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The problem of phonon localization in mixed crystals is formulated using the self-consistent lo-

calization theory developed by Vollhardt and Wolfle. The coherent-potential approximation (CPA)
is used to obtain the phonon density of states and CPA diffusion constant. Three-dimensional har-

monic binary systems with random masses but constant isotropic force are studied in detail. With
the use of the semielliptical band approximation, the phase diagrams, mean free path, correlation
and localization lengths, and diffusion constant are calculated for various mass ratios and concen-
trations. The limit when the mass of one component is infinite is also studied.

I. INTRODUCTION

Considerable progress has been made in understanding
the nature of electronic states in disordered systems in
the past decade. ' For the case of noninteracting elec-
trons, Anderson localization in different dimensions has
been under intensive study. It is now believed that mobil-
ity edges exist only in systems with dimension greater
than two. ' In three dimensions, the localization phase
diagrams have been studied numerically for various mod-
els. As a wave phenomenon in disordered systems,
Anderson localization is recognized to be common to
both quantum electrons and classical waves. Since the
classical waves offer both the potential for more direct
observation of localization as well as the possibility of
novel localization characteristics distinct from those of
electrons, much interest has been focused recently on the
study of localization, both theoretically and experimen-
tally, for various kinds of classical waves like elastic, sca-
lar, ' electromagnetic, and spin waves. ' There is also
increasing interest in the study of phonon localization in
solids. " ' It has been suggested that the existence of a
plateau in the thermal conductivity accompanied by ex-
cess specific heat in all glasses could be explained by the
localization of the acoustic phonon at some critical fre-
quency 1 2 1 5

In this work, the properties of acoustic-phonon locali-
zation are studied for harmonic mixed crystals with ran-
dom masses but constant isotropic force. The self-
consistent theory of Anderson localization developed by
Vollhardt and Wolfle' (VW) in conjunction with the
coherent-potential approximation' ' (CPA) is extended
to phonon localization. This method has been used to
calculate the mobility edge and localization length for
tight-binding electron models and has given results which
are in excellent agreement with numerical simulation
data. Here, numerical calculations are carried out only
for the binary fixed crystals. In three dimensions, with
the use of the semielliptical band approximation, ' the
phase diagrams, mean free path, correlation and 1ocaliza-
tion lengths, and diffusion constant are calculated for
various mass ratios and concentrations. We find that in
certain regions of mass ratio and concentration there are

three mobility edges in the band. On the boundaries of
these regions two mobility edges appear or disappear
simultaneously and the corresponding correlation or lo-
calization length diverges with a new exponent different
from the one at the usual mobility edge. The case when
the mass of one component becomes infinite is also stud-
1ed.

In Sec. II, phonon localization for mixed crystals is for-
mulated in terms of averaged two-phonon Green's func-
tion. CPA is used to obtain the phonon density of states
(DOS) and CPA diffusion constant. In Sec. III, the self-
consistent diagrammatic theory of VW is used to obtain
the diffusion constant and mobility edges. With the use
of the semielliptical band assumption, analytic formulas
for the DOS, the CPA diffusion constant, the mean pho-
non velocity, the mean free path, the correlation and lo-
calization lengths, and the diffusion constant are given in
Sec. IV. Section V contains numerical results for the
binary systems and discussions.

II. FORMULATION

Consider a d-dimensional hypercubic harmonic mixed
crystal with random masses but constant isotropic force
between nearest-neighbor sites. The equations of motion
for the displacement u; along any direction of the lattice
have the form

m, ii, +2dKu; Kg' ui ——0, —

where m,. is the mass on site i, j: is the force constant,
and the summation of I is over the nearest neighbors of i.
In order to study the localization effects, one can study
the time and space evolution of the energy density caused
by the injected disturbance. ' Consider a local distur-
bance of velocity impulse —2m lm at site j at time t =0.
The energy density at any site i and time t is proportional
to m; [u,. ( t ) ] . Here we neglect the statistical fiuctuations
of m - in the velocity impulse and m, in the energy density
and assume them to be constant with the averaged value
(m; ). The energy evolution of the system is then pro-
portional to the quantity
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P;, (t)=[G
~J
(t)]', (2)

with the same boundary condition described above. We
now define the following Fourier transforms in time and
space:

G +(E)=. dt e' +'~ "G+(t),.IJ IJ

I,J

where g is an infinitesimally positive number and R; is
the position vector of site i. The Fourier transform of
Eq. (2) can be expressed as

