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Chiral phase transitions are analyzed by renormalization-group techniques on the basis of a
standard Ginzburg-Landau-Wilson Hamiltonian for two real n-component fields a and b with quar-
tic couplings u (a'+b )' and v [(a.b)' —a~b ]. This model is a natural extension of the usual y O(n}
model: For U )0, it represents triangular antiferromagnets, helical magnets, and the 3 phase of
superfluid He. An e=4 d—expansion reveals a new v &0, chiral fixed point which is stable for
n &21.8 —23.4e+O(e ). An antisymmetric chirality tensor, ~=ash„—a„bz, is a new relevant

operator at this fixed point. The associated exponents y and v are smaller than the usual O(n) ex-

ponents. A 1/n expansion yields a continuous chiral transition for 2 & d & 4, the exponents y and v

again being smaller than in the O(n) case. The chiral crossover exponent, P„, exceeds y in both e
and 1/n expansions. The spectrum of other leading scaling operators and their exponents is ob-

tained. On the basis of comparisons with recent Monte Carlo and experimental results, it is argued
that the chiral fixed point probably remains stable down to the physically relevant cases n =2 and 3

atd =3.

I. INTRODUCTION

Universal features at a critical point are determined by
only a few basic parameters characterizing the system un-
der study. In three-dimensional ferromagnets with
short-ranged interactions, for example, the number of
symmetrically related spin components, n, determines the
critical properties; the values n = 1, 2, 3 correspond to Is-
ing (easy-magnetization-axis anisotropy), XY (easy-
magnetization-plane anisotropy), and Heisenberg (isotro-
pic) universality classes, respectively. Renormalization-
group theory' has revealed that the critical behavior of
these n-vector systems is governed by an O(n), or isotro-
pic Heisenberg fixed point.

Systematic renormalization-group calculations, includ-
ing the s expansion ' and the 1 ln expansion, ' usually
start with an effective Hamiltonian or so-called
Ginzburg-Landau-Wilson (GLW) Hamiltonian, which is
written in terms of spin variables of unconstrained length
rather than of fixed length. For n-vector ferromagnets,
this is the standard 0( n ) or p model defined by

where y=(y„p2, . . . , y„) is a real n-component vector
field, while ro is a temperature-like variable and u )0.

In real magnetic materials, various perturbations, in-

cluding long-range dipolar interactions, or anisotropic
crystalline fields, may change the critical behavior from
that of the pure O(n) universality class. Experimentally,
however, such effects are usually minor, not only because
these perturbations are small in magnitude, causing only
a weak crossover from O(n) behavior, but also because
the new exponents happen to be rather close numerically
to the standard O(n } values. In certain materials, on the
other hand, entirely new types of critical behavior may
arise. Indeed, on the basis of a symmetry argument and

+u(a +b ) +v[(a b) —a b ]t, (1.2)

where a=(a, , a2, . . . , a„) and b=(b, , b2, . . . , b„) are
real n-component vector fields, n being the underlying
spin dimensionality. The condition n )2 is necessary to
allow for the appropriate noncollinear orderings. In
physical examples, one has n =2 (XY spins) or n =3
(Heisenberg spins). In helical or triangular antiferromag-
nets, the a and b fields represent the cosine and sine
modes associated with the helical spin ordering at wave
vectors, +Q, via

S(r)=a(r) cos(Q.r)+b(r) sin(Q. r} . (1.3)

Note that, in this case, the critical fluctuations arise at
ttvo equivalent but distinct wave vectors Q and —Q. The
existence of two such "instability points" is the origin of
the two independent critical fields, a and b. This should
be contrasted with magnetic systems on bipartite lattices,

Monte Carlo simulations it has been claimed that cer-
tain magnetic systems exhibiting noncollinear spin order
ing should belong to such new universality classes. Ex-
amples are helical magnets such as Ho, Dy, Tb, P-MnOz,
and layered triangular XY or Heisenberg antiferromag-
nets such as VC12, VBr2, and CsMnBr3. In helical mag-
nets, the spins align ferromagnetically in a plane and
form a spiral along the orthogonal axis as illustrated in
Fig. 1(a). In triangular antiferromagnets, the lattice con-
sists of plane antiferromagnetic triangular lattices
stacked in register along the orthogonal axis; the spin or-
dering is a "120' structure" in which spins on three sub-
lattices align in a plane forming 120' angles with neigh-
boring spins on the other sublattices [see Fig. 1(b)]. It
transpires that such systems can be described by the ex-
tended GLW Hamiltonian, '

H= —,
' IVa) +(Vb) +re(a +b )
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FIG. 1. Illustration of the two energetically degenerate spin
structures of opposite chirality, ~, in the ordered states of (a)
helical magnets, and of (b) layered triangular antiferromagnets.

FIG. 2. Representations of "instability points, " solid and
open circles, in wave-vector space for (a) ferromagnets, (b) anti-
ferromagnets on bipartite lattices, (c) layered triangular antifer-
romagnets, and (d) helical magnets. The dashed lines outline
the first Brillouin zone. Double lines represent the reciprocal-
lattice vectors K: as usual, points connected by a K should be
fully identified.

3 3 (( )

(1.4)

where the summation runs over the three directed bonds
surrounding each plaquette, p. Physically, the chirality
represents the sense of the 120' structure or the helix (see
Fig. 1). In terms of the GLW Hamiltonian (1.2), this
chirality variable, K, can be generalized to the n X n an-
tisymmetric tensor,

a&„azb„a„bz (——1 & A, ,p—& n ) . (1.5)

For the XY case this reduces simPly to K=azby Qy&z,
which essentially represents (1.4). In the
renormalization-group analysis, we find that chirality ap-
pears as a new relevant operator at the chiral fixed points.

which have only one instability point (see Fig. 2). The
dipole-locked A phase of helium 3 can be described by
essentially the same GI.W Hamiltonian. ' '

The purpose of this paper is to investigate the critical
properties of the GLW Harniltonian (1.2) within the
framework of renormalization-group s and I/n expan-
sions, and, in particular, to identify and characterize in
detail a new chiral fixed point which describes intrinsical-
ly noncollinear spin criticality. Chirality is, in fact, in-
herent in the noncollinear spin orderings. For concrete-
ness, consider a layered triangular XY (n =2) antifer-
romagnet. A local chirality variable Kp may be defined
on each plaquette, or elementary triangle on the triangu-
lar lattice, by

The associated crossover exponent, P„, is calculated by
both s and 1/n expansions. Unexpectedly, P„exceeds the
susceptibility exponent y; however, this turns out to be
consistent with a recent Monte Carlo result. The ex-
ponents y and v are found to be smaller than the corre-
sponding O(n) exponents. More generally, in the space
of bilinear spin operators, we find four different crossover
exponents, including the chiral crossover exponents; by
contrast the usual O(n) model, (1.1), has only one bilinear
crossover exponent.

