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An account is given of the frequently observed next notable event as the microwave signal power
is increased well beyond the threshold of the old spin-wave instability: relatively-low-frequency

auto-oscillations. These are attributed to a Hopf bifurcation. Taking into account excitation of the
entire degenerate spin-wave manifold in the three standard cases (main resonance, subsidiary ab-

sorption, parallel pumping), we use center-manifold theory to show that a small number of new

modes grow out of the excited steady state of that manifold, yielding a limit cycle which we identify

with the observed auto-oscillations with characteristics qualitatively in agreement with experiment.

I. INTRODUCTION

It has been known experimentally for many years that
a ferromagnetic sample resonating in a microwave field
with pump power exceeding a certain threshold will

display an absorption rate that pulsates at a frequency
3—4 orders lower than the ferromagnetic resonant fre-
quency. ' This phenomenon is called "auto-oscillation, "
and constitutes one of several instabilities in high-power
ferromagnetic resonance. In all cases reported so far, the
auto-oscillation instability sets in at a power level well

exceeding the one needed to induce the Suhl instability
(SI), a mechanism that breaks up the spatial uniformity of
the magnetization. The SI causes the growth of
spinwave excitations to high, nonthermal, levels and the
interaction of those excited spin waves is believed to be
the cause of auto-oscillation. ' This is true for all three
basic resonant conditions: subsidiary resonance, parallel
pumping, and main resonance. In the case of main reso-
nance, for instance, the external drive excites the uniform
mode which then feeds some of its energy to other
nonuniform modes energetically degenerate with it.
When the power transferred to the nonuniform modes
exceeds the damping losses, these modes start to grow
parametrically, and then feed back, additionally damp-
ing the uniform mode in such a way that a steady state is
ultimately reached. This steady state will be broken up if
the external drive becomes too strong or the back-and-
forth power shuNing is too high. An oscillatory state is
then reached. After a transformation to a rotating frame
at the resonance frequency, the equations of motion of
the modes have no explicit time dependence. One can
then describe the sequence of instabilities in an abstract
space whose coordinate axes represent the amplitudes
corresponding to the different wave numbers (the uniform
precession being regarded as a mode with zero wave
number). At very low pump power, the state is described
by a fixed point along the axis of the uniform mode (all its
other coordinates being zero). As the pump power in-
creases, that fixed point moves continuously along the
uniform-mode axis up to a certain pump power, beyond
which it leaves the axis again continuously. That critical

power is the SI threshold, which, when exceeded, leads to
a finite level of nonuniform spin-wave excitations. As the
power is increased further, the fixed point traces out a
curve in the abstract space until a second threshold is
reached. There it stops and undergoes Hopf bifurcation
into a limit cycle. In the entire process, the bifurcations
are local, which makes the analysis possible.

A number of numerical calculations on the truncated
spin-wave modes provide qualitatively the same picture
as described above. But these calculations involved only
a two-mode basis. Favoring so few out of infinitely many
degenerate spin-wave modes makes the result unconvinc-
ing. Adding more modes and extrapolating to infinitely
many is, as some hydrodynamics experts have pointed
out, at best, a dangerous practice. Moreover, experimen-
tally one can measure the critical power at which the
auto-oscillation appears and the frequency of that oscilla-
tion. A reliable theory should be able to predict these
two measurable values without any ad hoc assumptions.
The calculation on truncated modes fails in this respect
because there is no a priori knowledge as to which modes
should be kept and whether or not adding more of the eli-
gible modes will change the oscillation frequency and the
bifurcation point.

The location of the fixed point beyond the SI was
determined 30 years ago (for the subsidiary resonance
only). The location of the fixed point for parallel pump
instability (PPI) was found to a limited extent by Za-
kharov, et al., who found the sum of the squares of the
fixed-point coordinates. These authors also point out the
crucial role played by spin-wave —spin-wave coupling in
determining the fixed point for the PPI. Furthermore,
they report numerical work with a few interacting spin
waves that indicates the existence of limit cycles, etc. As
a preliminary to finding the characteristics of the next
higher instability, we are obliged to find the actual coor-
dinates of the fixed point, not just the sum of their
squares. In a brief earlier report we used a shortcut to
establish the fixed-point coordinates for the main reso-
nance: we invoked the quantum-mechanical zero-point
amplitudes of the spin wave and traced their growth to a
final self-consistent value as threshold is approached. We

38 4893



4894 X. Y. ZHANG AND H. SUHL 38

will show in this paper that this can also be achieved by a
purely classical treatment which gives qualitatively the
same results and, in most cases, more accurate ones since
the quasiquantum approach is only valid for zero temper-
ature. At finite temperatures, spin waves are excited to
small levels even without the drive. This is taken into ac-
count in our calculation and as a result, a distribution of
spin-wave amplitudes is obtained. The distribution be-
comes sharper as the instability threshold is approached.
If the limit of zero thermal excitation is taken, the sum of
squares in the case of PPI agrees with Zakharov et al.

The stability of the fixed point in the face of increasing
signal power is investigated by subjecting each of its coor-
dinates (i.e., the various highly excited spin-wave ampli-
tudes) to infinitesimal deviations and examining the time
development of these deviations. This amounts to finding
new linear modes (not to be confused with the original
spin waves) and their spectrum. Fortunately the linear
matrix of this infinite-dimensional system is sparse thanks
to a major simplification: Interaction terms in the equa-
tions of motion that do not involve the uniform mode ex-
plicitly serve only to renormalize the coupling constants
of terms that do involve that mode. This conclusion is
exact in the stable regime of the steady state, and we as-
sume it to hold also at, and slightly beyond, bifurcation.
The spectrum thus calculated consists of two isolated
complex conjugate pairs, corresponding to collective
modes of the system, and two bands of eigenvalues corre-
sponding to "single-particle" decay modes.

When an eigenvalue crosses the imaginary axis from
left to right, instability occurs. In our case, a complex
conjugate pair with a finite imaginary part crosses the
imaginary axis, suggesting (but not proving) a Hopf bifur-
cation. By applying the center-manifold theory, we show
that the system settles into a stable limit cycle, proving
that we are indeed dealing with Hopf bifurcation.