P (co)="dte" +'""[G +(t)]IJ IJ

dE N 6)E2' 2 2

XG+ E+—G E——CO CO

IJ 2 J 2

where 6+ is the retarded one-phonon Green's function
for the displacement satisfying

m, G,+(t)+2dKG+(t) —K g' Gt+(t) = 2—m5(t)5~, (3)
I

where G is the corresponding advanced Green's func-
tion. Using the reciprocal relation G;. =G, and denot-
ing the product

G+ E+—G.. E——CO N
IJ 2 " 2

by P; (co), the configurationally averaged P, (a)). [denoted
by P;.(co) ] has the following Fourier transform in space

—E l —Iq.(R —R. ) —EP (q, co)=—g e ' ' P,"(co)
I,J

=—y(G+, . (E, )G;, (E»
p, p

=—gK

(qadi),

1

1V

where E+ E+c——o/2 and p+ ——p+q/2. The nature of
phonon states at any frequency E can be understood from
the small-q and -w behavior of P (q, co). Extended states
always lead to a diffusive pole in P ~(q, co}. To find the
explicit form of P (q, co) in the hydrodynamic limit, we
first consider the problem within CPA.

In CPA, it is known that the averaged two-phonon
Green's function K& z (q, co ) is given by'

Kz&(qco)=R&+ (E+)R& (E ) 5& .+
L(E+,E )/N

L(E+,E )
QRp+ (E+ }R (E )

Pl

R+ (E+)R, (E )
+

(7)

In Eq. (7), R& (E) is the averaged one-phonon Green s function which is determined by the following equations in
CPA. 19,20

[M+(E) m, ]E- —
) —[M —(8)—m;]E R,

+
, (E))—

R;;+(E)=—g R —
p (E),

p

Rp~(E}= (10)
M +—(E)E —e(p)

M (E) is the —renormalized mass of the effective medium and s(p)=K+s(1 —e t' ) with 5 being the nearest-neighbor
vectors. In the simple cubic lattice, with lattice constant a, e(p) equals

2K[3—cos(p„a ) —cos(p a ) —cos(p, a )] .

L(E+,E ) in Eq. (7) is the effective two-phonon vertex in CPA and is given by

(t,+(E+)t, (E ))
L(E+,E ) =

I+(t,+(E+ )t, (E ) )IR,+(E+ )R,
—
, (E )

Using t, of Eq. (8), it can be shown that L(E+,E ) satisfies the following Ward identity in CPA

(E+E ) [M+(E ) M(E }]—
L(E+,E ) =

E R,, (E ) ER,+(E )— (12)

In the limit of small q and co, we expand R —+ (E+ ) in Eq. (7) to second order in q, first order in co, and L(E+,E ) toP I+
the first order in co. Using Eq. (12), after some manipulations, we obtain the following equation:
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or

L(E+,E ) QR+ (E+)R (E )=1-
P)

L{E+,E )
1,
— gR+ (E+)Rp (E )

Pl

u (p) hR p(E)
2[R +(E)M+(E) R—;, (E)M (E)] N

E&M(E)&R;;(E)] 2E dbM(E)AR;;(E)

1 iE—b M(E)b R;;{E)
DcpA(E)q 2 i co—2[R,+(E )M+(E) —R;, (E)M (E)]

(13)

with
p(E) = —2E

Im(, m; G;+(E) ) . (20)

and

Dcp~(E)= —gu (p)[bR (E)]
4mdp E N

p(E) = [M+(E)R;+(E)—M (E)R;, (E)],

hM(E) =M+(E) M(E) =—2i ImM+(E),

bR;; (E)=R+(E) R,, (E)—=2i ImR, +(E),

b,R p(E) =R p+ (E) Rp (E)=—2i ImR p+ (E),

(14)

(15)

(16)

(17)

(18)

Substituting Eq. (7) into Eq. (6) and using Eq. (13), we ob-
tain the expression for P (q, cu) in CPA as

—[bR;;(E)]
P cpp(q, cu ) =

Dcp~(E)q i co —2np(E)
(21)

Since Dcp~(E) is nonvanishing for all E in the band, we
do not see any localization in CPA. In the next section,
we will include the self-consistent treatment of coherent
backscattering contributions to P (q, co) in order to ob-
tain the localization effect.

