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Diffusion and spin correlation in fractal percolation clusters
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We have performed Monte Carlo simulations and theoretical calculations of the time decay be-
havior of the dipolar and spin exchange autocorrelation functions G&(r) over a range of concentra-
tions p (0 &p & 1) of randomly diluted magnetic species diffusing in a lattice. For p below the per-
colation threshold p„G&(r) decays exponentially, at long time, with an effective time constant r(p)
increasing with the concentration. We show that this result is characteristic of a bounded diffusion

in a single average cluster explored in the average time (r(p) ). At the percolation threshold p =p„
—d ff(P )/2

G&(r) tends asymptotically towards the same power law r ' ' either for a dipolar or a spin ex-

change interaction. Here d,8(p, ) is an effective dimensionality, which appears to be lower than the
Euclidean dimensionality d. A theoretical calculation of the kinetics of reencounters of two spins
diffusing in a distribution of clusters leads to the relation d,ff(p, )=2—d, (3—r, ) in terms of the
spectral density d, and the critical exponent r, for the distribution of clusters in the theory of per-
colation. This relation gives d,8(p, )=0.76, 0.95, and —, for d =2, d =3, and d =6, respectively.

The asymptotic expression found for GN(r) is then coherent with a process of anomalous diffusion
in a reduced spatial dimensionality. Finally for p above p„one finds for each value of p, a power

—d 8(P)/2
law G(r) ~ r ' . There exists a crossover for d,8(p) between d,8(p, ) and d for times sufficiently

long that the temperature-dependent diffusion length exceeds the concentration dependent correla-
tion length. This solves the seeming contradiction appearing in recent interpretation of nuclear-
magnetic-resonance (NMR) results in mixed paramagnetic compounds.

I. INTRODUCTION G(r)=n [(E(ro)E(r)) —
~

(E(r})
~
],

Nuclear magnetic resonance (NMR) has been widely
used in the study of randomly disordered magnetic sys-
tems. Systems of interest include mixed paramagnetic
compounds, ' hydrogen tungstene bronzes, polymer
gels, conducting polymers, porous media, and hetero-
geneous systems. However, the interpretation of the
measured data (linewidths, and spin relaxation rates) is
difficult. The origin of difficulty often comes from the
theoretical model that is used to follow the relaxation
process induced by the collective spin dynamics. In the
general case of spin motion, the persistence of the fluctua-
tions of the spin interaction can be represented by the
many-body spin-correlation function

G(r}—= g E(r~(0)) g E(rkl(v. )) .
k, l
k(I

Here E(r„&(r)) describes the spin interaction, including
the spin operators and the spatial dependences, for in-
stance, in dipolar or exchange interaction between a pair
of spins k and I separated by r„l(r) at time r and rl I(0) at
time r=0. Actually, simplifications occur in this expres-
sion of G(r), namely by separating the autocorrelation
and intercorrelation functions, but also replacing the
summations over spins by an ensemble average, noted
( ), taken as an integral over a pair conditional probabili-
ty, assuming that the interspin distance r is a random
variable. This gives the following spin-correlation func-
tion

where n is the spin density. In the case of translational
diffusion of the spins in a homogeneous medium with an
Euclidean dimensionality d, the time decay of G (r) leads,
at long times, to the form G( r)cc r ~ However. , this
latter form is not valid anymore, for a random medium,
because of the inhomogeneities of the spin distribution
and anisotropies in the diffusion properties.

The purpose of this paper is precisely to propose a gen-
eralization of such statistical description to the randomly
disordered systems which have the fractal geometry of
percolation clusters. We propose computer simulations
and theoretical calculations of the time decay behavior of
the dipolar and spin-exchange autocorrelation functions
over a range of concentrations p (0&p &1) of magnetic
species diffusing in a lattice. A previous simulation has
been done by Klenin and Blume for a dilute Heisenberg
magnet at infinite temperature. However, their calcula-
tions were limited to very short times so that no quantita-
tive statement has been made about a possible asymptotic—61 8(p)/2
behavior of G(r) of the form G(r)~r '", where