The essence of the center-manifold theory is this: In a
situation in which the spectrum can naturally be divided
into inevitably decaying modes X and potentially nonde-
caying modes Y (the two being coupled by nonlinear
terms), one approximately solves for X in terms of Y.
One then substitutes this approximate solution into the
equations for Y. The center-manifold theory states that
the resulting equations of motion for the Y modes cap-
ture locally the basic characteristics of the original full
equations of motion. The function that approximates X
in terms of the Y modes is called the center manifold.
Appendix B illustrates, more rigorously, the statement of
the theory.

The remaining sections of this paper provide detailed
calculations of the three stages enumerated above. The
auto-oscillation frequency is found to be of the same or-
der as damping for a given system, and increases with
pump power within certain ranges. This is in good agree-
ment with experiments. The ratio of auto-oscillation in-
stability threshold to that of SI threshold is also calculat-
ed and can be compared with future experiments.

II. STEADY STATE
We use classical equations of motion,

dm
dt

= —ym &(H+ damping,

where

m+= Jake
k

and the observables are related to
~

m +
~

. This is one of
the drawbacks of the mode-expansion method. Also, for
simplicity, the anisotropy field is omitted. In most of the
ferrite materials, anisotropy is negligible compared to the
dc saturation field. Even when it is included, it does not
create new terms but modifies the coefficients of some ex-
isting terms. This may be important for further instabili-
ties, e.g., route to chaos, etc. , but is not a concern for the
present purpose. Here, we assume the dc field is along
the easy axis. Other cases will be discussed in the end.

For the three different resonant conditions, only the
lowest-order nonlinear terms are kept. All the detuning
terms are omitted. Eigenmode Bk is used which is relat-
ed to ak by a canonical transformation.

We begin with the main resonance. The equations
linking the spin-wave amplitudes Bk with the uniform
precession amplitude Bp are

Bk Pko o —k 1k k + XPkk'Bk'B —k'B —k +4k
k'

(la)

Bo =i g pk&AB kBo '%Po —&co, +(o-
k

(lb)

ilk and gk are, respectively, the damping constant and
the thermal noise amplitude at wave number k. We as-
sume that gk ——q = constant and that on the average

4kkk' fikk'
I kk I

44 =o.

Bp is the amplitude of the uniform mode driven directly
by external rf field co, . We solve for the steady state of (1)
by iteration. First, the pkk. terms are neglected, based on
the fact that spin-wave excitations Bk are small and we

have

H =He&t-h +HdIPP) +Hd& +H~

is the sum of exchange, dipolar, dc, and rf external fields.
Following Ref. 2, we expand I in spin-wave modes and
then transform to a rotating frame; the mode equations
then become equations of slowly varying amplitudes.
The steady state is referred to as the rotating frame. For
convenience, we confine the calculations to the degen-
erate spin-wave manifold, namely, all the spin waves un-
der consideration have the same frequency ct)p. There-
fore, a time-independent spin-wave-amplitude solution is
equivalent to steady-state solutions. Although the ex-
istence of the steady state is an experimental fact and is
not expected to change when other spin waves outside
the degenerate manifold are included, it is not straight-
forward to make correspondence of the time-independent
spin-wave-amplitude state and the system's steady state,
because
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and

ikk 90 0 k—pkP0
9' P—ko I Bo I

2i
I kk I Pk09BO

(ri' pk—o I Bo
I

'&' (2)

Equation (2) shows that as the SI threshold is ap-
proached, i.e., pko I BO I ~g, spin-wave amplitudes start
to grow and the distribution becomes sharper. Substitut-
ing (2) in the terms containing pkk. in Eq. (1) and regroup-
ing like terms, we find a renormalized pkp,

2
Pkk 14 I Pko

Pko Pko+2' X 2 2 4 2
k' (1 —pkolBo I

Therefore, after taking into account the nonuniform
spin-wave interactions, expression (2) is still valid except
pkp should be replaced by pkp and this leads to an itera-
tion scheme, whose fixed point pkp is given by

pkk lh I pk'0

(
2

I

— 121B 14)2
pkp =pkp+ 2i

Now the coupling constant p„o is a function of
I BO I

. It
monotonically decreases with increasing

I
BO I

such that

I pk 01 I BO I
remains less than g. This is obvious if we

replace pko in (3) by a k-independent variable p,
2

I P I

'=
I

where

pkk 14' I

k (ri' IP I

'
I
Bo I

'—&'

This has been concluded independently by several au-
thors. ' Furthermore, it should be pointed out that al-
though the spin-wave amplitudes appear to be propor-
tional to the thermal drive in (4} as threshold is ap-
proached, the denominator also becomes proportional to
that drive, resulting in a finite, nonthermal value for the
ratio. If one wishes to dispense with the thermal drive,
one finds that the spin-wave excitation is zero up to the
threshold, but then becomes finite because the denomina-
tor of (4) also vanishes. It is then still possible to deter-
mine the sums gk I Bk I

and gkBkB k, but not the in-

dividual terms. We feel, however, that inclusion of the
thermal field (or at least some zero-point motion} corre-
sponds more nearly to the physical situation, even though
it has little or no effect on the values of observables. A
case in point is the equation for

I
BO I: substituting (4) in

(1), we obtain for the steady state at the main resonance

where

co, (g I
X

I +2glmXBO}
o I

'= '
(

2
I
F12)

(5)

where Vk is the coupling between external drive and the
k th mode. By the same token, because of the spin-wave
interactions, Vk is renormalized to Vk,

&=+BkB-k
k

Equation (5) contains no critical dependence on the
thermal drive. The linear spectrum, as will be seen in the
next section, is also not affected by the thermal drive.