v(p)=Vpe(p) . (19) III. SELF-CONSISTENT THEORY FOR LOCALIZATION

Notice that v(p) defined here is related but not equal to
the phonon group velocity. DcpA(E) is the diffusion con-
stant in CPA. It can be shown that p(E) of Eq. (15) is ex-
actly the CPA phonon DOS which is defined as

In this section, the self-consistent theory of VW is used
in the context of CPA to study the properties of phonon
localization. In general, the Bethe-Selpeter equation for
Kp p (q, co) of Eq. (6) has the form

Kpp(q, co)=R+ (E+)R (E ) 5 +—g U „-(q,co)K - .(q, co)
1

P-

with

Up p (q, co)=L(E+,E )+5Upp (q, cu),

and

(22)

(23)

R p~(E) = (24)
M +—(E)E2—e(p) —X+—

(p, E )

Here, X—+ and 5U are, respectively, the non-single-site diagram' contribution to the averaged one-phonon self-energy
and the two-phonon vertex. Using the relation R+R =(R+ —R )/[(R )

' —(R+) '], Eq. (22) becomes

[E M (E ) E+M+(E+ )+s—(p+) —e(p )+X+(p+,E+ ) —X (p, E )]K (q, cu)

=DR (q, co) 5 .+—g [L(E+,E )+5Up -(q, co)]K -
p (q, cu), (25)PP

where

ERp(q, cu)=R+ (E+) Rp (E ) . —

Summing Eq. (25) on p and p' and using Eq. (6), we find, to the lowest order in q, the following equation

[E M (E ) E+M+(E+ )]P (q, cu—)+qP (q, cu) =BR,, (O, cu)[1+L(E+,E )P (q, cu)],

where we have defined the current relaxation function as

(26)
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and

P, (q, co)=—g [v(p) q]K (q co)
p, p

(27)

bR, , (q, co)=—QERp(q, co) .
p

In the derivation of Eq. (26), we have made use of the following Ward identity for the non-single-site diagrams:

(28)

(29}X+(p+,E+)—X (p,E )=+5U (q, co)bR (q, co) .
P

The above relation is required by the conservation law. In order to derive an equation for P (q, co). (current relaxation
equation), the function g,K .(q, co) is expanded in angular variable. In the strong-coupling limit, we use the follow-

ing expansion ' '

ER&(O, co) 1 [ER&(O,co)] [v(p) q]gK~ (q, co)= —g K~ (q, co)+ —g (v(p") q)K ~ .(q, co) .

g [hR (O, co)v( ') ]N
p

Multiplying Eq. (25) by v(p) q and summing p and p', we find

[E M (E ) E+M+—(E+ )+Q (q, co)]P (q, co) X(q—, co)P (q, co) =—g bR (q, co)[v(p) q],
p

with

(30)

(31)

and

Q (q, co)=
g [v(p) q]ER (q, co)5U (q, co)[bR~ (O, co)]~[v(p') q]

N pp
1 g [hR (O, co)] U (p')

p

(32)

q 1 L(E~ E )
XE(q, co)= —g hR (O, co)[v(p) q] + g bRp(q, co)[v(p) q] .

hR;;(O, co) N
p

N
(33)

In the derivation of Eq. (31), Eq. (30) has been used and we have ignored X—terms in Eq. (25) and 5U term in X (q, co)
of Eq. (33}for practical purpose. Thus, we will again use Eq. (10) as the CPA of R

&
(E}. Solving Eqs. (26} and (31) for

P ~(q, co} yields, to the lowest order in q,

P (q, co) —=
b,R;; (O, co)

E
(E ) EM+(E+ ) —L(E+,E )hR—"(0 co)+

E M (E } E+M+(E+ )+—Q (O, co)

(34)

By expanding hR z (q, co) to the first order in q, it can be shown that L (q, co) of Eq. (33), to the lowest order in q and co,

is given by

X (q, co) =2nqDcp&(E)bM(E)E p(E)/bR;;(E)

—[bR;;(E)]
2mp(E)

1P (q co)—=
D(E,co)q ico—

with

Thus, to the lowest order in w, using Eq. (35) and Eq. (13) with q =0, Eq. (34) reduces to

(3&)

(36)

D(E, co) -=
Dcp~(E)

Q (O, co)

E hM(E)

