the observed slow convergence. We began
our analysis of the YL series by looking at the central
Kurtze-Fisher®? K. choices and found that in two dimen-
sions their choice of K. =0.088963 X 2 was very reason-
able. In Fig. 4(a) we show the results of our M2 analysis
at K. =0.088964, where for y+1, which is closer to the
exact 2.166, we find A;=0.75%+0.20. The spread of the
A; estimates is quite large (for K. =0.08895 M1 gives
nice convergence to A;=0.7), but it would appear to be
distinguishable from 1.0 for most of the A.’s that gave
reasonable convergence. We prefer K. =0.088 964 as the
central K, choice. For four-dimensional animals, the con-
vergence is not as good as for the YL. Different y esti-
mates for the various A. choices are illustrated in Table V.
In Fig. 4(b) we show the best M2 convergence at
Ac =16.3200, which gives a central y estimate below the
exact result. For lower A. choices (which correspond to
higher y values), the M2 convergence downgrades. How-
ever, for M1 we show in Fig. 4(c) the situation at
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FIG. 3. Graph of different central and near diagonal Padé
approximants to y and A; in three dimensions at A, =10.615
(M2, simple cubic bond animal series, this paper).

Ac=16.3175, where y=1.151+0.02. The quality of the
convergence, in the M1 method, is similar throughout the
range presented in Table V. This analysis leads to the esti-
mate A; =0.8 0.2 for 4D animals which, as can be seen
from Table V, is very close to the YL correction. We
suggest A, =16.32 1 0.01 for the bond animal problem on
the hypercubic lattice.

In 5D the situation is very similar (see Fig. 5). We find
best convergence for K, =0.05202 %+ 0.00001 for the YL
series in 3D, with the exponent shown in Table V. The
difference between these results and those of Ref. 9 should
be attributed to the relatively larger effect of the correc-
tions in this case. The A, estimates for both problems
again are very close and fall within the range A
=0.65210.15. Our result for the leading exponent is y
=0.905+0.015, and A, =22.043 +0.002. No results are
given for M1 in 5D because all approximants fall on a sin-
gle line, within our A, range, with no clear intersection
points. The results of M2 all lie on this line.

In six and seven dimensions we found A, results in good
agreement with the 1/c expansion.!® We suggest
Ac=27.71£0.02 (6D) and A,=33.31+0.02 (7D). The
estimates for the leading singular exponent yield y=0.70
£0.02 (6D) and y=0.59 +0.02 (7D). The morphology
of the M2 graphs in both dimensions is similar. It is not
completely clear whether there are one or two intersection
regions in the range of 0.5%£0.2 (6D) and 0.4 0.2 (7D).
We show the one-region case in Fig. 6(a) for A, =27.71 in
6D and the two-region case in Fig. 6(b) for A.=33.31
in 7D. We suggest A;=0.50%£0.20 in 6D and A
=0.40 +0.20 in 7D.

Analyzing the series D1 and D2, we observe that the
strongest confluence is no longer analytic in high dimen-
sions. For example, at d =20 we find A; =0.5. Thus, one
cannot just read the value of y from the intersection with
A;=1, as was done in lower dimensions, but further
analysis is needed. We show in Table V results of this
analysis, which are consistent with the results of the
analysis of the original series. In general, the analysis of
the D1 series led to better results.

22

yt+
21+

20

00

0'8 1 1 1 1 I —
0.0 0.4 0.8 1.2
4,

FIG. 4. Graphs of different central and near diagonal Padé
approximants to y and A; in 4 dimensions at (a) K. =0.088 964
(M2, YL series in d =2%); (b) A.=16.3206 (M2, hypercubic
animal series, this paper); and (c) A, =16.3175 (M1, hypercubic
animal series, this paper).