For the case of parallel pumping, the equations are,

Bk QBk ~~s VkB —k+ QPkk'Bk'B —k'B —k+4k
k

This important result shows that the expressions

»
I kk I Pk09B0

k —k 2 — 2 4 2(n —IPko I IBo I

(4a)
therefore,

k n I kk' I Pkk
k
—i

k (n —
I Vk I ~.}

and

14 I
'(n'+

I Pko I

'
I Bo I

')
2 — 2 42(I —IPko I I Bo I

(4b)

pk +g k =2+p+ const .

will never have vanishing denominators. It also shows
that the interaction with other spin waves stabilizes the
parametric excitation by the uniform mode. Note that
this main resonance stabilization contrasts sharply with
subsidiary resonance stabilization which depends on pkp
only. The sharp drop in P", the imaginary part of sus-
ceptibility observed above threshold, is adequately ac-
counted for by pkp coupling alone. The pkk. stabilization,
on the other hand, explains the observed slow decline of
the adsorption at the main resonance.

We also note that the pair of spin waves with opposite
wave number which are excited by the uniform mode
have their phase locked to the uniform mode through (4),

2i 9 Vk I 4 I ~s
BkB k =

2 2 2 2v„
(8)

is the steady-state solution. The qualitative feature of
Vk's dependence on co, can be sketched from (7).

I Vk I

—Vk if', &g/Vk and
I Vk I pleo, if', &g/Vk.

This guarantees the nonsingular behavior of (8), again be-
cause of the spin-wave interactions. However, in this
case it is more significant than in the case of main reso-
nance. For even without renormalization of pkp, the am-
plitude in the main resonance can still be finite provided

I BO I
sticks below g/pko, which it will do because of the

feedback equation (5). For parallel pumping, co, is con-
trolled by the experimenter, at least in the situation we
are considering. So it can assume any value it wishes and
a nonmodified Vk inevitably leads to divergence. This
was pointed out earlier in a different way by Zakharov et
al. The steady state of subsidiary resonance is already
available in Ref. 2.
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III. LINEAR SPECTRUM

Next, we consider the spectrum of small excitations of
the steady state discussed in Sec. II. We only allow the
spin-wave amplitudes to vary and keep the drive fixed.
This may not be the case in some experimental condi-
tions, e.g. , when a high-Q microwave cavity is employed
and the sample strongly reacts on the drive. In some of
those cases, nonlinear circuit coupling alone can give rise
to various interesting phenomena, but here we are only
interested in the intrinsic nonlinear behavior solely
caused by spin-wave couplings.

We begin with the main resonance. As is seen from the
steady-state calculation, the effect of the interaction of
waves with nonzero wave numbers is to modify the cou-
pling constant pk0 of uniform to nonuniform modes. We
thus assume that nonuniform spin-wave interaction terms
can be dropped in the variation. The linearized equation
is then,

58k =ipapBo58' a n58k—

to right, and a distribution of the rest of the eigenvalues
but not their exact values. This can be achieved if we as-
sume pk to be k independent. For simplicity, we let

pk ——1. The characteristic equation becomes

418o I

'
I
8

I

'N
(A+n) 1+

418ol'
=+N

I

8
I

1+

In obtaining this we have assumed gk I Ba
I

=N 18
I

and
I
BaB k I

= 18
I

. The single-particle decay modes
collapse from two bands to two points, A, = —n+

I
Bp I

Since D = (n+ A, ) —
I
8p I, we regroup (11),

418o I

'
I

8
I

'N, , =+N
I
8

I

'—(~+n»
[(A, +n) T-

I Bo I ]
(~+n)' —

I Bo I

'
(12)

Pko
+& Bo+28oPa. B*a58o

0

58o=' XpkpBkB —k580 f580
k

the quartic equation then reduces to two quadratic equa-
tions,

(9) (n+&)'+(n+A, )(
I
Bp I

N
I
8

I

'—)

+318o I
N 18

I

=0 (13)

C
=+218o

I &Pa Ca+418o I

k k Dk

where

Dk (n+~)' —Pa I Bo I

'
pan141'

(n' pk I Bo I

')'—

(10)

We first note that (10) has two bands of single-particle de-
cay modes

n+Pk
I
Bo I

+5k—

where 6k is a small shift from the original single-particle
spectrum, which can be determined from (10). To seek
collective mode solutions, we can convert the sums to in-
tegration; this leads to a complex transcendental equation
that has to be solved numerically. As will be shown in
Sec. IV, what we need is an exact analytical expression
for the eigenvalues that cross the imaginary axis from left

+& XPaPaBo58 a+& &PapB a o
k k

Careful examination of Pko as a function of
I Bp I

in (3)
shows that at and above the SI threshold,

Pkp I I
Bp

I

S n. So a rough aPProximation of
(BPkp/BBp )8 p will be 2nBo /8 o which is 2nBo /(n/Pko)
or 280pk0. Therefore, it can be incorporated in the
second term from the same bracket. We simply neglect it
and let pk denote pk0. Assuming a e ' time dependence,
we then arrive at the characteristic equation,

(A, +n) 1 4+I BIp'g
P« I

Ba I

'

k k

with solutions

I
8

I

'N —
I
Bo I

'
k= —g+

2

+—(14N
I
8

I

'
I Bo I

'—
I Bo I

'—N'
I
8

I

')'"
2

(14)

These are the collective modes of the system that consist
of two pairs of complex conjugates. When co, is increased
to a point that

