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Spin excitations in multilayered ferromagnetic electron gases
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Spin excitations in a periodic array of layered ferromagnetic electron gases are discussed within

the generalized Hubbard approximation. It is shown that the Stoner gap and the spin waves display

appropriate crossover behavior (from two to three dimensions) on going from the weak- to strong-

coupling regime. Their anisotropic behavior depends not only on the electron tunneling between

adjacent layers, but on the screened Coulomb potential as well. The screening anisotropy even

affects the existence of the collective modes.

I. INTRODUCTION II. TRANSVERSE SPIN CORRELATION FUNCTION

Molecular-beam epitaxy allows the fabrication of elec-
tronic systems with anisotropic dispersion intermediate
between two and three dimensions (2D and 3D). Such
structures are referred to as superlattices, where a weak
periodic potential is imposed onto the electronic system
in the z direction, parallel to the growth. Phenomenolog-
ically, they can be regarded as a simple extension of the
quasi-2D case. But the transparency of neighboring bar-
riers and the strong interlayer coupling change qualita-
tively the character of the system; therefore, such a sys-
tem provides a way of studying the crossover behavior in
the collective mode spectrum as the layer thickness is re-
duced.

Much attention has been devoted so far to the charge
density excitations of a layered electron gas, and various
investigations have been reported on plasmons and the
associate dielectric screening in the last decade. '

Research on other types of excitations (say, spin waves, '

magnetorotons, etc. ) has only started recently.
The purpose of this paper is to investigate the magnetic

excitations of such an electron gas in its ferromagnetic
phase, which is promising since an important rule is
played by the spin-density fluctuation in addition to the
charge-density fluctuation. By being able to carry their
spin bias to nearby regions, moving electrons bring about
spin correlations in the system that can lead to collective
spin-wave modes. Using the Feynman diagram tech-
nique, we study the spin excitations of a layered fer-
romagnetic electron system in the generalized Visscher-
Falicov (VF) model' and analyze the effects of the elec-
tron tunneling and the modulation of the superlattice on
the spectra. The paper is divided as follows: The spin
correlation function is evaluated at first (Sec. II), then in
Sec. III the spectra of the excitations are determined; the
last section is devoted to the concluding remarks.
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where r stands for the position variable in the electron
layer plane, K=(k, kt) is the wave vector, A and N are
the area of the layer and the number of the layers, respec-
tively. P(z —Id) confines the electrons in the 1th layer
which adopts the atomic wave function in the generalized
VF model, it is assumed only the lowest band is occupied,
so the band index in Eq. (1) has already been omitted.

Assuming further a very small overlap between the
wave functions of two neighboring layers, and retaining
only the wave functions belonging to the same layers in
the interacting Hamiltonian, we can readily obtain the to-
tal Hamiltonian of the system:
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Ctr, (Ct~, ) is the creation (annihilation) operator for an
electron in the single-particle state with spin s, T is the

Considering a periodic array of ferromagnetic layers of
quasi 2D electron gas, in which the electrons move freely
in each layer, the single-particle wave function can then
be written as
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hopping integral between the nearest-neighbor layers,
Q=(q, qz) is the momentum transfer. The anisotropy of
superlattices is naturally reflected in the dispersion rela-
tion E~ and the Coulomb potential V(Q).

We now introduce the spin correlation function:"

D (X1%1 )= —(T [S (x1)S (x1 )])
where the spin-flip operators are defined as

S—(x)= —,'ft(x )cr
+—g(x) . (4)
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Using Wick's theorem and Feynman diagram tech-
nique, it is readily verified that all diagrams with more
than one bubble have no contributions to the correlation
function, that means, the correlation function is related
to the proper polarization only by
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S describes a spin-flip process in which a down spin is
flipped into an up spin, S the reverse process, and 0 is
the Pauli matrix with

The latter is obtained by summing up a set of Feynman
diagrams shown in Fig. 1, in which we have labeled the
right and left particle lines of each diagram with up and
down spin indices, respectively, realizing the fact that the
spin of each particle is unchanged in scattering.