d, fr(p) is an effective dimensionality varying smoothly
with p. Different interpretations exist about the use of
such asymptotic behavior in the NMR data. For in-
stance, in mixed paramagnetic compounds, d'Ariano
et al. ' confirm this asymptotic behavior for concentra-
tion p above the percolation concentration p„while
Engelsberg et al. disagree with such interpretation, at
least for (p —p, ) )0. 1, and fit their data with d,fr(p)=d.
It is then interesting to provide computer simulation to
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solve this seeming contradiction for p above p„but also
to clearly find out the asymptotic behavior of 6(r), at
long times„ for p below and precisely at this percolation
threshold p, .

In Sec. II, we present the Monte Carlo simulation used
to calculate the time decay of 6(r) for spins diffusing on
randomly diluted square lattices.

In Sec. III, we present and discuss the asymptotic be-
haviors of 6(r), at long times, for p &p„p=p„and
p &p„respectively. For p &p, we show that 6 (r) decays
exponentially, ai long times, with an effective time con-
stant r(p) increasing with the concentration p. This be-
havior is shown to be characteristic of a bounded
diffusion on finite clusters. At the percolation threshold
(p =p, ) our results, either for a dipolar or a spin-
exchange interaction, tend asymptotically towards the
same analytical result

II. MONTE CARLO SIMULATION

To set up our simulation procedure, we first create a
randomly diluted square lattice of size N with pN
(0&p &1) accessible sites for the spins. Then we gen-
erate random walks for two interacting spins, with an in-
teraction E(r) (dipolar or spin exchange), at each unit
step ~, which depends on the interspin vector r chosen as
a random variable. For a given value of p, we calculate
the normalized [Gz(0)=1] spin-autocorrelation function
6~(r) defined as

where the notation ( ) stands for a statistical average
over a large enough number of different trajectories N
and lattices Nt in order to ensure an ergodic system. Ba-
sically this gives the following time array:

with

d, tr(p, )=2—d, (3—r, ),

where d,s(p) is an effective dimensionality lower than d,
d, is the spectral density, and ~, is the critical exponent
which describes the distribution of clusters in the per-
colation theory. ' This asymptotical form has been ob-
tained by a calculation of the kinetics of collision of the
two spins diffusing in a large cluster and averaged over
the distribution of clusters. In two-dimensional systems,
this result becomes 6(r) ccrc [here d,s(p, )=0.76].
This is quite similar to the observed time dependence of
the delayed fluorescence, due to the annihilation of two
migrating triplet excitations in a doped naphtalene crys-
tal. " This proves, at least for a short range interaction,
that the time decay of the spin correlations is mainly con-
trolled by the probability of reencounters. Such reen-
counters increase the effective duration of interaction and
make the spin correlations more persistent. Moreover, it
is known that the lower the dimensionality, the greater
the probability of reencounters. ' The very slow time de-
cay, that we observe at p„ is then coherent with a di-
minution of the spatial dimensionality [d,s(p, ) & d ]. An
analytical result for G(r), at p„ thus allows an explicit
calculation of its Fourier transform and then gives infor-
mation about the low-frequency behavior of spectral den-
sity J(co) and spin relaxation rates. Finally, for p &p,
one finds, for each value of p, a power law—d ff(P)/2G(r) ~r ' with ddr(p) &d and, for times
sufficiently long that the diffusion length exceeds the
correlation length g,

' the asymptotic law G(r) ~r
characteristic of a Brownian diffusion on homogeneous
medium. One shows that there exists a crossover for
d,s.(p) between d, tr(p, ) and d, which depends on the ratio
of the length of diffusion (, r (r))'~ (temperature depen-
dent) over the correlation length g (concentration depen-
dent). This result is coherent with the evidence by proton
magnetic resonance and relaxation of a surprising one-
dimensional behavior of the microscopic diffusion of am-
monium ions in P alumina. '

I G~(r, )}=.N( N

g X E«oal)E«(al)
I =1 a=1

NI N

X X E«oa»'
1=1 a=1

iE f0, . . . , N, },

(2)

where the following indices i E IO, . . . , N, }, a& Il
, . . . , N }, l& Il, . . . , NI} denote the number of unit
steps, trajectories, and lattices, respectively.