The remainder of the paper is arranged as follows. In
Sec. II we derive the GLW Hamiltonian (1.2) from vari-
ous microscopic spin Hamiltonians and analyze its sym-
metry properties carefully. Section III is devoted to the c.

expansion: some of the results have been reported previ-
ously, ' ' but various new results are also presented. A
variety of fixed points are identified and their stability is
studied to O(c. ). In particular, we highlight the chiral
fixed point relevant to helical spin ordering. The associ-
ated exponents y and ri are calculated to O(s) and O(E ),
respectively. The I /n expansion is considered in Sec. IV.
After summarizing the behavior in the limit n ~~, the
exponents y, q, and a are calculated to O(1/n) The na-.
ture of chiral ordering is studied in Sec. V. The chiral
crossover exponent is calculated both by c and 1/n ex-
pansions. The crossover exponents for all operators
quadratic in the spin variables are calculated in Sec. VI.
The corresponding scaling fields are identified and their
physical meaning is clarified. Finally, in Sec. VII, we
summarize the results and compare them with available
Monte Carlo results and experimental data.
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II. EFFECTIVE HAMILTONIAN

In this section we discuss several microscopic models
which may be described by the GLW Hamiltonian (1.2).
As a first example consider an antiferromagnetic Heisen-
berg model on the stacked-tri@ngular lattice and general-
ize the model to n-component spins on a d-dimensional
lattice in which (d =2) triangular lattice layers are
stacked in register along the remaining d —2 directions in
hypercubic fashion. The simplest Hamiltonian is

associated GLW Hamiltonian is discussed by Moore and
co-workers, ' ' we shall not present details here. Note,
however, that the complex vector field P in Refs. 12 and
13 corresponds to (a+ib)/&2 in (1.2), while the two
quartic couplings g and A. are given by g=2(4u —v) and
A, =2v.

As mentioned, one can specify (1.2) purely by symme-
try considerations: the Hamiltonian is invariant under
the two independent operations (i) on O(n) rotation in
spin space, namely,

= —J g S;.SJ —J' g S; SJ, J&0, (2.1) a'=Ra, b'=Rb, R EO(n), (2.3)

where S; is an (n &2}-component vector of fixed length

~
S;

~

=1. The first sum represents antiferromagnetic in-
teractions in the triangular layers which gives rise to frus-
tration and causes the noncollinear spin ordering; the
second sum encompasses the interlayer interaction. The
sign of the interlayer interaction, J, is unimportant be-
cause there is no frustration along the orthogonal direc-
tions. (In fact, J' is antiferromagnetic, in most real ma-
terials. ) By using the Hubbard-Stratonovich transforma-
tion, the fixed-length spins can be replaced by soft spins
of unconstrained length. Then, by expanding around the
instability points, making a long-wavelength approxima-
tion, and dropping terms beyond quartic order, one is led
to an effective Hamiltonian (1.2). Some of the details are
sketched in Appendix A. As noted previously, the ex-
istence of two equivalent, but distinct, instability points,
characterized by the wave vectors +Q, leads to the two
independent fields a and b, which represent the physical
cos(Q r} and sin(Q. r) modes, respectively.

The helical Heisenberg inodel constitutes a second ex-
ample. In real helical magnets, the origin of the ordering
may be the oscillatory nature of the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction (e.g., Ho, Dy, Tb) or
a competition between first- and second-neighbor antifer-
romagnetic interactions in a body-centered-tetragonal lat-
tice (e.g. , P-Mn02). However, the standard model, fre-
quently used in theoretical analyses, is defined, for n & 2,
by

and (ii) an O(2) change of phase which mixes the a and b
fields according to

a'= cos8a —sin8b,

b'=+(sin8a+ cos8b) .
(2.4)

This second invariance derives from the arbitrariness in
choosing the phase 0 and the handedness of the two basic
physical modes, cos(Q r+ 8) and + sin(Q r+ 8). Con-
versely, if one requires the O(n) rotational invariance as
well as the O(2) phase invariance, the form of the efFective
Harpiltoniap is uniquely determined up to fourth order.
Note that the individual terms a2b and (a b) are not in-
variant under (2.4) separately, although the combination

(a b) —a b = —g"(aib„a„bi )—
A,~p

1s.
The sign of the quartic coupling v may be regarded as

invariant under renormalization to quartic order in a and
b, because the v =0 manifold corresponds to the 2n-
component isotropic Heisenberg model which constitutes
a separatrix of the standard renormalization-group fiows.
The relative orientation of the a and b fields is dictated by
the v term, because all other terms depend only on mag-
nitudes of a and b. For v & 0 the fields a and b tend to be
orthogonal; the resulting spin configuration is

s(r}=acos(Q r)+bsin(Q r)

(Ji )0, Jz (0), (22}

where the first term represents ferromagnetic nearest-
neighbor interactions, while the second represents anti-
fez'romagnetic next-nearest-neighbor interactions which
are assumed to act along only one lattice axis, say
(1, 0, 0, . . . , 0). When the ratio J2/J, exceeds a critical
value, the system will exhibit helical spin ordering along
the (1, 0, 0, . . . , 0} direction. This helical Heisenberg
model also yields the effective Hamiltonian (1.2) (see Ap-
pendix A). The only difference from the stacked-
triangular antiferromagnets is that the associated Q vec-
tor is now generally incommensurate with the lattice,
whereas in the former case, the 120' structure is com-
mensurate. This difference, however, does not affect the
effective Hamiltonian up to quartic order.