I
8

I

'N —
I Bo I

'
2

one pair crosses the imaginary axis with a value of
=+2i&2, n This is. the auto-oscillation frequency for

the main resonance case.
The collective modes can also be derived if we only

keep two modes, a uniform one and a nonuniform one.
This is no surprise because our derivation assumes that
all the nonuniform modes are equal and are coupled only
to the uniform mode. The collective mode is strictly a
manifestation of interaction between the uniform spin
wave and nonuniform spin waves. In Appendix A, we
demonstrate exactly how an infinite number of spin
waves, once assumed to have equal amplitudes, reduce to
two spin waves and show that the two bands that collapse
to two points has a degeneracy of N —1. ' Since the
characteristic equation (10) is nonsingular, turning on the
k dependence of pk only spreads the two points to two
bands but keeps the number of decay modes 2(N —1) in-
tact. This means an exact solution with pk should also
have only four eigenvalues that correspond to the collec-
tive modes, because with N nonuniform spin waves and
one uniform spin wave, the total number of degrees of
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freedom is 2(N+1), leaving 2(N+ 1)—2(N —1}=4
modes. In addition, (10) is a real coefficient equation. In
fact, one of the pairs that crosses the imaginary axis can
be calculated directly from (10) right at the point of
crossing as shown in Ref. 5. Thus we are certain that the
results from the simplified calculation (pk ——1},qualita-
tively represents the true spectrum. It is important to
note that since pk I Bo I

is fixed below ri, when os, in-

creases, only two pairs of collective modes move and they
move in opposite directions, the rest of the single-particle
decay modes stand still. This can be seen from numerical
interactions of (10}. We can estimate the power depen-
dence of auto-oscillation frequency and the bifurcation
point through (14}. Substituting the steady-state solution

N IB I'=, '„—~ and IBol-~

calculation is more difficult. Taking into account the
mode-mode coupling only to the extent that it modi6es
the coupling constant to the drive will not yield any col-
lective modes. Keeping these interactions to their full ex-
tent seems to render the problem intractable. To
compromise, we keep the coupling of each (and every) in-
dividual spin wave to only one mode: namely to the one
that has the strongest coupling constant to the drive.
Denoting the wave number of that mode by kp, the
linearized equations are found to be

~Bk l~Bk +i~s Vk~B —k +PkkoBko~ ko~B——k

+Pkk B k(Bko—6B k+B——ko~Bk, ) ~

(see Appendix B), we have the auto-oscillation frequency

1/2

~Bko 9~Bko+~s ko~B —ko + Xpkok kB —k~B —ko

sosf= 1/2

COg

1/2
7l

+ g pk kB' k (Bk5B k+B ksBk),

where co, =4i}ri'~ is the auto-oscillation threshold.
Beyond it, f increases with co, until co, =Rgb}'~, and then
starts to decrease. It might well be that before co, reaches
8gg', a second instability occurs and the limit cycle no
longer exists, so that experimentally one only observes a
monatonic increase off with co, ." Since the SI threshold
is at co, =co, =gg' and

Ng 4
I 2 '2

ln =ln =ln =ln16,
Pp CO

auto-oscillation should be observed at the power about 10
dB above the SI, i.e., 10 dB above the onset of premature
saturation of absorption.

For the case of parallel pumping, the linear spectrum
I

where the "bare" coupling constant Vk is the largest

among all Vk's. The characteristic equation is,

where

Pk, IBk I Vk
~k =(~+ri) 1+4

I Bo I
'X

k I:(~+n}'—
I Vk I'~,']' Vo

Pk, I Bk I V„
Tk =icos Vo 1+4

I Bo
k I:(~+n)'—

I
Vk I'~,']' Vo

2 V 2 1+16 B ~ I
& I' +41Bo I'(&+&')

o I I o I ~p(& 2 )2
+

g(2 +g)

For notational simplicity, Bp denotes 8k and pk denotes pkk . Because of the argument made in Sec. II that the phase0 0 0
of excited spin waves are locked to the drive, we have written BoBoBkB'

k as
I Bo

I I
Bk I

in the above derivation.
We are seeking only those eigenvalues that cross the imaginary axis. The same method was used in Ref. 5. When
i} - I Vk I

co„ the eigenvalue equation reduces to
T

41Bo I
'&i

[A,(A, +2')]

where

&i= gpko I Bk I'
k

&= Q Pko I Bk I

'—
k Vp

Since Xi = I
X I, we then have

~(2m+~}= —41Bo I
'Xi+i2/2

I
Bo I

n&S,

where

X+X
1 2

Equation (15) has a solution

~=+2i
I Bo I &X,

(15)
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provided

X+X*=—2X .

This will be satisfied if the drive co, is such that

Vk(co, )
Re

Vo(os, )

(16)

this section that the limit cycle does exist. Since the cal-
culations involved are extremely lengthy, we only show it
for the main resonance case. Parallel pumping and subsi-
diary resonance should follow similarly.

The equations for the deviations from the steady state
at the instability point of Eq. (1) with nonlinear terms re-
tained are

It certainly has a solution if we look back at the steady-
state calculation in Sec. II. Also, this is only a sufficient
condition for (11) to hold. We now evaluate the oscilla-
tion frequency 2

I 80 I QX, . Since

s Vk s Vk+ Qpko «8 —k
k

+ Q P«P«8 —k ~s Vk
k

and p I Bp I
-ri, therefore, 2

I 80 I QX&-2q. Again, the
frequency is of the same order as the damping rate. '

Finally we calculate the subsidiary resonance case.
The linearized equations are

58« i p«——Po58 *
« g5—8«

+i28oP«oB' «58o2iP«08058058

+iPI oB' «58o+iP«o58o58 —k ~

580 =i g P«08«B «58o— rl580
k

+t QBoP«o(B«58 «+B«58«)
k

+i +58oP«o(B«58 «+B«58«)

+' XP«058«58 «58o-
k

(17)

580 i580 Q Pko(8k 58 —k +Bk58k )

+i (N NH )58—p,
58k 958« + tp«0 —k 580 + tp« 8058 —k

where co and ~& are the driving and resonant frequencies,
respectively. The characteristic equation is,

2
Pl I B. I

'(~+~)
(A+ri) + 2g —dos

k D

3 g 2 2

4IB I, ~ pkl «I
D

where

D =(n+~)' P« I Bo I

' .—

In the case of coincidence, hco =0, we have
A, =+i(ri/&2) provided q =(—,

' )gk p« I Bk I
. The latter

can always be satisfied in a certain power range. In deriv-
ing the above result, it is kept in mind that p« I 80 I

2-ri .
Under an ordinary subsidiary resonance condition,
b,co&0, ri can be replaced by (ri +b, to )'~ if b, tv is small.
The auto-oscillation frequency then becomes

f=(1 &/)(2g +(sv —AH�) )'~ . This dc field dependence
of the frequency in subsidiary resonance was found in one
of the first observations of auto-oscillation. '