The random walk of the pair of spins over the pN ac-
cessible sites obeys the following conditions. (i) The ini-
tial placement is chosen at random, either in the same or
different clusters, (ii) At each unit step, the moving spin is
chosen at random and does an independent random walk
on the next neighbor accessible sites. The possibility ex-
ists, for the spins, to stay fixed at its position during a
unit step. This latter possibility ends up to increase the
rapidity of convergence to the asymptotic regime, possi-
bly because of a lower probability of entering the dead
ends of the clusters. ' (iii) There are reflexive boundary
conditions at the limits of the clusters. (iv) There are the
usual toroidal boundary conditions in order to eliminate
the surface effect due to the finite size of the lattice. (v)
Our data are limited by noise due to statistical Auctua-
tions. This induces absolute errors in the spin-correlation
functions of the order of several times 10 . Obviously,
the spin-correlation functions must be much greater than
this noise level. The possibility occurs to decrease these
errors by performing runs over more trajectories, increas-
ing N from 5X 10 up to 10, and averaging over more
lattices, increasing NI from 20 up to 40. Increasing the
size of the lattices from 50/50 up to 150' 150 also de-
creases the surface effects. However, an optimum be-
tween all these constraints must be chosen in order to ac-
cess, in a reasonable computer time, to the asymptotic re-
gime, at long times (N, = 10 ).
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III. RESULTS AND DISCUSSION 0.6

Examples of the time decays of GN(r, ) with
i E I 0, . . . , N, = 10 ), for a dipolar interaction
E(r) ~ 1/r, are displayed in Fig. 1 for different values of
p on both sides of the percolation threshold p, . %'hen p
decreases, one observes that the dipolar correlations are
more persistent at long times. This is naturally due to the
enhancement of the reencounter probabilities which
drastically increases the effective duration of interaction.
In the following we present and discuss the time decays
of G~(r) at p, and on both side ofp, .

0.4

z 0.3

0.2

0.1

0.0
0.0 0.1 0.2 0.3

A. Spin correlation below the percolation threshold

For p &p„ the dipolar correlations tend to a constant
asymptotic value Gz( ~ ), given by

FIG. 2. Variation of the asymptotic value of the dipolar
correlation function Gz( ~ ) with

~ p —p, ~

.

(3)

This asymptotic value is different from zero because the
two spin distributions are not completely averaged out
over the finite sizes of clusters below p, . It results in a re-
sidual dipolar interaction whose value depends on p as
shown in Fig. 2. The NMR measurement of such residu-
al dipolar energy has proven useful to study the molecu-
lar dynamics of molten polymers. Anisotropic motions
can also induce such noncompletely averaged residual in-
teraction. For instance, it has been recently shown that
the anisotropic motions of quadrupolar nuclei in su-
perionic conductors can also induce a quadrupolar resid-
ual energy which affects particularly the lineshape and re-
laxation rates. ' Of course, Gz(ae)=0 at the limit of
p =p, (Fig. 2), where it becomes possible to average out
completely the dipolar interaction over the infinite size of
the percolation cluster. Then, for p ~p„ it becomes
necessary to renormalize Eq. (1) in order to cancel out the
spin correlations at long times

&E(r, )'& —
~

&E(r)& ~'

Gtv(r) —G~( ao )

1 —G~( ao )

In Fig. 3, we have displayed the time decays of such a
function on a semilogarithmic plot for two values of
p &p, . In spite of the additional noise, due to the
definition of Gz"" (r), one finds, at long times, a straight
line in both cases. This is characteristic of an exponential
time decay