(37)

where the DOS p(E) is given by Eq. (15). Equation (36) has exactly the same form as Eq. (21}except that the CPA
diffusion constant is now replaced by a renormalized one which is to be determined self-consistently. Following VW,
we include only the maximally crossed diagrams in the term 5Uof Q (q, co) of Eq. (32). Using time-reversal symmetry,
these diagrams can be summed by using Eq. (13), yielding
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5Up p (O, a))-=
1

DCpA«) I p+ p'
I

'—i~
E—[bM(E)]

2mp(E)
(38)

Substituting Eq. (38}into Eq. (32), the leading term in Q (O, ro) gives

—E [b,M(E)] g u (p)[ER (E)]
g (0,~)-=

2~p(E) g U (p)[b,RP(E)]
P

DcpA(E)q i c—o
(39)

Replacing Dcp„(E) in Eq. (39) by D(E, rp) and substituting Eq. (39) into Eq. (37), we obtain the self-consistent equation
for the diffusion constant D(E, co) as

S(E) 1

q q
ltd

D(E, rp)

(40)

with

—E MME 1S(E)= —gu (p)[HARP(E)]
gdmp E E (41)

Equations (40) and (41) are identical in forms to the self-
consistent equation for the conductivity in the tight-
binding electron model. Equation (40) gives the known
result that all states are localized in systems with dimen-
sion d (2 except the Goldstone mode at E =0.

S(E)q,D(E}:D(E,O+ ) =D—cpA(E)—
277 p(E)DCPA(E)

(42)

where q, is the upper momentum cutoff. Equation (42}
can be written as

D(E) =DcpA(E)[1 —X(E)],
with

S(E)17,
X(E)=

271 p( E)[Dc pA ( E) ]

(43)

(44)

The mobility edge is determined by the condition
D(E')=0 [or x(E')=1]. In the localized region, it is
known that D(E, co) is related to the localization length

k..by"

D(E, rp) =

incog„(E)+O—

(r—p ) . (45)

IV. MODEL ASSUMPTIONS AND ANALYTIC RESULTS

Here we consider the three-dimensional case. Since we
are only interested in the dc behavior, we take ~~0+
limit in the discussions below. In the extended states re-
gion, Eq. (40) gives the following diffusion constant

IF ( E}DcpA ( E}
kcor(E)

lF(E}
1 X(E)— (47)

where IF is the mean free path of the phonon. From Eqs.
(46) and (47), it is easily seen that both g~«and g«,
diverge at the mobility edge with an exponent one, i.e.,
g~„(E) [or g«„(E}] cc

~

E E'
~

'.—The mean free path
1F can be defined as

3DCPA(E}
IF(E)=

Up E (48)

U', (E)=
np(E) 2E ReM+(E)+E [ReM+(E)]

2

x —g U (p)Im[M+(E)R+(E)] .1

In our numerical calculations, we use the semi-
elliptical band approximation. Defining 8'= 6E,
s(p}= W —s(p), and using the following ansatze, ' '

1/2

e(w —fy /
),—g &(y —E(p)) =1 2

m. W

Here, Up(E) is the mean group velocity of the phonons
which can be defined as follows. Since ImRp+(E) has a
peak around E=EP with EPRe[M+(Ep)]=a(p), the
group velocity is given by

Vps(p)
vg(p) =VpEp ——

2EpReM+(E )+E [ReM+(E )]
P

(49)

After averaging over p and weighted by the spectral den-
sity, vp(E) can be defined as

Substituting Eq. (45) into Eq. (40), we have the equation
for g„as

k «)q, It» '[k «)q, ]] '=[1—X«}l '. (46}

1 2$'
N
—g &(y —s(p))[v(p)] = 3'

Xe(W —~y ~
),

2 3/2 (51)

In the extended region, the correlation length g„, can be
defined as8

the p summation in Eqs. (9), (14), (50), and (41) can be
performed analytically yielding
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R,
+
, (—E}= (M +(—E}E —W —IM (E)E [M+ (E—}E —2W]I'~ ), (52)

1 op(E)
9'(E) 2EMj(E)

E M„(E)
2

E—Re[M+(E)R,+(E. )]+ ,' W—ReR;~+(E) (53)

uo(E)= t2Mr(E)[ W 2M—s(E)E ]+2m WEp(E)Ma(E)+mE p(E)[MJ(E) M—s(E)]
"dpi�(E)