A final, nonmagnetic example is the dipole-locked A

phase of helium 3, which corresponds to n =3. Since the

u&0and v&4u . (2.5)

It is instructive at this stage to summarize the results
of the mean-field approximation for (1.2). When u is posi
tive, a continuous transition takes place at ro ——0 between
the paramagnetic state hand a helical state characterized
by

i
a i'= fbi'= —ro/(4u —u) (u)0) . (2.6)

with alb, which represents helical spin ordering. On the
other hand, for v &0 the fields a and b tend to align
parallel or antiparallel; this represents a sinusoidal, or the
linearly-polarized spin-density wave. All the physical ex-
amples discussed earlier are associated with noncollinear
ordering and, hence, v &0. For the magnetic models
mentioned, one can also check the positivity of v directly
from the derivation of (1.2) in Appendix A. Although
our main interest here concerns helical systems, we shall
occasionally refer to the sinusoidal case with v &0. Last-
ly, note that the boundedness of the free energy requires
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When v vanishes or is negative, there is a continuous tran-
sition at ra=0 between paramagnetic and sinusoidal
states characterized by

)a( + [b) = —r0/2u (u&0). (2.7)

Note that the relative magnitude of a and b is not now
determined; this corresponds physically to the sliding de-

gree of freedom of the spin-density wave. In the mean-
field approximation, phase transitions between the
paramagnetic and the ordered states are always continu-
ous with classical exponents for any v. Of course Auctua-
tions change these conclusions as we will see.

Finally, note that, in the XY case (n =2), one can
transform the GLW Hamiltonian (1.2) into the form, '

When n is sufficiently large to meet this condition, two
new fixed points appear for v &0. They may be termed
chiral, C+, and antichiral, C, the former being stable in

accord with the renormalization-group flows sketched in
Fig. 3(a). With the notation

B„'=n +4n —24n+144

and

R„=n —24n +48,
(3.4}

distinct regimes of relating n and d:

I. n & ni(d) =12+4&'6—[(36+14'/6)/3]e+O(e )

=21.8 —23.4e+O(c ) .

%=—,'[(VA) +(VB) +r0( A +B }

+(u ——,'v)( A +B )+2(u+ —,'u) A B ], (2.8)

the fixed point coordinates are given to O(s) by

Ku + ,'B„[——3n—2—2n +24+(n —6)R„'~ ]e+O(e ), (3.5)

via the change of variables, Ku+ B„——[(n+4)(n —3)+3R„'~ ]e+O(s ) . (3.6)

i/2A„= a+b, i/2B„=a +b„,
v'2A =a b„, v—'2B = —a„+b

(2.9)

III. THE 8 EXPANSION

It follows from this that (1.2) decouples into two indepen-
dent XY models when n =2 and v = —4u. However, this
special manifold belongs to the sinusoidal region; further-
more, the transformation has no direct counterpart for
n +2. (a) n&r}, (d)

&IV ~
(b) n, (d)&n&nz(d)

JiV

The thermal renormalization-group eigenvalue follows
for these, and all other fixed points, from the general ex-
pression

The upper critical dimension for the Hamiltonian (1.2)
is d =4 and a standard renormalization-group a=4 —d
expansion is readily computed. Here the results are sum-
marized; some have appeared previously' ' but a few
new ones are also reported.

The recursion relations for the quartic couplings were
obtained to O(s ) by Jones, Love, and Moore for com-
pleteness we quote them here in our notation:

p U

OH)

dl
=su K[4(n—+4)u —2(n —1)uv+ '(n —1)u —]2

——,'K [5(n —1)v —39(n —1)uv

+88(n —1)u u —48(3n+7)u ], (3.1)

(c)nz(d)&n&n~(d) (d) n&n~(d)

&LV

671
=ev —K[(n —6)u +24uu]

——,'K2[(9n —29)v —8(n —31)uv

—16(5n+41)u v], (3.2) OHj' U

n &2—E+O(c, ) . (3.3)

To describe the remaining fixed points we consider four

where K=2—d+'/[ird~ I (d/2)). At lowest order in e,
there are up to four fixed points depending on the value
of n. Two exist for all n: one is the trivial Gaussian fixed
point G(u'=v'=0); the other corresponds to the
standard isotropic O(2n) Heisenberg fixed point, I, with
v* =0, which is stable provided

pp
FIG. 3. Renormalization group flows in the (u, v) plane for

small a=4 —d. Parts (a)—(d) correspond to the regimes I—IV
specified in the text where the borderlines n&(d), n»(d), and
n»&(d) are given to 0(c,). The hatched regions represent basins
of attraction of the most stable fixed point.



4920 HIKARU KAWAMURA 38

A, , =2—4(n+1)Eu*+(n —1)EU "+O(e ) . (3.7)

A, z+ ———e+O(e ),
k3+ ——B„[3R„+(n +4)(n —3)R„' ]e+O(e ) . (3.8)

Two further eigenvalues and their eigenvectors follow by
linearizing (3.1) and (3.2) around the fixed points in the
usual way. For completeness we quote:

Thus these exponents are numerically smaller than those
for normal O(n) Heisenberg fixed points for which the
coefficient of e behaves as —,'(1 6—n ') for n » l.

The critical point decay exponent requires a separate
calculation which is outlined in Appendix B. The result
to leading order is

rj= 8B„[C„+(n+4)(n —3)R„]E+O(E3), (3 10)

y =2v= 1+ ,'B„[—n(n +n +48 }

+(n+4)(n —3)R„' ]e+O(e ),
=1+—,'(1 9n—')e (n »1}. (3.9)

I

When n approaches ni(d) the chiral and antichiral fixed

points coalesce at a point in the upper half (u, u} plane
and become complex valued.

As usual the exponents y and v for the susceptibility
and correlation length follow, to O(e ), from

y =2v=2/ki. At the chiral fixed point, C+, one obtains
from (3.5)—(3.7),

which varies as 3e /(4n) as n —+ oo since

C„=5n —3n —16n —656n +3072n —1152 . (3.11)

Regarding v &0, the sinusoidal case, no stable fixed

points are found [see Fig. 3(a)]. This suggests that the
transition from paramagnetic to sinusoidal ordering be-
comes of first order. That conclusion is, indeed, con-
sistent with the exact results recently found' for the
n ~ oo (or spherical model) limit of the Hamiltonian (1.2)
where a first-order transition appears for 3 & d & 4:

ni(d) &n &n»(d)=12 —4V6 —[(36—14''6)/3]e+O(e )-2.20—0.57e+O(e ) .

The renormalization group flows are now as depicted
in Fig. 3(b). Only the Gaussian and Heisenberg fixed
points are present and both are unstable (for v&0). Con-
sequently the transition to both helical and sinusoidal
phases is expected to be of first order:

III. nii(d) »" "»i(d)=2 —e+O(e ) .

In this regime a new pair of fixed points appear which
may be called sinusoidal, S+, and antisinusoidal, S
Analytically, S+, which is stable, corresponds to the an-
tiehiral fixed point, C, and the same formulas
(3.5)—(3.8) apply; likewise, S, which is unstable, corre-
sponds to C+. The corresponding flows resemble those
sketched in Fig. 3(c). The exponent y can be computed
as before (and differs analytically only by the change of
sign of the factors containing R„'~ ); in this case it turns
out to be numerically larger than the corresponding O(n)
exponents. In the helical region, v &0, the transition
presumably remains of first order since no stable fixed
points appear.