G renorm( r ) ~ exp
7

r(p)

where r(p) is an effective time constant increasing with
the concentration p. However, a nonexponential behav-
ior appears at the beginning of the diffusion process.
This behavior is emphasized when p is very close to p, .
In previous papers, ' one of the authors has shown that
such behavior is characteristic of a bounded diffusion on
a finite homogeneous system. Here there is a distribution
of clusters below p„but the exponential asymptotic re-

gime shown in Fig. 3 is consistent with an interpretation
in term of a single effective cluster, the average size of
which is taken over the whole distribution. Below we
present the calculation of the concentration dependence
of the average time & ~(p) ) necessary for a complete ex-
ploration of a cluster of size s Et 1, . . . , S,„I. It is
known that below p„we have a distribution of sizes
characterized by the relation

1.0
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FIG. 1. Time decays of the dipolar correlation functions

G&(~) for different concentrations p on both sides of the per-
colation threshold p, . The time ~ is expressed in number of unit
steps.

FIG. 3. Semilogarithmic variation of the time decays, of the
renormalized dipolar correlation functions [Eq. (4)], for two
values of the concentration below the percolation threshold p, .
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'f [(p —p, » ]

where ~, and o. are critical exponents describing the dis-
tribution and finite size of clusters in the percolation
theory. ' The scaling function f describes a cutoff in this
distribution, due to the finite size of the clusters. For a
given cluster of s (E Il, . . . ,S,„I) accessible sites, the
number of visited sites S(r(p) } in the time r(p) is given

by
d /2S(r(p)}=s~r(p) '

2/d
Then one has w(p) ccs ' and the average of r(p) over n,
gives

smax 2/d
(r(p)) cc g sn, s
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Actually, instead of the exponential form given in Eq. (5),
the average of r(p) corresponds to consider only the first
cumulant exp( —r/( r(p) ) ). This is generally a very
good approximation. In the concentration law given in
Eq. (7), the exponent takes the value —3.72 for d =2 and
—2.95 for d =3. For d =2, the concentration depen-
dence found from the slopes of Fig. 3 agrees quite well
with the theoretical relation given in Eq. (7).

Assuming that during r(p) the average cluster explored

by the diffusion corresponds to the one of size s&-g f,
where g is the usual correlation length and df is the frac-
tal dimension. ' For the area of such a cluster one has

d /df d /2
A&-g -s& f. The use of the relation

s& ccrc(p} ', pre-
viously defined, leads immediately to

2/d, 2df /d, d
r~(p)-s& * -( &&) f ' . Introducing the dimensionali-

ty d =2df /d, (Ref. 17) associated to the random walk in
fractals gives finally

d/d
&~(p) ~ r&(p) (g)

The homogeneous lineshape associated with an ex-
ponential dipolar correlation function is known to be
close to a Lorentzian in the fast motion regime. Accord-
ing to Eqs. (5) and (8), we predict that the measurement
of the concentration dependence of the NMR linewidth
will give information about the average area of the clus-
ters explored by the diffusion.

B. Spin correlation at the percolation threshold

For p =p„ the dipolar correlations tend asymptotically
to zero according to a power law Gz(r) o: r (for
d =2) shown in Fig. 4(a). One sees in Fig. 4(b) that the
spin correlations, for a spin-exchange interaction
E(r) a:exp[ a(r ro)] with a= 1 and—ro=—1 (first neigh-
bor separation}, tends asymptotically to zero along the
same power law. Basically this proves, at least for a
short-range interaction [G~(0) varies as 1/ro or

FIG. 4. (a) Logarithmic variation of the time decay of the di-

polar correlation function GN(~) at p, (points) and comparison
with the theoretical result of Eq. (11) (solid line). (b) Logarith-
mic variation of the time decay of the spin-correlation function
GN(r) for a spin-exchange interaction at p, (points) and compar-
ison with the theoretical result of Eq. (11) (solid line).