+4MI(E)E Re[M+(E)R;+(E})[Mz(E)E W—]I 3mEp(E) 2M+(E)+E (54)

and

S(E)= 9'(E)Dcp~(E)+ Ep(E—)[MI(E)E As(E) —WAI(E)]
6mp(E} CPA 4

E2
+Mr(E)E Al(E)+ [WMI(E) As(E) —WMs(E) Al(E) MI(—E)]

2

E4
&( ImR;+ (E)— A I (E)MI (E)Re[M+ ( E)R;+(E)]

with

and

A„(E)=Re M+(E)E W-
M+(E)E [M+(E)E 2W)—(56)

p(E) —= +2%m E
mW'

DcpA(E) = W E —4

36+28'mm (1—a) c(1—c)

uo(E) -=
Wm [(1—c)(2—c+2ac)+a c(1+c)]

12m

(58)

(59)

(60)

A (E)=I M+(E)E W-
M+(E)E [M+(E)E 2W]—(57) and

S(E)=
& Dcpp (E) (61)

where Mz and Mz are, respectively, the real and imagi-
nary parts of M+. Now, the effective-medium mass
M+(E) is determined by Eqs. (8) and (52). Using the
Eqs. (52)—(57) in Eqs. (15), (42), (46), (47), and (48), all the
physical quantities we are interested in here can be calcu-
lated directly. Although the above results are general for
any n-component mixed crystal, our numerical calcula-
tions will be limited to two components only.

For a two-component system, M+(E) [or R;+(E)]
which is determined by Eqs. (8) and (52) satisfies a cubic
equation and can be solved analytically. There is a re-
ciprocal relation in the phase space of mass ratio and
concentration. Let the mass of the two components be m
and am with the corresponding concentrations 1 —c and
c. If we write Eq. (1) in the frequency space, the same
equation can describe a reciprocal system having the
masses m/a and m with the corresponding concentra-
tions 1 —c and c if the frequency E is scaled by a factor
v'a; i.e., E'= &aE. So, we will only consider the region
a~ 1. Before giving the numerical results, we consider
two limiting cases; the small-frequency limit and the
infinite-a limit.

In the low-frequency limit, there are always extended
states for any finite value of a and the whole range of c.
The case when a is infinite is an exception. The reasons
will be given later. By solving CPA Eqs. (8) and (52) in
the E~0 limit and using Eqs. (15) and (53)—(57), the fol-
lowing asymptotic behaviors are known for small E:

with

m =(m;) =m(1 —c+ac) . (62)

Using Eqs. (58)—(61), we find, for small E, x(E)~E,
IF(E)~E, and g«, (E)~E from Eqs. (44), (48), and
(47). Thus, there are always extended states in small fre-
quency region.

In the limit when a becomes infinite, an explicit ex-
pression for M+(E) can also be obtained. In this case,
Eq. (8) becomes

[M+(E) m]E R;+(E—)=c .

By solving Eqs. (52) and (63) for M+(E), we find

(63)

M+(E)E =mE +
2(1—c }

with

mE
W

—1+v'c b(E)—
(64)

E2
b(E}=1

2

(65)

From Eqs. (64} and (65},we find that the DOS is nonvan-
ishing only in the region 1 —&1—c & mE /W
&1+&1—c. Having Eq. (64) for M+(E), the expres-
sions for other interested quantities can also be obtained
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by straightforward manipulations. %'e find
CPA

R+(E)= 2
ll

mE
W

—1 —&c b—(E) (66) V' ~ 0

p(E) = &b(E) c—8(b(E)—c ),4mE
(67)

0.6

0.4

D (E)= 1+—[b(E) c]—8(b(E) c)—,
1 2

9mp E c

(68) 0.0 1.0 2.0 2. 5

I

3.0

W 1 —c
3m 2 —c

8'
mE

(69)

X —+ b(E) — — 8(b(E)—c),

FIG. 1. The density of states per site (in units of &m /K; see
text) p ( ), CPA diffusion constant (in units of &K/m a )

Dcpg ( —~ —), mean velocity (in units of &K /m a) Uo (- . ),
reduction factor 1 —x& ( ———) (for q,'=n/a), and 1 —xi&

( ———) (for q,"=~/lF ) plotted against the frequency (in units
of f/'K/m )E for the case a = 1.4 and c=0.5.

and

S(E)= 1

6m.p(E)

X 1+—+2 c
1

4b(E) 4 2c+—c—4
c 2( 1 —c) 4[b (E) c]+c—

X [b(E) c]8(b (—E) c} . — (70)