As n ~2 —e+0(e ) the sinusoidal fixed point, S+, ap-
proaches the U =0 axis and, at n =n», (d) it meets the
Heisenberg fixed point and exchanges stability with it:

IV. n &n», (d) .

As illustrated in Fig. 3(d) the fixed point S+ now lies
above the v =0 axis and is unstable; the O(2n) Heisen-
berg fixed point H is stable and governs the critical be-
havior of regions of both helical and sinusoidal ordered
behavior.

For the helical region, v & 0, which is of primary con-
cern here, the facts concerning the stable fixed points are
summarized in Fig. 4. A crucial question is what hap-
pens at the physically significant points, c.= 1 with n =2

d =3
1

0=2 0=3

I.O
I

I

I

I

l
A s 2-e

~ d $ I

chiral

first orde

/I 2n-Heisenb

0 d
0 IO 20 fl

FIG. 4. Stability regions in the (n, d) plane, with d =4—c, of
fixed points accessible in the helical region U & 0.

I

and 3. Unfortunately, these are rather far from both the
c,~0 and the n~ao limits. Clearly, truly definitive
answers cannot be obtained from the present, leading or-
der c. expansion results. Nevertheless, if one linearly ex-
trapolates the small-c. expressions for the stability
boundaries to c, =1, the physical points are found to be
included in the stability domain of the chiral fixed point
(see Fig. 4). This observation, although certainly not con-
clusive in itself, seems consistent with recent Monte Car-
lo results for the d =3 stacked-triangular-lattice antifer-
romagnets, where a continuous transition has been found
both in the XY (n =2) and in the Heisenberg (n =3)
cases. ' Thus, it is plausible that the stable chiral fixed
point exceeds down to n =2 and 3 at c= l. As far as the
chiral fixed point remains stable, the critical exponents y
and v are probably smaller than the corresponding O(n)
exponents. A more detailed comparison between the
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renormalization-group results and the Monte Carlo re-
sults is presented below in Sec. VII.

Finally, consider the behavior at and above d =4 di-
mensions. For d &4, the transition is governed by the
Gaussian fixed point, which is stable, as usual, for all v.
At d =4 the stability becomes marginal for v & 0. On the
other hand, for v & 0 and n & 6 the Gaussian fixed point
becomes inarginally unstable (although remaining mar-
ginally stable for n &6). Thus a sinusoidally ordering
system in d =4 dimensions is expected to show a first-
order transition when n & 6.

IV. EXPANSION ABOUT THE n ~ 00 LIMIT

d —1 Sa= 1+12 +O(1/n ),
d —2 d —4 n

(4.1)

In the many-component limit n ~ 00, the Hamiltonian
(1.2) can be solved exactly for arbitrary dimensionality d.
A continuous transition with the standard spherical-
model exponents, a = (d —4) /(d —2), P= —,', and
y=2v=2/(d —2) arises for 2&d &4 when v &0. ' An
expansion of the exponents from the spherical-model lim-
it in powers of 1/n should thus be feasible. On the other
hand, for v &0 the n ~ ~ behavior is more complex A
single first-order transition appears when 3 & d & 4,
whereas for 2 ~ d g 3, two separate continuous transitions
occur; the intermediate phase has no long-range spin or-
der, i.e., (a) = (b) =0, but possesses long-range phase
coherence, so that (a b)&0. In view of these complica-
tions, this section will focus only on the helical case,
v &0. [Of course, for v =0, the Hamiltonian (1.2) reduces
directly to the standard O(2n) model. ]

The calculation proceeds in standard fashion, making
the assumption that u and v are both of order 1/n [This.
is consistent with the fixed-point values given in (3.5) and
(3.6).] The results found for 2 & d & 4 are

r

%,=—,
' g [uaia„+ubib„+vaja„bib„

A, ,p

+w(aib„+a„bi )], (4.5)

where A, ,p = 1, 2, . . . , n are spin component indices,
while

LU =El ——V
1

2

The spin-spin correlation functions

G„(k)= ( a i (k)ai ( —k) ) =G&&(k)

=(b„(k»„(—k)),

(4.6)

(4.7)

r =X '=G '(0),
the correlation function can be written

G,, '(k, r)=r +k +X„(k,r) —X«(k=0, r),

(4.g)

(4.9)

where X« ——X&&
——X is the self-energy, while the propaga-

tor is

g«(k)=gii, (k}=(r+k )
'—:g(k} . (4.10)

Note that by (4.5) the two external legs attached to any
self-energy diagram must both correspond to a or both to
b.

A. Evaluation of g

In order to calculate g, we put r =0 (T =T, ) and
study the small-k behavior of G(k, r ) =G„=G&&, which
should be described by

are independent of the indices A, and p and are equal by
symmetry. Likewise, (a&(k)b ( —k)) vanishes identical-
ly for all A. and p. In terms of the true inverse susceptibil-
ity

y= 1 —9 +O(1/n ),2 2

d —2 n

i) =6[(4/d) —1]Sd /n +0(1/n ~),

where Sd is given by

(4.2}

(4.3)

6 '(k) ock "=k (1—r)ink+ ) . (4.11)

The leading self-energy diagrams are shown in Fig. 5
where the wavy lines represent the dressed interactions,
with propagators

[~ /'2]
—u(k, r)= g g „Cz w u" ~

( —I)"(2nll)"
n=1m=0

Sd ——sin[ —,'n(d —2)]I (d —I )/[2@[1 ( —,'d)]~j . (4.4) (4.12)

All other exponents follow through the standard scaling
and hyperscaling relations such as (2 —r))v=y,
a+2p+y =2, dv=2 —a, etc. The corresponding results
for the O(n) model are, of course, well known. ' On
comparison, one sees that y and v for the present model
are smaller than the corresponding exponents for O(n}
magnets, in agreement with the c. expansion results. One
can also check that the e~0 (d ~4) limit in (4.1)—(4.4)
reproduces the large n behavior of the c.-expansion results
(3.9) and (3.10), etc.