exp( —2ro)], that the time decay of the spin correlations
is mainly controlled by the probability of reencounters
rather than the static range of interaction. Once again,
such reencounters increase the duration of interaction
significantly, and make the spin correlations more per-
sistent. The power law r (for d =2) found in Figs.
4(a) and 4(b) is quite similar to the observed time depen-
dence of the delayed fluorescence due to the annihilation
of migrating triplet excitations in a doped bidimensional
naphtalene crystal. " In this latter work, this time depen-
dence has been explained using a percolation model by a
calculation of the kinetics of collision of two excitations
migrating randomly on a large cluster. Here one can ap-
ply the same treatment adapted to the spin correlation.
Let us consider a distribution of finite clusters, each
characterized by the number s ( E t 1, . . . ,S,„I) of ac-
cessible sites. One notices that only two spins on the
same cluster have a non-negligible probability of reen-
counters. So we restrict our theoretical calculation on
this assumption. The number of visited sites after v. step
units is N(r) The clusters for. which s &N(r) have been
entirely explored by the diffusion of the two spins. The
spatial distributions of such spins are then completely un-

iformized over these clusters. This will give no time
dependence of the spin-correlation function. On the con-
trary, the clusters for which N (~) & s &S,„will partici-
pate to the time decay of the spin-correlation function.
For a given cluster, the probability (per unit of volume) of
finding two spins in a domain of N(r) visited sites is pro-
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portional to N(r) .The probability of reencounters (per
unit of volume) between r and r+dr is then proportional
to the difference between the probability of finding the
two spins in the domain N(r) and that of finding them in
the domain N(r+dr). The total probability of reen-
counters (per unit of volume) P„(r) must now be averaged
over the distribution of clusters n,

max

P, (r) ~ g sn, N(r} —g sn, N(r+dr) .
max max

s & N(x) s & N(a+dr)

Owing to Eq. (6), when p =p„ the distribution of clusters

is given by the relation n, ~s . Substituting Eq. (6)
into Eq. (9) and replacing the summations by integrals
gives

(9)

P, (r) ~ [N(r+dr) ' N(r) —']
—Sm,„'[N(r+dr) N(r)—] . (10)

—d /2
For N(r)&S,„, it is known that N(r}~r ', where

d, is the spectral dimension. Substituting this value of
N(r} gives after some elementary calculations the follow-
ing expression for the time dependence of G~(r)

d ~(p )/2 —1

J(ro) o:
i

co
i

(13)

For d =3, Eq. (13) gives J(co) ~ co . A result which is
characteristic of a difFusion in a quasimonodimensional
system [J (ro ) ~ ~ ] instead of the form
J(co) ~(1——3&ra) usually encountered for a homogene-

ous tridimensional medium. In consequence, we predict
for a tridimensional system, a drastic increase of the

d et( (P=1}= d~
1.0

0.8

trapolation of Eq. (12b) to d =6 is also interesting be-
cause one has, in this case, the exact relations: d, =—', and

which give d, tr(p, )=—', . The asymptotical result
for G~(r ), given in Eqs. (12a) and (12b) thus allows an ex-
plicit calculation of its Fourier transform and then gives
information about the low-frequency behavior of the
spectral density J(co) and spin relaxation rates. In the
case of a d-dimensional system, one finds at p,

[d (3—i. )/2 —1]GJv(r}~P„(r}~r *

This expression is then reductible to the form

( )
def (P, )/2-

(12a)

Gl

CL

0.6
YD

D

0 41

1000
o 500

125

d,)r(p, )=2—d, (3—r, ) . (12b}

introducing here, an effective dimensionality d, )r(p, ) at
p„given by 0.2

0.0 0.1 0.2 0.3 0.4

tt(P c) =2-ds(3-~a )

Calculation of Eq. (12b), with d, = 1,309, ' ' r, = —",
,
' (for

d =2), and r, =2.2 (for d =3), gives d,tr(p, ) =0.76 for
d =2 and d, )r(p, ) =0.95 for d =3. In both cases the very
slow time decay, that we observe at p„ is then coherent
with a drastic diminution of the spatial dimensionality.
One notes that the relation given in Eq. (12b) remains val-
id when d =1, where it becomes d,tr(p, ) =1, and conse-
quently, G~(r) =r ' as expected when p, =1. An ex-
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FIG. 5. Logarithmic variation of the time decays of the dipo-
lar correlation functions Gz(~) for different values of the con-
centration p on both sides of p, . We have materialized the
asymptotic behavior as solid lines. For instance, one has a slope
of —1 for p =1.