V. NUMERICAL RESULTS AND DISCUSSIONS

In our numerical calculations we have set the mass
m =1, the force constant E =1 and the lattice constant
a =1. The choice of q, in Eq. (42) can be either Pm or
pn/lz with p being of the order of 1. ' Here, we take
p= l. In the following, we will use superscripts (or sub-
scripts} I and II respectively for the quantities calculated
using q,'=m and q, '=n/1F. As mentioned in Sec. IV, it
is sufBcient to consider only the region a & 1. In this re-
gion, our results show that there exists a critical value of
a'. For 1&a&a' (a& ——1.75 and a&&

——1.55), there is
only one mobility edge in the whole band for the whole
range of concentration. In Fig. 1, we plot the p(E),
vo(E), and DcPA(E) for a typical case a=1.4 and c=0.5.
In the small frequency region, these curves follow Eqs.
(58)—(60). The curves D, (E) and D„(E) are indistin-
guishable from the curve DcPA(E) on the scale shown in
Fig. 1. We also plot the reduction factor 1 —x,(E) [and
1 —x»(E)] in Fig. l. In this case, the localization effect is
significant only in the region of the band edge. In this
range of a, the mobility edge moves from the band edge
of the mass 1 system toward lower frequency as c is in-
creased from zero. As c is closed to 1, the mobility edge
lies near the band edge of the pure mass a system.

For a & a*, multimobility edges appear in certain
range of concentration. Results from a typical case a=3
are shown in Figs. 2, 3, and 4 for c=0.1, 0.5, and 0.75. In
these figures, the curves for p(E), D&(E), and Dn(E) are
shown. In this region, for any value of a there exists a
critical concentration c*, (a). The value of c& (a=3) is
0.220 when q,

' is used and 0.124 when q,
" is used. %hen

c &c', (a), there is only one mobility edge in the system
which lies near the band edge (Fig. 2). The band is not
split. As c is increased to c*, (a), localized states appear
at a single isolated frequency E (a) in the originally ex-
tended region. The value of E& '(a=3) is 1.48 when q,

'

is used and 1.33 when q,
" is used. At this isolated fre-

quency, the correlation lengths diverge from both sides
with an exponent v=2 which is dift'erent from the ex-
ponent at usual mobility edge (v= 1 ). The reason for this
new exponent is because at this critical c*, (a) two roots
of x(E)=1 coincide at E;* and this makes x'(E )=0.
The a dependence of the isolated frequency E*, '(a) can
be understood as follows. The function c f (a) is a mono-
tonically decreasing function of a as will be shown later
in Fig. 7. When a is large enough ()2. 7) such that
c 1 (a) is smaller than 0.25, the localization is due to the
scattering of the phonon in the light mass host by the
heavy mass impurities and the localization frequency
Ei '(a) is strongly related to the resonance scattering of
the impurities. Since the concentration is small, the typi-
cal resonance frequency is the nature frequency of a sin-
gle impurity with mass a which has the value

0.8-

0.6
DII

2.0

FIG. 2. The density of states per site (in units of &m/K) p
( ), diffusion constant (in units of &K/m a ) D, ( ———)

(for q,'=m/a), and D«( ———) (for q,"=w!1~)plotted against
the frequency (in units of &K/m) E for the case a=3 and
c=0.1.
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0.0 0.5 1.0 1.5 2.0 2. 5 3.0

FIG. 3. The density of states per site (in units of &m/K) p
( ), diffusion constant (in units of t/'K/m a ) D& {———)

(for q,'=n. /a ), and D» (———) {for q,"=m/IF) plotted against
the frequency (in units of &K/m) E for the case a=3 and
c=0.5. The position of the dashed lines on the frequency axis
are the mobility edges calculated by using both q,

' and q,".

0.8

2. 5 3.0

FIG. 4. The density of states per site (in units of &m/K) p
( ), diffusion constant {in units of &K/ma ) D& (———)

(for q,'=m. /a ), and D» ( ———) (for q,"=m./IF) plotted against
the frequency (in units of &K/m) E for the case a=3 and
c=0.75. The position of the dashed lines on the frequency axis
are the mobility edges calculated by using both q,

' and q,".