Evidently, the accuracy of the final result of the corre-
lation function depends entirely on the approximation
made in the calculation of the polarization. As a primary
approximation, we let IIttjt! sj„s]e b„bb]e IIt))t (see Fig.
2 for diagramatic representation} and evaluate the basic
bubble diagram using the self-consistent Hartree-Fock
approximation (SCHFA) Green's function
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Some straightforward calculations lead to the following
form of the polarization in the space-momentum mixed
representation:
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Since P(z —ld) is highly localized near the Ith layer,
the system has the superlattice periodicity of supercell d
in the z direction, Eq. (9) can further be transferred to the
whole momentum space. After introducing the form fac-
tor

F(qj )=f dz e '
! P(z)!

This is precisely the result of the well-known Stoner
theory. It gives the Stoner excitations of electron-hole
pairs with opposite spins,

R~=ex+g —ex+ g V(K —K')(nx, t nx +{2(—)/V .
K'
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we obtain
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The details on these single-particle —like excitations will
be examined in the next section.

Equation (11) may be further simplified if the only
noninteracting electron gas is concerned. It then be-
comes,

As a result, the retarded correlation function has the fol-
lowing simple form:

D+ (Q co)=—gV x %co—(ex+& —ex)
(13)
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On this occasion, it is easy to find that the superlattice
affects the Stoner excitations only through the anisotrop-
ic electronic dispersion [Eq. (2b)].
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FIG. 1. Diagrams illustrating the single-bubble polarization.
)(I X'

FIG. 2. The lowest approximation of the polarization.
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Since the Stoner theory of the itinerant electron
magnetism has ignored the correlation among the elec-
trons, we have to go beyond the HFA by taking into ac-
count the scattering of electron-hole pairs due to the ex-
change interaction, so as to search for the information on
the collective excitations. A realistic procedure in this
direction is to choose a reasonable series of proper polar-
ization insertions, such as those shown in Fig. 3, which,
according to Hedin, ' is a good approximation for the
metallic densities.

Again, we incorporate the exchange self-energy contri-
bution by using a SCHF 0 instead of 0 for the propaga-
tor, then following the preceding procedures that de-
duced 0, we finally obtain

We note that if the screened potential is replaced by a
constant effective Coulomb potential, Eq. (16) reduces to
the usual RPA results. ' By introducing the screened po-
tential more explicitly, we attempt to examine how the
superlattice structure affects the spin-density fluctuations
of the system.

III. SPIN EXCITATIONS OF THE SYSTEM

The excitation spectrum of the system is described by
the poles of the correlation function, we then get from
Eq. (16),
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where X(P) satisfies an iterative equation

X(P)=1—g V(P —P')A(P')X(P')/V,
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This equation has solutions corresponding to individual
modes (or the Stoner excitations) as well as the spin wave
modes, as illustrated in Fig. 4.

For the single-particle —like excitations, we have a con-
tinuous spectra which lie in the long wavelength limit be-
tween
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It is clear that the correlation function can be evaluated
in a number of ways (as in Refs. 6 and 11, for instance).
In this paper, we use so-called generalized Hubbard ap-
proximation to solve the problem analytically.

In the Hubbard approximation, " the factor V(P —P')
in the summation is replaced by a screened potential
G(Q) V(Q), with G(Q) being the screening factor. By a
generalized Hubbard approximation, we assume that the
screening effects act only in the 2D charge layer planes.
Supposing that G(q) takes the following form

G(q)=
q+q,

(15)

where q, is an appropriate screening wave number, we
can then solve the problem [Eq. (14)] exactly. The solu-
tion reads
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where m =(n t n& )/—2 is the spin density, and an isotro-
pic dispersion other than Eq. (2b) has been assumed for
simplicity. '

It follows from Eq. (18) that the Stoner gap of the
single-particular-like excitations depends on the details of
the screened potential. It is thereby a structure-
dependent quantity, and the modulation properties of the
superlattices should be reflected in the spectra of the
Stoner excitations. In the following, we extend our dis-
cussions for the two extreme cases.

The first case we are concerned with is the so-called

(16)

2mG(q) V(Q)

~ ~ ~ ~ ~ ~
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FIG. 3. Ladder approximation of the polarization.

g Spin-wave-mode

FIG. 4. The spectra of the spin-wave and Stoner excitations.



38 SPIN EXCITATIONS IN MULTILAYERED FERROMAGNETIC. . . 4939

weak-coupling limit (qd »1), taking qd~~ limit of
V(Q) immediately gives V( }

2~e'd
1 —cos(q~d )

' (23)

V(Q) =2me d /q . (19) and the excitation energy becomes

fico= G(q)+ (q +2k q),4mne 2d $2

q 2me
(20}

that is, each layer supports independently its own 2D ex-
citations in this case.