FIG. 6. (a) Concentration dependences of the effective
dimensionality d,&(p)/2 for p &p, when varying the maximum
number of unit steps N, [(125, 500, 1000) here d =2]. (b) Con-
centration dependences of the effective dimensionality d,&(p)/2
for p &p, scaled in a single law in term of the dirnensionless

]/vJ
variable (p —p, )N, '". A simple approximate fit d,&(p)/2

[/vZ—1 —0.62exp[ —1.3(p —p, )N, ] is represented as a solid
line. The fit is less correct for N, =1000 because of the increase
of the noise level.
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homogeneous NMR linewidth [proportional to J(0)]
when changing the concentration from p =1 to p =p, .
Recent NMR experiments in randomly diluted systems
agree with this statement. '

C. Spin correlation above the percolation threshold

For p &p„one observes in Fig. 5 that the dipolar
correlations after N, =10 unit steps tend to zero accord-
ing to the following power law:

G~(r) ~ r (14)

where the variation of the effective dimensionality d, ff
with the concentration p —p, is displayed in Fig. 6(a) for
different values of N, . Actually, it is well known that
above p„ for a suSciently long time, r-N„ the square
root of the accessible quadratic distance

1/d(r (r) ) ' -N, exceeds the correlation length
g- ~p —p, ~

", one has a Brownian diffusion in an
homogeneous medium. ' This means that the effective
dimensionality in Eq. (14) is replaced by the Euclidean
dimensionality d. Thus, for any values of N, and p (above

p, ), there exists a crossover for d,a(p) between the re-
duced dimensionality d,tr(p, ) [Eq. (12b)] and d which is
displayed in Fig. 6(b} in terms of the dimensionless vari-
able

[(r'(r))' 'lg]' "=(p —p, )N,

1/vd
One sees that for (p —p, )N, & 2, d,a(p) is lower than
d. Interest of this dimensionless variable is to scale on
the same curve the variation with the concentration (sys-
tem dependent) and the length of diffusion (temperature
dependent}. This solves the seeming contradiction ap-
pearing in the interpretation of NMR results in mixed
paramagnetic compounds' when using an effective
dimensionality. The crossover shown in Fig. 6(b) is also
coherent with the evidence, by proton magnetic reso-
nance and relaxation, of a surprising one-dimensional be-
havior of the microscopic diffusion of ammonium ions in

P alumina (a two-dimensional ionic conductor). ' We will
see in a planned forthcoming paper that the evidence of a
very low effective dimensionality will also induce some
drastic effect on the temperature dependence of the spin-
lattice relaxation rate which could be useful to interpret
the diffusion of proton in metallic oxydes. '

IV. CONCLUSION

We have performed Monte Carlo simulations and
theoretical calculations of the time decay behavior of the
dipolar and spin-exchange autocorrelation functions

G~(r) over a range of concentrations p (0 &p & 1) of ran-
domly diluted magnetic species diffusing in a lattice. In-
terest of these simulations and calculations is to make
some reasonable previsions on the behavior of the relaxa-
tion quantities in disordered systems which have the frac-
tal geometry of percolating clusters. We have considered
successively, squared lattices on both sides of the percola-
tion threshold and at this percolation threshold p, . For
instance, for p below p„G&(r) decays exponentially, at
long time, with an effective time constant r(p) increasing
with the concentration. We show that this result is
characteristic of a bounded diffusion in a single average
cluster explored by the diffusion in the average time
(r(p)). At the percolation threshold p =p„either for a
dipolar or a spin-exchange interaction, G~(r) tends