D. Eight dimensions

According to the field theory? [see also Ref. 42, Eq.
(4.28)] the free energy, at the upper critical dimension,
eight in this case, behaves as Eq. (1.6), with =3, which
is the mean-field result, and z =% . In order to check this
prediction we estimated z using a method developed by
Adler and Privman.’” Results of the analysis for some
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FIG. 5. Graphs of different central and near diagonal Padé
approximants to y and A, in five dimensions at (a)
K.=0.052022 (M1, YL series in d=3%); (b) K.=0.052022
(M2, YL series in d =3%); and (c) A, =22.043 (M2, hypercubic
animal series, this paper).
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FIG. 6. Graphs of different central and near diagonal Padé
approximants to y and A; in 6 and 7 dimensions for hypercubic
animal series (a) d=6, A.=27.71 (M2); and (b) d=7,
Ae=33.31 (M2).

different initial A, estimates are given in Table VI. We
analyzed several derivatives of the free energy. In Table
VI we list the estimates of z corresponding to the dom-
inant exponent given by mean-field theory. We see that
taking one to three derivatives lowers the z estimate, but a
further derivative does not have a strong effect. We inter-
pret this as meaning that after three derivatives we have
minimized the effect of the analytic background. The
upper range of the z estimates for x” has two Padé ap-
proximants which are considerably above the others and
appear to be defective. In Fig. 7, we show a graph of z vs
y+3 which is a result of the analysis of x", for
A.=38.873. We find that the best convergence is near
Ao =38.875 and suggest A, =38.875+0.020 in excellent
agreement with the 1/o estimate'® of A, =38.865 +0.542.
This is significantly better agreement with the 1/c value
than that of Ref. 15 who found A, =39.0 = 2.0.

IV. CONCLUSIONS

In this paper, we have constructed general dimensional
series for the number of lattice animals embedded in a d-
dimensional hypercubic lattice. These series extend exist-
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FIG. 7. Graph of different central and near diagonal Padé
approximants to z as a function of y for d =8 at A, =38.873.

ing tabulations by five terms in 4D and above and enabled
us to extract reliable estimates of the singular quantities
even in high dimensions.

Our A, results for the higher dimensions are in excellent
agreement with the 1/o expansion.'® The ¥ results for the
lower dimensions are in excellent agreement with the ex-
act and other series calculations and those for the higher
dimensions agree well with the ¢ expansion values for the
Yang-Lee problem'? and are considerably more precise
than the older series values. Our values are y=0.59
+0.03, y=0.70+0.04, y=0.90£0.03, y=1.15%0.03,
y=1.50%0.02, and y=2.0010.02 for seven, six, five,
four, three, and two dimensions, respectively. These
values exclude the Flory-type estimate® at d =5 and
confirm the deviation of the ¢ expansion result from the
Flory value at d =6.

We were also able to determine the correction to scaling
exponents in all dimensions. The values of these ex-
ponents A; =0.4+0.2, 0.5%+0.2, 0.65%0.15, 0.8 +0.2,
and 1.3%+0.2, in seven, six, five, four, and three dimen-
sions, res?ectively, are very close to the leading e-
expansion” value of ¢/4. The values are fairly close to
Breuer’s®> method III results, but like this method III
values are considerably higher than his other estimates in
the higher dimensions. We also determined the correction
to scaling exponent for the Yang-Lee edge problem in two
and three dimensions and found values that are very close
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to those of the animals problem in two more dimensions.
However, in low dimensions where the YL problem is ex-
actly solved, the agreement is not that good. This may be
because the YL corrections are analytic and the situation
may resemble that of the 2D Ising model,*? where the ex-
actly solved spin-3 model has only analytic connections,
but other members of the same universality class have
nonanalytic corrections. It is also possible that the two
problems differ beyond the leading singularity. The fact
that the leading diagrams and hence the leading singulari-
ty are equivalent does not prevent one of the problems
from having additional corrections terms. This is an intri-
guing possibility. Although our numerical analysis sug-
gests that the values of the corrections for the animal and
YL problems are very close, it is not enough to determine
whether the two problems have identically the same
correction to scaling exponents or not. The best way to
resolve this question would be to carry the ¢ expansion for
the animals ?roblem to €2 and compare with the available
€ expansion'' for the correction exponent for the YL
problem, and we plan to do so in the future.

Our results are consistent with the predictions of the
field theory? as regards the behavior in eight dimensions,
which is the upper critical dimension. Our analysis en-
ables accurate determination of A, at d =8 and together
with the new A, estimates for d =6 and 7 demonstrates
that excellent agreement exists between series and 1/c es-
timates for A.. Close agreement with the e-expansion ex-
ponents is also found.

A summary of the best current results for lattice an-
imals is given in Table VII. Exact results are cited wher-
ever possible. Where these are not available literature
averages have been cited for two dimensions. For higher
dimensions we have quoted our results in the absence of
exact values since these include the third-order e-
expansion results in every case.
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