In the balance of this section, the calculations are
sketched with emphasis on the differences from the
standard model. The quartic part of the Hamiltonian
(1.2) may be written

6( k, r ) =—g ( —v )"(n II }"
n=1

(4.13)

in which the elementary bubble propagator is defined, as
usual, ' by

II(k, r) —= (2m ) f d p g(p}g(p+k) . (4.14}

u+2nII(u —w ) 1 (415}
1+4nIIu+(2nII) (u~ —w~) 2nII(p)

v 1v(p)=
1 +nvII(p) nII(p)

(4.16}

At r =0 this behaves as H0k as k —+0. The series in
(4.12) and (4.13) are readily summed and yield
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I
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with

X fd"q, , [X,(q, r ) —X,(O, r)],
( +q2)2

(4.19)

X,(q, r)- — d p
3 1 d 1 1

n (2~)d II(p, r ) r +(p+ q)2
(4.20)

as q~o. Once again one finds that the only differences
from the standard O(n) calculation of y are simple fac-
tors. Utilizing the earlier work yields (4.2).

r' ' lnr term in AX. Diagram C has no such term,
while diagram B gives

XE(k=O, r)= —2n(u+w) 1

(2n )

U

C. Evaluation of a

FIG. 5. Self-energy diagrams to O(1/n). Single and double
lines represent a and b propagators, respectively.

as p~O (with r =0). Furthermore, diagrams A and B in
Fig. 5 do not contribute to G '(k, O); the term of order
1/n comes only from diagram C which yields

X(k, O) —X(0,0)=
d f d p, [4u(p)+v(p)] .

(2~)d (k+p)'
(4.17)

To obtain the specific heat exponent a, one may em-

ploy scaling relation a =(2—2)E )v and compute the ex-
ponent gE which describes the critical point decay of the
energy-energy correlation function given by

CE(k)= g ([a2(k)+b„(k)][a„(—k)+b2( —k)])

2( Caa+ Cab) (4.21)

where the decomposition on the second line has the obvi-
ous meaning. The leading, O(n ), diagrams contributing
to C" and C' are shown in Fig. 6 and lead to

Now 7) is O(l/n), and so can be obtained from the
coefficient of the k ink term in this integral; that arises
from the small-p region. Using (4.15) and (4.16) then
gives the relevant contribution as

Co' 2n II——( 1 —u 2n II )— u u+m 1

u2 w2 (u2+w2)2 2lln

(4.22)

X(k,O) —X(0,0) ——,fd'p
11(p) (p+k)' p'

(4.18)

However, except for a factor —,
' this has precisely the same

form as the corresponding expression for the standard
O(n) system. (Indeed, one reproduces the O(n) expres-
sion by putting v =0 and replacing 2n by n )Thus, using.
the known O(n) calculation one directly obtains the final
result (4.3).

Co ———(2nII) w —— W 2uw 1

u —w (u —w ) 21ln
+

(4.23)

B. Evaluation of y

To calculate y, one may similarly study the r depen-
dence of G(k=O, r):X'(r) via th—e relation
bX:—X(O, r) —X(0,0)-r'~r as r~0 The l. eading,
O(no), contribution to AX comes from diagram A in Fig.
5, which yields hX- p'" . This simply represents the
spherical-model result y =2/(d —2). If one writes
1/y =(d —2)/2 —b, l with b, l -O(1/n), one has

bX-r'" ' (1—bl lnr+ . ) .

Thus, the correction, EI, can be obtained from the
FIG. 6. Leading diagrams appearing in the energy-energy

correlation function; A contributes to C", and B to C' .
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where the new dressed interaction is given by

[(m —1)/2]
2l+1 m —(2I+ 1)

m =1 1=0

X ( 1 )m(2 11)m
—1

= —w/[(I+2nliu ) —(2nliw) ] . (4.24)

On putting r =0 and collecting terms, the 0(n 0) result is

CE(k) =— k4 —d

(u +w)2 2n Iip
(4.25)

Caa [(g aa)2+( g ab)2]IIaa+ 2/ aalu abIIab

Ca" =2 A

aalu

11 + [( A aa) + ( A a
) ]II

(4.26)

(4.27)

The correction to gE follows from the coefficient of the
k ink term. The relevant parts of the bubble diagrams
are found to be

gaa gab

8IIp'd k ink

The "arm" diagrams give

+ 5d —16, (d —2) . (4.28)
12
d

A"=1—u2n H-
u —w 2n II

(4.29)

V

lV

U V

V

FIG. 7. Bubble diagrams for order 1/n: A with two a termi-
nals, H&', B with one a and one b terminal, II& .

as k~0. This merely confirms the spherical-model value

gE ——6—d.
The diagrams for 0(1/n) may be constructed from the

0(1/n) bubble diagrams 111', II;, llb1', Il",b shown in Fig.
7, which have (aa), (12b), (ba), (bb) terminals, respective-
ly, by hooking the 0(n ) "arm" diagrams A", A', A ~,
A shown in Fig. 8 to both ends of each II, . By symme-
try one has II &' ——P g' = II~&, an
A' = A . In terms of these auxiliary kernels, the
0(1/n) part of C" and C' can be written as

FIG. 8. "Arm" diagrams of order n: A, A" and B, A ' .

' = —w2n
m 1

u& ~2 2nD
(4.30)

while the dressed interaction w(p) behaves as

w(p)- p as p~0 .
2(2u —v) 1 21d 41

v 4u —v 4n2II20
(4.31)

Evidently, the contribution of 8 is nonuniversal, depend-
ing on u and v, even when p~0, in contrast to u and v;
however, the p dependence is different from that of u and
0 and the associated diagram does not contribute to the
k ink term. By combining (4.21) and (4.26) —(4.30),
one thus obtains the full 0(1/n) correction for riE and
confirms the results (4.1).

V. CHIRALITY

As explained in the Introduction, in a helical or tri-
angular XY antiferromagnet with n =2, the chirality, ~,
is an Ising-like scalar variable which, physically,
represents the sense of the helix or of the 120' structure.
In terms of the a and b fields entering the basic GLW
Hamiltonian (1.2), the chirality is just the vector product
aXb, or « =a„b» a»b„Und—er O(2.) spin and phase ro-
tations, x is invariant for proper rotations but changes
the sign for improper rotations. For n-component spins
with n & 3, there is no longer an Ising-like chirality vari-
able. However, as mentioned in the Introduction, chirali-
ty can be extended to an n Xn second-rank antisym-
metric tensor variable, lrl„„a&b„a„bz——(1&A,—,p&n),
which has n (n —1)/2 independent components. Appen-
dix C expresses ~z„ in terms of the actual spin variables
on the lattice. Under O(n) spin rotations, these trans-
form among themselves, whereas under O(2) phase trans-
formation, each component is invariant under proper ro-
tations but changes sign under improper rotations.