E„(a)=v 2d/a. We have compared several values of
E„(a} with the corresponding values of E"

, (a } and the
agreement is good. For instance when a=3, the value of
E„(3) is 1.41 which lies just between the values 1.48 and
1.33 obtained for E (3) by using q,

' and q,", respectively.
When a is small (a' &a &2.7) and c', (a) is larger than
0.25, the value of E„(a) becomes smaller than the value
of E*, '(a) and the deviation is larger as a is smaller. In
this region the effective medium should be used as the
host instead of the light mass atoms, and the value of a in
i/2d/a should be replaced by a smaller effective value
due to a smaller contrast. As c is increased beyond
c, (a), a finite localized region together with a new pair
of mobility edge appears near E", (Fig. 3}. With c fur-
ther increased, the upper bound of this newly localized
region moves toward higher frequency, and the mobility

edge of the originally localized region on the higher-
frequency side moves toward lower frequency. These two
mobility edges merge when c reaches to another critical
cz(a). In this case, the entire extended region on the
higher-frequency side disappears. For the same reason
discussed previously, the frequency Ez'(a) where two
mobility edges coincide is also a special frequency at
which the localization lengths diverge from both sides
with an exponent two (v=2). The value of cz (a=3) is
0.547 when q,

' is used and 0.604 when q,
" is used. The

corresponding value for Ez' (a=3} is 2.60 for q,
' and

2.64 for q,". As c is increased beyond c z (a), only one ex-
tended region exists on the lower-frequency side. The
mobility edge lies near the band edge of the pure mass a
system and the band is generally split (Fig. 4). In this re-
gion of c [cz (a) &c & 1], the extended states are mainly
supported by the heavy mass a and the light mass
(m =1) contribute mainly to the localized modes on the
higher-frequency subband. This is also the regime where
the classical percolation theory applies. ' According to
the percolation concept, when c & 1 —p, =0.69 (p, -=0.31
for the site percolation on simple cubic lattice), the light
mass do not percolate and forming isolated clusters em-
bedded in the infinite cluster of the heavy mass. The ex-
tended states on the lower-frequency side are supported
by the infinite cluster together with the resonance modes
of the finite clusters. However, on the higher-frequency
side, there are only localized modes which is supported
solely by the isolated clusters of the light mass. Thus, the
mobility edge in this region [c & cz (a }]will move toward
lower frequency as a is increased. Finally all states be-
come localized when a is infinite. In the above discus-
sions, the change of v at Ei ' (or Ez" ) is related to our
definition of g„, (or g~„)-!E E'! ". It —is quite possi-
ble that the change of v at E i

' (or Ez '
) is not genuine

and is similar to the Anderson transition which occurred
in the tight-binding electron case. ' If so, new scaling
fields are required to define the divergent of g„„(or g„,)
at E i

' (or Ez '
) and the corresponding value of v will be

unchanged. While keeping in mind the above possibility,
the exponent v in this work is always defined as g„, (or

)- ! E —E '! ' for convenience.
When a is infinite, for any c only zero-frequency mode

can be supported by the infinite mass and all the states in
the band are due to the light mass. The band is bounded
by 1 —&I—c &E /6&1+v'1 —c under CPA. When c
is small, two mobility edges appear near the lower and
upper band edges (Fig. 5). With increasing c these two
mobility edges move toward each other and they merge
when c reaches cz(a= 00 ) which has the value of 0.522
when q,

' is used and 0.620 when q,
' is used. All states are

localized when c&cz(~). The infinite a limit con-
sidered here does not correspond to the usual percolation
limit. In the later case, these is no interaction between
the two nearby components and the problem is pure off-
diagonal randomness in nature. However, in our purely
diagonal randomness model a constant force is exerted on
the light mass by the nearby infinite mass. Thus, we do
not obtain here a region of extended states in the small
frequency region as we always do in the percolation sys-



4914 QIAN-JIN CHU AND ZHAO-QING ZHANG 38

0.e—

0.4—
C4
C3

Cl

h II ~g ~h

0.620

FII"'~
FI

0.522

I // / ~ I' II

0.0
1.0 1.5 2.0 2. 5 3.0

FIG. 5. The density of states per site (in units of &m/E) p
( ), CPA diffusion constant (in units of &K/ma ) DcpA
(—~ —), diffusion constant (in units of &E/m a') D& ( ———)

(for q,
' =~/a ), and D» ( ———) (for q,

» =m /lF ), plotted
against the frequency (in units of &I( /m ) E for the case a= 00

and c=0.45. The position of the dotted lines on the frequency
axis are the mobility edges calculated by using both q,

' and q,".