IV. CENTER MANIFOLD

As shown in the last section, the steady state attained
above the old SI threshold is in turn destroyed at a
second threshold, with a pair of complex conjugate eigen-
values of the linearized equations moving across the
imaginary axis. The imaginary part of these eigenvalues
is identified with the auto-oscillation frequency if it is
taken for granted that beyond the new threshold, the sys-
tem settles down in a stable limit cycle. We will prove in

where the nonuniform spin-wave interactions are neglect-
ed. In principle, nonlinear terms in (17), if they have the
right sign, will restore stability of the linearly unstable
mode. However, the unstable mode in our system is a
linear combination of the 58«s, showing the collective
nature of the unstable modes. Thus it is impossible to
identify whether the nonlinear terms do have the "right"
sign or not from Eq. (17) as it stands. It is necessary to
transform (17) to a new normal-mode base. With a(t)
denoting the amplitude of the unstable-mode time depen-
dence, the equations then have the form (A, complex with
positive real part):

a(t ) =la(t )+nonlinear terms . (18)

However, the nonlinear terms in (18) contain various oth-
er decaying modes, and the difficulty of solving them is
equivalent to solving the whole set of equations. For-
tunately, center manifold theory can be applied to resolve
this problem. It provides a standard recipe for systemati-
cally approximating the decay modes in terms of the un-
stable modes and then substituting them in (18), which
then assumes a standard form:

a(t ) =la(t )+P
I
a

I
a+ higher orders in a . (19)

v = (58 ),58 ),582,582, . . . , 580,58 0» ) .

Equation (17) can then be written as,

dv

dt
=Lv+X(v), (20)

The function that expresses the decay modes in terms of
the unstable mode is called the center manifold. A
mathematical introduction to the theory can be found in
Ref. 13. In order to make the line of calculation clear, we
first use an abstract notation. Our method of computing
the center manifold follows closely to that of Crawford' s
treatment on plasma instabilities and Hopf bifurcation. '

Let U be a vector in a configuration space with its bases
being the complex spin-wave amplitudes,
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where L and X are linear and nonlinear operators, respec-
tively. Denote by g and g the eigenvectors correspond-
ing to the unstable modes A, and A,

* with their time
dependence a(t ) and a (t ) factored out, we have

where

=0, &g, y&=0
Lg=A, P,
Lf=A, 'g .

(2l} and also

&g, h, &=&g,h; &=&g,h, &=0,

&g, h, &=&g,h; &=&g,h, &=0.We then expand v(t ) in terms of those modes,

V, = a(t)g +a'(t)g +S,( a, a', g, f), (22)
The latter can be easily verified once h, , h»i, and hz are
obtained.

Substituting (22) in (20), we get

a/+a 'P+S, =hag+A, 'a'P+LS,

where V, is the center manifold. For the present pur-
pose, we approximate S, in the lowest nontrivial order of
a,

S,=h, a +hi a +h2 I
a

I
(23) +N(a/+a'P+S, } . (24)

where h „h, , and h2 are to be determined, and note that,
by definition (22), S, is biorthogonal to f, P

Since L is not a self-adjoint operator we need to con-
struct eigenvectors corresponding to L, as well as L, in
order to use the biorthogonality property to separate our
difFerent modes, and we have

Ltd=A, 'g,

Taking the inner product with g, (24) becomes

a=i,a+ (25)

The next step is to find the coefficient of
I
a

I
a in

& g, N &. We first compute S, by placing (25) and its com-
plex conjugate [as well as (23)] back into (24),

2A a(2t)h, +2k, 'a (t)h;+(A, +A, ')
I
a

I hz —L(h, a +hi a +hi I
a

I
) — '

g — ' f+N, (26)

h, =(L —2A, )

h; =(L —2A, ')

h, =[L—(A, +A, ')] ',
(27)

where h, is the coefficient of a in Yc, h ', the coefficient
of(a ) in Y&, andhz thecoefficientof Ia I

in Yc and

and comparing the coefficients of a, a, and
I
a

I
on

both sides of (26), we obtain
2i [(A, +ri)BoB' k5Bo+p—k I Bo I BkBo5Bo ]

Bk=
~ 4

(A, +ri) —
I Bo I

5B'
k =5Bk

(29)

but with A, unchanged. Substituting (29) in (28b), we find

iB
5Bo ~ 5Bo,

where, as indicated earlier, we set all Bk ——B. Conse-
quently, the eigenvector has the form

(A, +g)5Bk —iBo5B k =2iBoB k5Bo

(A, +rt)5Bo i g BkB 1,5Bo-
k

(28a)

=i +Bopt, (B o5Bkk+B k5Bk) . (28b)
k

Thus 5Bk and 5Bk are expressed in terms of 5BO, 5BO:

With the help of the above formulas, we now proceed to
compute P, the coefficient of the cubic term in the normal
form. It is seen in (27} that in order to calculate h, the
linear matrix L has to be inverted. This is analytically
feasible only if we assume that all the nonuniform spin
waves are identical. The eigenvectors f and g can be ob-
tained from the linear part of (17}:

—BOB

2N
I
B

I

'
I Bo I

' (A, }

—iBOB
(A, )

2N
I
B

I

'
I
Bo I

'

iB

1

(30}

where g=fi and g=g&», f(A. )=N
I
B

I

—(i)+A, }, and

the dots are the reoccurrence of the first two elements in
the vector. In deriving gi, we have used the identity ob-
tained in the characteristic equation
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n+~+
I
Bo I

'
N

I
8

I

'—(~+~)
(~+a}' —

I Bo I

' 418o
I

'N
I
8

I

' A
1

I
—Bo I

' iB*0

~ 2—iBp

In the same way, the adjoint eigenvector is obtained

BoB
(A, *)

2N
I
8

I

'
I Bo I

'
iBoB

(A, '}
2N

I
8

I

'
I Bo I

'

iB

j.

where g=g&+ and g=g&.
The linear operator L has the form,

r

(31)