In the opposite limit (qd && I), however, the system
behaves like a 3D electron gas. For q~ =0, we have

V(q)=4ire /q (21)

and

The single-particle-like excitation energy then ap-
proaches gradually that for the 2D electron gas,

2 24mme d
1 —cos(qid )

+2T[cos(ki+qi )d —cos(kid )], (24)

which shows precisely the 1D character for the suggested
screened potential. All of these results confirm that the
Stoner excitations in the superlattice reveal the crossover
behavior as the coupling strength varies. Moreover, the
Stoner gap is always influenced by the anisotropic screen-
ings as indicated in Eqs. (20), (22) and (24) on which we
will make more comments when we deal with the spin-
wave excitations.

There are no Stoner excitations for small Q and co,

satisfying the condition " ' '
iiico= G(q)+ (q +2k q) .8mme

2 2me
(22) 2mG(Q) V(Q)»

~ sK+Q (2&)

But for qj &0, the Coulomb potential becomes
With this prerequisite, we finally get the spin-wave spec-
trum:
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For the dispersion relation given in Eq. (2b}, the spectrum becomes
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The results show clearly the dependence of the spin
waves on the supporting periodic structure. It changes
from two- to three-dimensional behavior as the coupling
between adjacent layers is increased by decreasing the pa-
rameter qd.

In the particular q~=0 case, the interlayer Coulomb
interaction becomes extremely large compared with the
intralayer interaction in the strong-coupling limit
(qd~0}. As a consequence, the Stoner gap approaches
infinity, and the spin waves dominate the spin excitations
of the system. From Eq. (27), we further realize that

Ic Aq
m 2me

The spin waves are determined entirely by the additional
kinetic energy the electrons develop as they correlate to-
gether to form the spin waves; they travel isotropically in
the charge layer, being the same as that for 3D strongly
interacting electron gases.

A sharp contrast to this situation is the weak-coupling
limit (qd »1), where the system behaves then as if it
were two-dimensional except for the possible tunneling
(since q~ is arbitrary). In addition, the 2D screened po-
tential makes the Stoner excitations not impossible even
in the long-wave limit [see Eq. (20)], which consequently

reduces the spin-wave energy by a finite quantity just as
Eq. (27) indicates. It is also shown that the spin-wave
stiffness in this case is always highly anisotropic no
matter what value q~ takes.

An important fact we should note is that all the con-
clusions obtained so far about spin waves are based on
the prerequisite Eq. (25}. This condition cannot be
satisfied for the nonzero q~ situation in the strong-
coupling limit, since the screened potential and hence the
Stoner gap then linearly approach zero at the same speed
as eK(Q)=sK+& —sK does. Therefore, Eq. (27) and the
relevant conclusions on the spin waves are not suited to
this situation. But fortunately, it may be verified that the
system cannot support stable spin-wave excitations in this
situation, we are thus convinced that Eq. (27) covers all
the possible spin-wave modes of the layered ferromagnet-
ic electron gases.

IV. SUMMARY

We have studied in this paper theoretically the spin ex-
citations of a periodic array of layered electron gas in the
ferromagnetic phase. The results clearly show the cap-
tivating change in dimensionality of the systems from
two- to three-dimensional behavior as the coupling be-
tween the layers is increased. In the weak-coupling
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(qd »1) limit and the strong-coupling situation (qd «1)
with q~ =0, the band splitting of the Stoner excitations
increases as q~0, showing a two- and three-dimensional
behavior, respectively. The system therefore supports
stable collective modes spin wave below the continuous
spectra of the single excitations. On the contrary, in the
particular q~&0 and qd ~0 case, the screened Coulomb
potential lower the Stoner gap to zero due to the screen
anisotropy we presupposed. The collective modes are
then highly damped and decay into the continuum of the
Stoner excitations.

Different from Gasser, we make it clear that the aniso-
tropic stiffness of the existing spin waves is dependent not
only on the anisotropic electronic dispersion, but on the
screened Coulomb potential as well. Furthermore, we
have pointed out that the screen anisotropy even affects
the existence of the spin waves in some cases.

Experimentally, the charge-density excitations of lay-
ered electron gases have been reported by inelastic light
scattering. ' Similar explorations are also expected in
order to get a better understanding of the spin excitations
of such systems.
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