One may introduce a conjugate chiral geld, h, which
couples to a component of the chirality via a term
—h„lt..&„ in the Hamiltonian. Application of h, reduces
the original symmetry of the Hamiltonian. Physically
speaking, the helical spin structure is then confined to the
(A, , IM) plane and one out of two senses of the helix is
selected; the degeneracy of the ordered-state manifold is
thereby reduced to that of the standard XY model. In
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other words, the symmetry of the Hamiltonian is reduced
to SO(2) && 0(n —2 ) spin and SO(2) phase rotations.
Thus, under a finite chiral field, the system should cross-
over from the fully-symmetric chiral behavior to XY cri-
ticality.

Naturally, the chiral-field crossover is controlled by a
corresponding exponent, P„, associated with the original
chiral fixed point. The calculation of this chiral cross-
over exponent, both in the c. and 1/n expansions, is
sketched in this section. Chirality appears as a new type
of relevant operator. At the chiral fixed point, the cross-
over exponent is found to be

$„=1+,'B„[n—+4n +56n —96

+( o lb—.)«i+&a)+ro X «~+139
iII=3

(5.6)

Around a fixed point, at which h„vanishes, the appropri-
ate renormalization-group eigenexponent is then found to
be

The calculations for P„proceed as follows. The chirali-

ty term, —h, (a&b2 —a2b& ), is added to the Hamiltonian
(1.2). To derive the modified recursion relations to O(c),
it is convenient to transform to new field variables which
diagonalize the quadratic part which becomes

T

& ———,
' (()'~}'+(W)'+(ro+-,'h. )(~i+~P

+(n —24}R„' ]s+O(e ) y„=2—(4u" —3U')K+O(s~) . (5.7)

=1+—,'(1—8n ')c (n »1), (5.1)

while the corresponding result in the 1/n expansion is

1 —8 +O(1/n ) .2

d —2 n
(5.2)

These two expressions coincide for large n as c.~0.
Comparison with the corresponding expressions (3.9) for
y, shows that the chiral crossover exponent exceeds y.
This is surprising since in previous cases such crossover
exponents have satisfied P & y. Note, however, that the
gap exponent 5=y+P, which is really the crossover ex-
ponent for the magnetic field, h, does exceed P„. As usu-

al, one may write a scaling formula for the singular part
of the free energy,

j,=t' F(h/r~, h„/r ") . (5.3)

If the total chirality, K= —(Bf/Bh„)z o, and the chiral
K

susceptibility,

X„=Jdr(K&„(0)K&„(r))= —(8 f/Bh„)~

C+ = (azb„a~b„), C = (ahab„bqa„), (5.9)

where the spin-component indices, A, and p (A,Qp), are
held fixed. The leading diagram contributing to C+ is

From this, the chirality is seen to be relevant; the cross-
over exponent is given by P„=y„v. Explicit substitution
of the previous results for u *, U', and v yield the values

quoted above.
In order to calculate P„ to O(l/n), the chirality-

chirality correlation function

C„(k)=(,„(k),„(—k) ) (A/p), (5.8)

is utilized. At T = T, (r =0},this should vary as k~" for
small k where P„=(2—a —P,v)/2. On substituting for

Kz„we get C„=2(C+—C ) where

are characterized by critical exponents P„and y„, scaling
gives

P„=2—a —P„, y„=2/„—(2—a}, (5.5)

and the chirality exponents satisfy the Essam-Fisher rela-
tion a+2P„+y =2.

At the sinusoidal fixed point, which is stable for
n«(d) & n & n«, (d) the analog of P„ is obtained from (5.1)
merely by changing the sign of the radical. Now the ex-
ponent proves to be smaller than the corresponding sus-
ceptibility exponent y. Note, however, that the physical
meaning of chirality operator in sinusoidal systems is
quite different than in helical systems; indeed, in the
sinusoidal case, ~&„vanishes identically even in the or-
dered state because the spin ordering is collinear, i.e.,
a~~b.

At the 2n-component Heisenberg fixed point, which is
stable for n &n«t(d)=2 —c., P, reduces to the ordinary
anisotropy-crossover exponent,

/=1+ e(/n2+4)+O(e ),
which is smaller than the corresponding y.

-L

FIG. 9. Diagrams contributing to the correlation function

C+, A at O(1), B at O(1/n), and C one contributing to C at

O(1/n).
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shown in Fig. 9(a) which gives Co =lick as it~0.
There is no O(1) diagram contributing to C, and so one
has P„=d —4 in leading order. The 0(1/n) corrections
follow from the coefficient of the k ink terms in the
diagrams, contributing to C+ and C, shown in Fig. 9(b)
and Fig. 9(c), respectively. Actually, the diagram con-
taining tv, does not contribute to P because it has no
k" ink singularity. Altogether, one finds

P„=d —4+ 16(3d ' —I )Sg /n +O(n '),
from which the result (5.2) follows.

(5.10)

VI. OTHER CROSSOVER EXPONENTS

((i; = I+(2nu "+C;v')K+0(e ), (6.1)

with

In the O(n) Heisenberg model, there is only one cross-
over exponent at quadratic order in the spins, namely, the
standard anisotropy-crossover exponent. ' However, in
the present chiral model, as a reflection of the richer un-
derlying symmetry, one should anticipate more than one
crossover exponent even at the quadratic level. To study
the point, we consider now the most general perturbation
which is quadratic in the a and b fields and search for all
eigenoperators and their associated crossover exponents.
There are, in total, 2n +n —1 independent quadratic
perturbations apart from the energy-density operator,
a +b . The renormalization-group analysis yields four
distinct exponents Pi, $2, P3, and (()4. To lowest order in
c, they are given by

C, =(4—n)/2, Cz ——(2—n)/2,

C3 ———n /2, C4 = —(n —1 ), (6.2)

where u* and U* are the fixed-point values previously
determined jn Sec. III. The associated scaling operators
E; and their degeneracies are listed in Table I. The
chirai. ty and its exponent correspond to E, and P, . All
eigenoperators belonging to a given ((i; are mixed under
the symmetry operations of the Hamiltonian; in other
words, there is no accidental degeneracy left for any ei-
genvalue. Thus the existence of the four different cross-
over exponents should be a general attribute of the model
not limited to the c expansion. Explicit expressions for
E2, E3, and E4 in terms of spin variables can be found as
in Appendix C. Roughly speaking, E3 represents the
usual anisotropy perturbations, E2 represents wave-
vector —dependent anisotropies, and E4 represents wave-
vector-dependent energy perturbations.