4ri181 N

I
B—o I

'
—

I Bo I

'

o

4181'n'
Bo—I

'

q+Na+N
I
8

I
'(1+ a}

detTp

—iBo2

I Bo I

'

Tp—
ri+Nb—, iB N(1+9, )

iB—' N(1+5) ri+Nb, —
—ri+Nb, iB —(1+6 )N

detTo iB (1+6 )N ri+N—h

The last 4 y 4 block of I. ' has the form

C C C D

where

iBo 2iB 'Bo

A '(E W)—
—A 'W
—A 'W

TB*A

—A 'W

A '(E —W)
—A 'W

TB A'

—A 'W
—A 'W

A '(E —W}
TB*A -'

—A 'BT
—A 'BT

'BT '

—iBp

2iBp B
—2iBpB

'

—2iBBo

7l

—iNB '2
iNB 2

there are a total of N A, B, and C submatrices in I.. I. is
inverted by diagonalizing with row eliminations and by
applying the same operators to a unit matrix. The invert-
ed L has its diagonal elements all being A '(E —W) ex-
cept the last one, T. The last column has its elements all
being —A 'BT and the last row TB*A ' with the ex-
ceptions of the last element. The rest of the elements in
1. ' are all —A 'W, where

Detailed calculations are shown in Appendix B. The
common factor ri —

I Bo I
is about the order of thermal

drive for the finite temperature case and quantum fluc-
tuation for the zero temperature case as is argued in the
steady-state calculation. We denote it by I. Equation
(4a) shows I'-ri

I g I
. (L —2A, )

' and (L —2A, ') ' can
be obtained simply by replacing ri in L with ri+2A, and
ri+ 2A, ', respectively.

As a last step to calculate h, we want to obtain the pro-
jection of N on a, a', and

I
a

I
. This is done by sub-

stituting v =a/+a'Q+O(a ) in the nonlinear terms of
(17),

Nk a(2iBokf——o+'8 6)+a (2iBofof k+iB'1('o}+
I
a

I
'[2iBo(kok k+ 4ofk )+2'8 kPo0oj—

No=a iBo g 0k+2' QBCoA +a 'Bo g 4k+2'Pop 68
k k k k

+ 1al' 2iBo yy„y, +2i PoyBPk+PoX84
k k k

The other two terms in (26), (g,N) and (g,N), turned out to vanish because they are proportional to Bo+Bo and
Bo = —Bo from steady-state calculations. This is an artifact of the simplification of Bk ——B and pk

——1. Fortunately,
this term, when kept, contributes little and negatively to the real part of P, leaving the final result unchanged. We then
have —h, equals the coefficient of a in (L —2A, } 'N and —h2 equals the coefficient of

I
a

I
in L 'N. The results are

(see Appendix B),

I I

h'

go
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where

1 1
1

h, =C,
l

1
0 0h, =C1

C, gB
' (u, +n)' —

I Bo I

'
32(1+A,) [ri —A,h, —X (6,+ri)]N

~

B
~ g

[(2~+ri } —
I Bo I

(2—X)(A, +10}[A, (re+hi }+khi ri)B—o+ —(1+A, )'
detT1

B0
C1 ——

3detT1

8gN
~

B
~

(iL+1}[A(i}+hi)—g]
(2A, +ri) —

~
Bo ~'

(2 —A, )(A, +10)[A(q+5, )+q]
2

detTi ——(2A, +1) (ri+b i) —(3ri+b &)

4N[Bi iy

(2A, +my) —
f Bo

/

and iBB0
Nk i2Bo h——z k+h, k+ (2—A)hzo

h~=
h2

1 1
1

h2 ——C2 l

1

h2 ——C2
0 0

iBB0
(2—A*)bio

6

BB0 BB0
+2B'i(h2o+h io) — (2 —A, ) — (2—A,*),

No=2Bol' g (h, kgk+hi krak)
k

+2i y B(/khan()+ $2o+ykh io+eoh2, k+ |('o"i, k )

k

+ i g (24k 0k 40+ 840}

where

4' 0 4~2

d tT
I
Bo I

4~B —16~4 4„2

I Bo I

' (g'——
I
Bo I

')detT detT 3

where h2 k and h1 k are the kth component of h1 and h2.
After entering the numbers (see Appendix B), we find

(g, N) = ——[(1+W2)i+V2]
~

a
~

~ar
so

and

detT =(i}+6)'—(3g+b, )',

4NiBi vg

I Bo I

'— where

1 31+ &2+&2i—
I 2

We are now in the position to evaluate the coeScient of
the cubic term in the normal form (19). The coefficient of

~

a ~'a in Nis,

I Bo I

'—
r=

Since ReP & 0, we thus confirmed the existence of the lim-
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it cycle and the type of instability being a Hopf bifurca-
tion. The size of that limit cycle a little above the bifur-
cation point is

Re

The application of the center-manifold theory is some-
what shadowed by the presence of N —1 zero A, 's, as dis-
cussed in Appendix B. This is a result of the assumption
that pk equals the constant and all Bk's are the same and
the thermal and quantum fluctuations are absent. As
soon as the assumption is removed, those X's become neg-
ative. The question then raised is how far away those A.'s

are from the imaginary axis so that the center-manifold
calculation is still meaningful. We do not have a com-
plete answer to this question. Our confidence in using the
center-manifold theory comes from two sources. The
first is from numerical calculation of three spin waves,
i.e., six modes. We can clearly see the unstable pair
crossing the imaginary axis without dragging any other
modes with it. The second is from the experimental ob-
servations that exhibit a low dimensionality as the auto-
oscillation occurs.

V. DISCUSSION

Throughout this paper we have used mode expansions
as our starting point. This leads to several difficulties
especially in the case of parallel pumping where trunca-
tion of interaction becomes more questionable. An alter-
native method is to use Newell-Whitehead-Segel envelope
equations' and it is planned to present such a treatment
in a later publication.