—d,ff(p, )/2
asymptotically towards the same power law ~
where d,a(p, ) is an effective dimensionality. This proves
that the time decay of the spin correlation is mainly con-
trolled by the probability of reencounters rather than by
the static interaction. A theoretical calculation of the ki-
netics of reencounters of two spins diffusing in a distribu-
tion of clusters has led to the relation
d,tr(p, ) =2 —d, (3—r, ), where d, is the spectral density
and ~, is the critical exponent describing the distribution
of clusters. This relation gives d, fr(p, )=0,76 for d =2,
d,z(p, )=0.95 for d =3, and d,a(p, )=d, = —, for d =6.
In these cases, the very slow time decay that we observe
at p, is then coherent with a process of anomalous
diffusion in a reduced spatial dimensionality. Finally for
p above p„one finds for each value of p, a power law—draff(p)/2G(r) ccr '~ with d,~(p) &d. For times sufficiently
long that the diffusion length exceeds the correlation
length, one shows that there exists a cross over for d,z(p)
between d, tr(p, ) and d. The extension of such crossover
depends on the ratio of the length of diffusion (r (r) ) '~

(temperature dependent) over the correlation length g
(concentration dependent). This solves the seeming con-
tradiction appearing in recent interpretation of NMR re-
sults in mixed paramagnetic compounds. ' This is also
coherent with the evidence by proton magnetic resonance
and relaxation of a surprising one-dimensional behavior
of the microscopic diffusion of ammonium ions in P
alumina. '

ACKNOWLEDGMENTS

The "Laboratoire de Physique de la Matiere
Condensee" is "Unite associee 041254 du Centre Nation-
al de la Recherche Scientifique. " We thank Drs. S. Hav-
lin (Bar Ilan University, Rehovot, Israel) and B. Sapoval
(Laboratoire de Physique de la Matiere Condensee, Ecole
Polytechnique, France) for very helpful discussions.

G. D'Ariano and F. Borsa, Phys. Rev. B 26, 6215 (1982).
M. Engelsberg, J. Albino, O. de Aguiar, Osiel F. de Alcantara

Bonfim, and A. Franco, Jr., Phys. Rev. B 32, 7143 (1985).
M. A. Vannice, M. Boudart, and J. J. Fripiat, J. Catal. 17, 359

(1970); P. G. Dickens, D. J. Murphy, and T. K. Halstead, J.
Solid State Chem. 6, 370 (1973).

4J.-P. Cohen Addad, J. Chem. Phys. 60, 2440 (1974); 63, 4880
(1975).



38 DIFFUSION AND SPIN CORRELATION IN FRACTAL. . . 499

~F. Devreux and H. Lecavelier, Phys. Rev. Lett. 59, 2585 (1987).
M. H. Cohen and K. S. Mendelson, J. Appl. Phys. 53, 1127

(1982); E. J. Schmidt, K. K. Velasco, and A. M. Nur, ibid. 59,
2788 (1986); K. S. Mendelson, Phys. Rev. B 34, 6503 (1986);
M. Lipsicas, J. R. Banavar, and J. W'illemsen, Appl. Phys.
Lett. 48, 1544 (1986).

~J. Tabony and J.-P. Korb, Mol ~ Phys. 56, 1281 (1985); J.-P.
Korb, D. C. Torney, and H. M. McConnell, J. Chem. Phys.
78, 5782 (1983).

~M. A. Klenin and M. Blume, Phys. Rev. B 14, 235 (1976).
~S. Alexander and R. Orbach, J. Phys. Lett. 43, L625 (1982).
' D. Stauft'er, Introducing to Percolation Theory (Taylor and

Francis, London, 1985).

P. Evesque, J. Phys. 44, 1217 (1983).
' R. Rammal and G. Toulouse, J. Phys. Lett. 44, L13 (1983).

H. Arribart and B. Sapoval, Solid State Ionics 9410, 323
(1983).

' I. Majid, D. Ben Avraham, S. Havlin, and H. E. Stanley, Phys.
Rev. B 30, 1626 (1984).

'~D. Petit and J.-P. Korb, Phys. Rev. B 37, 5761 (1988).
J.-P. Korb, M. Winterhalter, and H. M. McConnell, J, Chem.
Phys. 80, 1059 (1984);J.-P. Korb, ibid. 82, 1061 (1985).

'~S. Havlin and D. Ben Avraham, Adv. Phys. 36, 695 (1987).
' P. Argyrakis and K. Kopelman, Phys. Rev. B 31, 6008 (1985).
'~D. Tinct, P. Levitz, and J.-P. Korb (unpublished).