At the chiral fixed point, in particular, the inequality

4i&r &42&4i&44 (6.3)

holds. Although the chiral exponent P„:—P, exceeds y,
as has been noted, the other three exponents are smaller.

The exponents (ti; have also been calculated by the 1/n
expansions: the results are included in Table I. The same
inequality (6.3) is satisfied. In the limit n ~ ac, Pi, y, P2,
and (('i3 approach 2/(tf —2), while (('i4 tends to unity.
Table I also includes the explicit c-expansion expressions
for P; at the chiral fixed point. All the s and 1/n expan-
sion results are consistent in the limit c.~O and n ~ 00.

TABLE I. Quadratic crossover exponents P; (1&i &4), the associated scaling operators, E;, and
their degeneracies, D; In the first c.olumn the upper formula is the s-expansion result for P; [see Eqs.
(6.1) and (6.2)] evaluated at the chiral fixed point, while the lower formula is the (1/n)-expansion result.
The functions B„and R„are defined by Eqs. (3.4), and C„"'- C„' ' are defined by
C„"'=n'+4n +56n —96, C' '=n'+52n —48, C„' '=n —4n+48, and C„' '=n +2n —76n+48.

1+—'B„[C„"'+(n —24)R„' ]

(d /2 —1) '(1 —SS„/n )

E;

azb„—a„bz (A&p)

D;

n(n —1)
2

1+ 'By[C' '+(n' 1—2)Rg ']-
(d /2 —1) '(1 —10' /n )

a&b„+a„bz (A&1M)

a&a„—blab„ (A&p)
ya, (a2, b2) (ga, =P)
Xaxaxbx (Sax ——0)

(n+2)(n —1)

1+—'nB„(C„'+nR„'

(d /2 —1) '(1 —12' /n )

1 —~B„[C„' ' (n +6n —12)R—„"]
1 —4' /n

aqa„+ blab„(A~p)

Xa~(a~+b~) (Xax——0)
2 b2

a-b

(n +2)(n —1)
2
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At the sinusoidal fixed point, the relative magnitude of
the exponents is

r &44&0~&A&ki, (6.4)

all four crossover exponents being smaller than y. The
explicit expressions to O(E) follow by substituting (3.5)
and (3.6) into (6.1) and (6.2).

At the 2n-component Heisenberg fixed point, one has
v'=0 and all four crossover exponents coalesce to a
common value, as evident from (6.1}. One then has

y & P
—=P, (all i)

VII. SUMMARY AND DISCUSSION

The critical properties of the field-theoretic chiral mod-
el (1.2) have been studied within renormalization-group
theory. This model represents, for positive v, triangular
antiferromagnets, helical magnets, and the superAuid A

phase of helium 3. By c expansion, a new chiral fixed
point with v & 0 has been found which is stable for

n & n, (d) =21.8 —23.4e. +O(s~) .

The associated susceptibility and the correlation-length
exponents y and v are smaller than the corresponding
O(n) exponents. Likewise, the 1/n expansion for (1.2)
with v &0 yields a continuous transition for 2&d &4
characterized by exponents y and v smaller than the
O(n) exponents, and consistent with the s-expansion re-
sults. The nature of chiral ordering was also studied.
Chirality represents a new relevant operator; the associat-
ed crossover exponent P„ exceeds y. Three other cross-
over exponents are found for perturbations quadratic in
the spin variables; these turn out to be smaller than y.

Concomitantly, the properties of other fixed points
were also determined: one represents sinusoidally order-
ing systems, the other is simply the standard Heisenberg
fixed point.

The most interesting question still to be addressed is
whether the chiral fixed point remains stable at physically
relevant points, namely for d =3 with n =2 and 3. Al-
though linear extrapolation of the stability boundaries for
the chiral fixed point suggests that this might be so, the
answer is not conclusive. If the chiral fixed point were
not stable, the system would probably undergo a first-
order transition. Hopefully, the calculation of higher-
order terms combined with fuller analysis will yield a
more definitive answer.

It is instructive to compare the present
renormalization-group theory with the results of Monte
Carlo simulations and experiments. Recept Monte Carlo
simulations for d =3 XY (n =2}(Ref. 9), and Heisenberg
(n =3) (Ref. 8) antiferromagnets on the stacked-
triangular lattice exhibit a single continuous transition,
the associated exponents a =0.40, P=0.25, y =1.1, and
v=0. 53 for n =2, and a=0.34, P=0.28, 7 =1.1, and
v=0. 55 for n =3, respectively. ' Evidently, the estimat-
ed values of y and v are considerably smaller than the
corresponding O(n) values, namely, y = 1.32 and v=0. 67
for n =2, and y=1.38 and v=0. 70 for n =3. ' These
Monte Carlo data, particularly the observation of a con-

tinuous transition and the small y and v values, do
indeed suggest that the chiral fixed point remains stable
for n =2 and 3 down to d =3. More recently the
chirality exponents themselves have been estimated for
the XY case (n =2) with the results P„=0.40, y„=0.80,
and P„=P„+y,=1.20. These exponents satisfy the scal-

ing relation a+2P, +y„=2 as anticipated. Furthermore,
the chiral crossover exponent is larger than y as our RG
theory indicates. Thus, a11 Monte Carlo results obtained
so far are consistent with the existence of the stable chiral
fixed point in three dimensions.

Experimentally, continuous transitions have been re-
ported for various substances, including triangular anti-
ferromagnets, helical magnets, and helium 3, which are
expected to belong to the present universality classes. In
particular, recent measurements on VC12, VBr2,
CsMnBr&, Ho, and Dy have yielded exponents fairly close
to the predicted theoretical values. ' Further discussion
of the experimental aspects of this question has been
presented in Ref. 17.