The damping rate g we used in this paper corresponds
to ordinary ferromagnetic resonance linewidths at a small
signal level. Usually for YiG, g is of the order of hun-
dred KHz or a MHz. This is also the range of auto-
oscillation frequency observed in experiments. The ob-
servation that the auto-oscillation frequency decreases
when the system is cooled down' makes our result more
convincing to the extent that g is a monotonically de-
creasing function of temperature. It would be interesting
to determine if doping or roughening the surface of the
sample sufficiently to increase the g causes the auto-
oscillation frequency to increase.

The use of center-manifold theory has helped to clarify
the effective dimensionality of the system, i.e., the
effective number of spin-wave modes involved. Various
experimentally observed time series indicate a low dimen-
sionality "" and it appears to be the case that two
spin-wave mode computations presented in the past cap-
tures qualitatively much of the observed behavior. In
this paper we have furnished an explanation for this
empirical result: In fact, the entire degenerate spin-wave
manifold is excited, but organizes itself into new eigen-
modes of which only a few are active. Therefore, the dy-
namics of the system is low dimensional even though the
number of degrees of freedom is infinite. On the other
hand, under conditions of total chaos, progress has also
been made in estimating the dimensionality. ' That will
provide us clues on whether further instabilities will
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APPENDIX A: DEGENERACY OF THE
COLLAPSED SPECTRUM

The characteristic equation for the eigenvalue of linear
operator L, det(L —A,I)=0, has the form,

det

A'

A' B
~ ~ 0 Q D

=0, (Al)

where B, C, and D are defined in Sec. IV and

—iBO

iBO

If we subtract the second column from the first, and then
add the first row to the second, (Al) becomes

det
A' B

0 C . . C D

Follow the same procedure to the rest of the columns and
rows, the determinant becomes,

occur on the low-dimensional center manifold we have
constructed.

Finally, when the dc field direction is turned away
from the easy magnetization axis, the coupling constants

pkj, will change. This can be seen easily if an anisotropy
field h = AM, is added in the equation of motion. Some
of the couplings that are neglected in our treatment may
then become important and the linear spectrum would
change accordingly. The pair of complex conjugates
crossing the imaginary axis may not occur at all or there
are more than two eigenvalues may cross simultaneously.
In the former case, the absorption rate will remain steady
and in the latter, irregular oscillations, even chaotic be-
havior may set in directly. "' Unfortunately, our theory
does not yield these results automatically. Ad hoc as-
sumptions, on keeping some special modes, can simulate
several abnormal oscillations, ' but have not been corro-
borated by any theory to date.
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A'

det

A'

C

(N 1—)B
NB
D

or

A' NB
(detA') 'det

& D
——0,

so, detA'=0 has N —1 degree of degeneracy.

A' NB
det C D

gB=iBQ

gBQ ———iso, +iNB Bo, (Bl)

with solutions

for various expressions. The steady-state calculation is
Sec. II can certainly be used. But since the linear opera-
tor in the center-manifold calculation is inverted by as-
suming all the nonuniform modes are the same, we might
as well, for simplicity, use that assumption for the
steady-state expression. Also, since thermal noise in gen-
eral has a random phase, which makes it hard to deter-
mine the phase of each Bk, we neglect it for the present
purpose. The negative consequence of this will be dis-
cussed. The steady-state equations are simplified to

is identical to the two-mode characteristic equation with
B replaced by NB. N is the total number of nonuniform
modes.

APPENDIX B: CALCULATIONOF THE
CENTER MANIFOLD

Since the final goal in the entire calculation is to deter-
mine the sign of P, actual numbers have to be substituted

IBo I'=n
IBo I

yo
—— n/2, —y= n/4—,

where yQ and q are the phases of BQ and B.
We next illustrate in detail the inversion of L. Putting

a unit matrix beside it, we have

A B E

A B
(B2)

-B' -B'
A, B, and D are de5ned in Sec.
(B2) becomes

D

Ip. "ultiply every row except the last one by B'A ' and add to the last row. Then

A B
B'A-' B'A-' B'A-' E

I~

where To=D+NB'A 'B. Then multiply the last row by BT 'and subtract it fromevery other row; this gives

A

E—W

—W

—W

—W —BTQ '

—W —BTQ

—W

—W —W E —W
To

B A ' B A ' . . B A

—BT, '

where

W=BTQ 'B A

Finally, multiply A ' into every row except the last pne, and multiply TQ
' into the last row. The inverted matrix is
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L —1

A '(E —W)
—A 'W

—A '8'
TB*A

A '(E —W)
—A '8'
—A '8'
TB A

—A '8'

A '(E —W)

TB A

—A 'BT
—A 'BT

—A 'BT
(B3)

whe e T= To
All the entries of L ' are evaluated, with

16m(2/8
/

~

(vy —/Bo
/

)detTo

N]

with

TB A
4iBoB*g —i —1

detTo(rl —
~
Bo

~
)

g(2 —A, )
Q] —

3
1

4iBoB l
A 'BT=

(g' —
I Bo

~

)detTo

The term 1/rl —
~
Bo

~

as it stands is divergent. This is
due to several reasons. First, it is a direct result of steady
state without fluctuation. With fluctuation, as stated in
the main text of Sec. IV, rl —

~
Bo

~

—rl
~ g ~

with
being the fluctuation (g')'~ . Second, it is a result of as-
suming all the nonuniform modes are identical. That as-
sumption leads to A, = —q+

~
Bo

~

with N 1 degener—a-
cy. Together with the above oversimplified steady-state
calculation, there are N 1 zero value A—,'s. Physically, it
simply means that while the amplitude of each nonuni-
form mode is undetermined, only the sum of BkB k is
determined. Since we have developed our mathematical
scheme on the basis that only two modes cross the imagi-
nary axis simultaneously, any other zero eigenvalue will
certainly cause divergency through matrix inversions.
Fortunately, the true single-particle modes are decay
modes, A, k &0. This is because when SI occurs, the sys-
tem reacts to it to restore stability in such a way as to
hold those eigenvalues below zero. More rigorous
demonstrations can be found from a two-mode calcula-
tion.