FIG. 6. The correlation and localization length (in units of a)
obtained by using q,

' plotted against the frequency (in units of
&K/m ) for the case a=3 and c=0.5.

tern whenever the light mass percolates. In Fig. 5 we
plot p(E), D, (E), and D»(E) for the case c=0.45. From
Figs. 1-5, we find that the choice of two different values
of q, makes only quantitative changes to all the physical
properties considered here. In Fig. 6, we plot the correla-
tion and localization lengths for a typical case a=3 and
c=0.5 using q,'=m. .

The above discussions can be summarized using Fig. 7.
In Fig. 7, two isolated regions are identified in (a, c)
space. The region g is obtained from the region P by us-
ing reciprocal relation, i.e., a~ 1/a and c~ 1 —c. Out-
side these regions there is only one mobility edge in the
system and this mobility edge moves continuously in the
frequency space as c and a vary. Inside these regions,
there are three mobility edges in the system. On the
boundaries of these regions, as we cross the critical line

FIG. 7. Two isolated regions P and Q shown in the (a, c)
space. Inside these regions, there are three mobility edges in the
system. Outside these regions, there is only one mobility edge in
the system. The correlation and localization lengths diverge, re-
spectively, on the critical lines AB and AF. The point A is a
critical point of higher order. Subscripts I and II are used for
the boundaries calculated using q,'=m/a and q,"=n./lF, respec-
tively.

c
&
(a) (line AB of Fig. 7), a localized region together with

a pair of mobility edges appears (or disappears) on the
lower-frequency side. As we cross the critical line c2 (a)
(line AF of Fig. 7), an extended region together with a
pair of mobility edge disappears (or appears) on the
higher-frequency side. Also, on these boundaries, g„, (or

g„,) diverges at some isolated frequency from both sides
with an exponent v=2. Point A is a critical point of
higher order where three roots of x(E)=1 coincide atE'". In this case, g„, and g„, diverge at E"', respec-
tively, from left and right sides with an exponent v=3.

Finally, we make some remarks on the reliability of our
results. The CPA equations for the averaged one-phonon
Green's function and the corresponding DOS were first
given by Taylor. Although the original forms are
different from our Eqs. (8)—(10) and (15), it can be shown
that they are equivalent. In three dimensions, Taylor has
compared the CPA DOS which was calculated using a
realistic unperturbed Green s function with the numeri-
cal simulation results of Payton and Visscher for the
case a =3 and c=0.240, 0.491, 0.760, and 0.866 (Fig. 9 of
Ref. 27). The CPA was shown to give very accurate re-
sults except in the high-frequency subband when
c=0.760 and 0.866. This is the worst region of CPA,
where the single-site theory can not reproduce the pro-
nounced spikes of the machine results due to the local-
ized modes from the clusters of the light mass atoms.
Since we have used the semi-elliptical band approxima-
tion for the unperturbed Green's function, our CPA,
DOS is different from that of Taylor. When a=3, we
have compared our DOS for the case of c=0.5 (Fig. 3)
and 0.75 (Fig. 4) with the results of Taylor and simulation
data at c=0.491 and 0.761, respectively. This is done by
transforming our units to the units of Ref. 27, i.e.,
z =E /12 and v'(z) =6p(E)/E. Except the high-
frequency subband of the case c=0.75, where we have a
smooth DOS instead of spiky peaks, our DOS curves give
the correct locations of the peaks, dip, gap, and band
edges to within 10%. However, the heights of our DOS
curves are a factor of 1.5 lower than the simulation data.
This is due to the semi-elliptical band approximation we
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have used in the unperturbed DOS which is known to
give a lower height (also about a factor of 1.5) in compar-
ison with the exact unperturbed DOS. ' The main effect
of the semi-elliptical band approximation is to introduce
quantitative errors in DOS and diffusion constant. We
think that the effect on the phase transition properties
like c

&
(a) and the corresponding critical frequency

E (a) will be smaller. This is because the location of
the dip in DOS which signals the resonance scattering
frequency is more important in determining the oc-
currence of the localization transition. We believe that
the major uncertainty in the phase diagram (Fig. 7) and
the location of the mobility edges are caused by the arbi-

trariness in the cuto8'q, inherent to the theory. Never-
theless, even in the worst region of CPA DOS, where the
light mass atoms do not percolate, c & 1 —p, (the region
above the AF line in Fig. 7), this theory can still predict
correctly that all states in the high-frequency subband are
localized.
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