In summary, the overall qualitative agreement found
between the renormalization-group theory, the Monte
Carlo data, and the experimental results seems to support
the view that a series of new chiral universality classes,
characterized by the field-theoretic model (1.2}, are actu-

ally realized in nature.
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APPENDIX A: DERIVATION
OF THE GLW HAMILTONIAN

In this appendix, the effective Hamiltonian (1.2) is de-
rived from microscopic spin Hamiltonians like (2.1) or
(2.2). Starting with n-component fixed-length spins, S;,
with general isotropic couplings, E;., one can apply the
Hubbard-Stratonovich transformation in the standard
way to obtain an equivalent Hamiltonian

(A 1)

W(
~ P; ~

)= ,'P, , P, 1n[Trs(e '—}]. — (A2)

If this is expanded out to quartic order and translational
invariance of the lattice is invoked, one obtains

in terms of new unconstrained n-component spins, P;. '

The new interactions, P;, are given by the matrix rela-
tion [P; ]=[Po5;I+K;.] ', where Po is a constant
sufficiently large to make [P, ] ' positive definite. The
single-spin weighting function is given by
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~= X [rp+P(q)1
l
4(q)1'

Qo
+ v X'4(q» 4(q»k(q3) 4(q4» (A3)

in which the second sum is restricted, as usual, by
q, +q2+q3+q4 ——K, where K is a reciprocal lattice vec-
tor. The parameters are given by

sociated with the minima of P(q) now occur at the origin
and pertain only to the A and B fields. Since the C
modes correspond to a maximum in P(q) they should be-
come rapidly negligible after initial renormalization and,
accordingly, will be neglected henceforth. Retaining on
the critical modes yields

= g I rp+ P(q) 1( I Aq I
+

I Bq I

q
1+n/2

rp ———,'P;;+ I ( —,'(n —1)),
~'+""I (-'(n —1))2

4(n +4)(n +2)

(A4)

+4Aq Bq Aq .B@), (A6)

while P(q) and P(q) are the Fourier transforms of P; and

Aq
——B (A5)

Evidently, the two independent "instability" points, as-

For concreteness, focus now on the stacked or layered
triangular lattice and suppose that P(q) has a maximum
at q=O but equivalent minima at (dimensionless) wave
numbers, +Q with Q=(4m. /3, 0, . . . , 0) in the lattice lay-
ers. The first Brillouin zone for the layers is shown in
Fig. 10: note equivalent minimal points differing only b
the reciprocal-lattice vectors K& ——(2n, —2m/ 3,
0, . . . , 0) and K2 ——(0, 4m/&3, 0, . . . , 0), just two are in-

dependent. The zone can be divided, as shown in the
figure, and rearranged into three separate hexagonal
subzones centered on the origin, each corresponding to a
&3X&3 rotated sublattice. Correspondingly, the field

P(q) over the original zone can be decomposed uniquely
into three fields A, B, and C, where q is now confined
to the new subzone. The original reality condition
P"(q)=P( —q) yields

the second sum being restricted as before. Note that
quartic terms of the form A, A B, AB, and B do not
appear because of the wave-number-conservation condi-
tions. Renormalization and removal of the C modes will,
of course, change the coeff][cient ro and the transform
P(q) somewhat but, as usual, an expansion and trans-
verse spatial rescaling should serve to justify the expan-
sion

P(q)=cp+c, q +O(q ) . (A7)

Finally, we introduce two real n-component fields by

a= —,'( A+B), b= —
—,'i( A —B) (A8)

+6up(a +b ) +8up[(a b) —a b ]] . (A9)

By simple spin rescaling then yields (1.2) with, ignoring
initial renormalization effects,

so that aq ——a q, bq =b . It follows that aq and bq de-
scribe pure cosine and sine modes, i.e., cos[(Q+q) r] and
sin[(Q+q) r], respectively. Rewriting (A6) in terms of
the a and b fields and Fourier inversion leads to

%=f1 xt2c, (
~

Va
~

+
~

Vb
~

)+2(rp+cp)(a +b )

Q-4 -Q+ g +g rp =(T'p+cp)/c&& u =3up/4c ] ~ U =up/c ) (A10)
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APPENDIX B: CALCULATION OF g

g= [16(n +1)up —8(n —1)upup

+3(n —1)up]/(16~ ) (B1)

In this appendix, ri is calculated to O(e ) at the chiral
fixed point. The notation follows that in Secs. III—V. As
explained in Sec. IV, g can be obtained from the
coeScient of the k ink term of the self-energy difference
at T= T„namely,

X(k, r =0)—X(k=O, r =0) .

The diagrams needed to O(e ) are shown in Fig. 11 where
m=u ——,'v. From these one gets

FIG. 10. Two-dimensional intersection of the first Brillouin

zone of the d-dimensional stacked-triangular lattice, cut by the

plane q3 ——. - ——qd
——0. The first Brillouin zone is divided into

three similar subdomains ( A I, A2, A3), (B&,B2,B3), and C.

where uo and vo are determined so as to eliminate the
slow transients, namely contributions from the two ir-
relevant variables which have exponents of order c.. To
this end one may calculate
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APPENDIX C: CHIRALITY TENSOR

In this appendix, we rewrite the total chirality tensor,
~&„, in terms of spin operators, S„. After the Fourier
transformation, one has

ai„——Ja&„(r)dr= J(a&b„a„—bi )dr,

= g [~&(q)b„(—q) —~ (q)bi( —q)],
q

(C 1)

I U
I

I
Ui

) W
I

I /
y &

r
\
\
l ~

I y
I

Wi

lyJ
/

\

where the summation runs over wave vectors
I q I & I Q I, Q being the wave vector characterizing the

helix. On using (A8) to replace the ai and b„by the Ai
and B„and noting that A(q)=S(Q+q) and
B(q)=S(—Q+q), we get

a&& 2i g——[—S&(Q+q)S&( —Q —q)

FIG. 11. Diagrams contributing to g to O(c ).

4

I 4"(r)—:—V lim (a;& a;k aj.i, aji, ), g G(k;),
i=1

(B2)

—S„(Q+q)S,( —Q —q)] .

Fourier transforming into rea1 space fina11y yields

ai„——g g, (r,, ) sin(Q r,, )Si (r, )S„(r ),

= g g, (r,, ) sin(Q r,, )[Si (r, )S„(r )

—S„(r;)S&(r )], .

where g, (r) is a cut-off function defined by

(C2)

(C3)

where k&+ +k4 ——0. From the requirement of no
slow transients in I 4' and I 4, one obtains two sets of
solutions for (uo, vo): their values agree precisely with
the O(e) fixed-point values at the chiral and sinusoidal
(or antichiral) fixed points, (3.5) and (3.6). By substituting
for uo and vo in (Bl) with the chiral fixed point values the
result (3.10) with (3.4) and (3.11) is found.

g, (r) =N ' g e'q',
lql &Q

(C4)

which becomes small if
I
r

I
y2irig The e.xpression

(C3) essentially constitutes our definition of chirality. In
the particular case of triangular antiferromagnets, if one
approximates g, (r) by a step function which vanishes
beyond the nearest-neighboring sites, (C3) is exactly pro-
portional to our original definition of chirality, (1.4).
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