From now on, we use the steady-state equation (B1) to
substitute in the numbers, but treat I =rl —

~
Bo

~

as
finite. Both (g, N) and (g,N) are evaluated to be zero
from the following calculations. The coefficient of a in

(g, N) and (g, N) is

and

with

/a/ V2

4 B
U) = 3'g —2

Bo
v2 ——2'( rl —2)

hi —— (L —2A, )—N
~

2 —— L„'2iN —
~

(L„+2„means to replace rl in L by rl+ 2A, ),

Applying (B3) we have,

h,'

h) —— oh)

where

1 —1 —1 —1h ) =XA ~+2g ~~+2g U) + A ~+2' T~+ 2g Uo —A ~+2g U&

h i = —(NT~~ ~~8 A ~+2i Ui + T~+ ~it Uo )

(g,N), = ' (2-~)(;8+2iB*)N

iB Bo
+ (2 —A, )( —', 8* 2iB)N, —

and

h'
h2= o

h~

= 3~(Bo+Bo }=0,
( g', N ) 2 ———4(Bo +Bo ) =0 .

The coefficients of
~

a
~

in (g, N ) and ( g, N ) vanish for
the same reason. We now show the detailed calculation
of h i and h2. The coefficients of a and

~

a
~

in vector N
can be expressed in a more convenient way,

where

h2=XA~ @~V&+A~ BT~Vo —A~ V]

h = (NT„'8*A„'V—, +Tq 'Vo} .

The above ten terms in h
&

and h2 are evaluated. For no-
tation simplicity, we denote detTo as detTo and
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detT0 as detT, . Therefore,
g+ 2A,

1
NA „+2&W„+2& U&

——K' i
—1

(1+XPN
I
8

I
'Bq'[q —Xa, —a'(a, +q)]

K) ————",

[(2A,+ rl )~ —
I Bo I ] det T,

1—1 —1A q+2~BTq+2g Uo =K2

28oBri(2 —A, )(A, +10)[A, (ri+b, )+A&t —ri]

3det T& [(ri+ 2A, ) —
I Bo I ]

—1
1

A „+2&U, =K3

q(A, +1)'8
' [(2~+ri)' —

I Bo I
']

I

NT~+2~B* A ~+2~U1 =K4
1

8& 8,'N I
8

I
'(A, +1)[A(k,+ l)(rl+b, , ) —ri —A, ]

detT, [(2A, +g) —
I Bo I ]

—1
1

q+2A, 0 —
5

(2—A, )(A, +10)[A(ri+b ))+ri]Bo
6detT&

1
NA „'8'„V,=K

riNIBI 8
6 ' (n'

I
B—o I

')'detTo

1
A

& BT& Vp =K7

16' B
(n'

I Bo—I
')«t To

1

Ag 'V) ——K8

4gB
3(n' —

I Bo I

')

NT 'B'A 'V =K
1
— 9

I J

N IB I
B~~rj

K9 ————,
16
'

detTo(ri —
I Bo I

)

T~ Vp=Kio
—1

4gBp
10 d tT

'Present address: Control Data Corp. , 7801 Computer Ave. , S.,
Minneapolis, MN 55437.

~S. Wang, G. Thomas, and Ta-Lin Hsu, J. Appl. Phys. 39, 2719
(1968).

H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).
~V. E. Zakharov, V. S. L'vov, and S. S. Starobinets, Usp. Fiz.

Nauk 112-114,609 (1974) [Sov. Phys. —Usp. 17, 896 (1975)].
4(a) K. Nakamura, S. Ohta, and K. Kawasaki, J. Phys. C 15,

L143 (1982); (b) X. Y. Zhang and H. Suhl, Phys. Rev. A 32,
2530 (1985); (c) F. M. deAguiar and S. M. Rezende, Phys.
Rev. Lett. 56, 1070 (1986).

~H. Suhl and X. Y. Zhang, Phys. Rev. Lett. 57, 1480 (1986).
In the presence of thermal agitation, the fixed point, even at

low signal powers, is already slightly away from the uniform-
mode axis, but moves away from it rapidly as the pump
power approaches the SI threshold to within a thermal
power.

7J. D. Bierlein and P. M. Richards, Phys. Rev. B 1, 4342 (1970).
When the thermal drive tends to zero and the SI threshold is

approached so that some spin waves start to attain non-
thermal values, 7) —pko I Bo I

scales with
I gk I, as can be

seen from Ref. 4(a). The limit of zero thermal drive restricts
the excited spinwaves to those that satisfy g=pko I Bo I

. Be-
cause

I Bo I /g is k independent, the excited spin waves all
have the same coupling constant p and therefore their indivi-
dual amplitudes equal an undertermined phase governed by

the random drive, Bk ~ iri( fk /—
I gk I

) pBo(g k /
I gk—I

).
The constant of proportionality can be evaluated from Ref. 5.

J. Smyth and S. Schultz (private communication).
~ The value of A, that corresponds to the plus sign is close to

zero, which reflects the fact that the distribution of ampli-

tudes among nonuniform modes remains undetermined.
Once we restore the k dependence of pk, the distribution of
spin-wave amplitudes is fixed and A = —ri+ I pl, o I I 8&& I

will

never reach zero as argued in Sec. II.
Paul Bryant, Carson Jeffries, and Katsuhiro Nakamura, Phys.
Rev. A (to be published).

Hitoshi Yamazaki and Mike Warden, J. Phys. Soc. Jpn. 55,
4477 (1986).

~3J. Carr, Applications of Center Manifold Theory (Springer-

Verlag, New York, 1984), Vol. 28. See also, John Guckenhei-
mer and Philip Holmes, Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields (Springer-Verlag,
Nrew York, 1983), Vol. 42.

4John David Crawford, Contemp. Math. 28, 377 (1984).
A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279
(1969);L. A. Segel, ibid. 38, 203 (1969).
G. Thomas and Goh Komoriya, J. Appl. Phys. 46, 883 (1975).
Tepper L. Gill and W. W. Zachary, J. Appl. Phys. 61, 4130
(1987).

SX. Y. Zhang, Ph. D. thesis, University of California, San
Diego, 1987 (unpublished).


