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We investigate the nature of modulated lattice distortions that can occur in a two-dimensional ar-

ray of classical magnetoelastic chains coupled together by elastic interactions only. The phase dia-

gram for the lattice structure is obtained by numerically minimizing a one-dimensional,

temperature-dependent, effective-free-energy functional of the elastic variables. At zero tempera-

ture, only phases where the winding number is uniquely defined are found, and the transitions

among these phases are suggestive of a complete devil s-staircase behavior. These numerical results

are consistent with N. Ishimura s analytic demonstration that such a staircase exists [J. Phys. Soc.
Jpn. 54, 4752 (1985}]. At finite temperatures, phases where the winding number is not uniquely

defined are found and, in addition, first- and second-order transitions appear. Also of interest are

superdegenerate lines where the equilibrium phase is composed of noninteracting solitons of zero

energy.

I. INTRODUCTION

Spin-lattice models, in which a local order parameter
couples to the elastic deformations, are useful for describ-
ing structural phase transitions. ' These approaches,
where the elastic variables are treated in the continuum
approximation, although successful for handling long-
wavelength instabilities, are not suited to deal with
short-wavelength situations. Recently, ' however, it was
shown that periodically modulated structures of short
wavelengths can occur in discrete spin-lattice models.
Indeed, the magnetoelastic model of De Simone, Stratt,
and Tobochnik is known to be equivalent to the axial
next-nearest-neighbor Ising (ANNNI) model and, as
shown by Ishimura, the ground-state phase diagram of
an Ising magnetoelastic chain exhibits a devils stair-
case. ' In this paper we study a simple magnetoelastic
model containing both first-neighbor elastic interactions
and finite-temperature effects. As such, it is a generaliza-
tion of the models of Refs. 3 and 4. We shall see that
these generalizations will bring about interesting new re-
sults.

The model consists of one-dimensional (1D) classical
spin chains interacting with three-dimensional (3D) elas-
tic variables. It is already known" ' that even if the 1D
interacting spin system cannot sustain long-range mag-
netic order at a finite temperature T, it can create, by
means of a magnetoelastic coupling, nonuniform lattice
instabilities and thus a phase transition at finite T for the
elastic variables interacting in three dimensions. Since
the spin-exchange interaction depends on the bond
length, the lattice distortion affects the short-range mag-
netic order and thus its long-range order at T =0 in the
distorted lattice phase. In this way, the magnetoelastic
coupling changes the form of the long-range and the
short-range order present in the bare lattice and the bare
1D magnetic system.

For homogeneous translationally invariant models, it
has been shown' ' that the equilibrium lattice structure
is always uniform when only first-neighbor interactions
are present, that dimerization can be triggered by
second-neighbor elastic interactions, and finally that
modulated structures of a period longer than two can
occur when third-neighbor elastic interactions are includ-
ed. In this paper we consider models without translation-
al invariance. As is usual in microscopic models ' ' of
structural phase transitions, the substrate potential seen
by each particle is intended to mimic the effect of a rigid
background offered by the other atoms. As is shown in
Refs. 3 and 4, one then finds that only first-neighbor in-
teractions are needed to obtain periodically modulated
phases. In order to investigate the kind of modulated or-
der that can result from a magnetoelastic coupling alone,
we present a model where the equilibrium lattice struc-
ture is always uniform (unmodulated) in the absence of a
magnetoelastic coupling. Therefore, frustration results,
in our case, only from the magnetoelastic coupling.

As in Ref. 12, the equilibrium lattice structure is ob-
tained from the configuration of lowest energy (the
ground state) of an exact free-energy functional of the
elastic variables obtained by integrating over the spin
variables. From this free-energy functional, it is easily
seen that effective nonconvex' ' first-neighbor interac-
tions arise as a result of the magnetoelastic coupling. We
use the powerful numerical algorithm proposed recently
by GriSths and Chou' ' to find the ground state of this
free-energy functional. This algorithm has the advantage
of not postulating, a priori, the form of the ground-state
configuration. It is based on a minimization eigenvalue
equation which focuses directly on the ground state in-
stead of searching for it among all the extrema of the free
energy as is usually done. This last property is very
useful since the two-dimensional (2D) map that results
from the extremum condition' ' (when the range of the
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interactions is limited to first neighbors) is, in general,
multivalued in the presence of nonconvex interactions.

The phase diagram obtained is very complex. At
T =0, our model reduces to that of Ishimura and our
numerical results are suggestive of a devil' s-staircase be-
havior in accordance with Ishimura's results. At finite
temperature, the free-energy functional resembles that of
model 2 of Refs. 14 and 15 and similar results are ob-
tained: a devil' s-staircase behavior for transitions among
"convex" phases' ' (where all the particles experience
only the convex part of the interacting potential} and
first- and second-order transitions among "nonconvex"
phases' ' (where some of the particles experience the
nonconvex part of the interacting potential). Also of in-
terest are lines in parameter space where the ground state
of the free energy is infinitely degenerate. Along these su-
perdegenerate lines, ' the lattice structure is seen to be
formed of noninteracting solitons of zero energy. At
finite temperature, phases where the winding number is
not uniquely defined (i.e., two numbers instead of one are
needed to identify the phase) are found whereas only
phases where the winding number is uniquely defined are
found at T =0. We have also identified a point in param-
eter space where a superdegenerate point breaks into tri-
ple points. The phase diagram around this point is seen
to be similar to the one found recently by Yokoi, Tang,
and Chou' for the chiral XYmodel.

The organization of this paper is as follows. The mod-
el is presented in Sec. II and the free-energy functional
for the elastic variables is derived in Sec. III. The numer-
ical results, including the phase diagram for the lattice
structure, superdegenerate points, and tricritical points,
are presented in Sec. IV. Finally, our results are summa-
rized and discussed in Sec. V.

II. THE MODEL

To study the nature of the lattice distortions that may
occur in a 2D array of classical spin chains coupled to-
gether by elastic interactions, it is important to avoid un-
necessary complications. Thus we assume that all the
elastic interchain couplings are identical and sufficiently
strong so as to achieve a 3D structural long-range order
with all the elastic variables in phase with their inter-
chain nearest neighbors. In this case, the identical distor-
tion (if any) of each chain can only be modulated along
one direction and all the transverse couplings need not be
included in the Hamiltonian when using a mean-field ap-
proach. This kind of elastic anisotropy can be found in
certain quasi-one-dimensional magnetic systems ' ' that
have a high-temperature structural rearrangement which
prepares the softening of the lattice in one particular
direction without softening in the other two directions.
Therefore, for such physical problems, we propose the
following 1D Hamiltonian:

u„ is the displacement of the nth particle with respect to
some reference position, here assumed to be a regular 1D
lattice of equally spaced points. These particles also pos-
sess classical spin degrees of freedom which are described
by an n-vector S; interacting with first neighbors through
the exchange integral J, which is a function of the atom's
spacing. In this paper we consider the simplest case
where J depends linearly on the atomic spacing:

J(u„+,—u„)=Jo —J) (u„+ )
—u„), (2.3)

where Jo and —J, are, respectively, the value of J and its
gradient evaluated at (u„+ &

—u„}=0. J& is thus the mag-
netoelastic coupling. Although a modification of this
linear dependence could change the behavior of the re-
sults, we limit ourselves to (2.3), this expansion being al-
ways valid for small displacements.

The term —,'Kou„ in (2.2) is physically interpreted as the
local potential experienced by a particle in the nth cell as
a result of the interaction with the rigid background.
This unbounded local potential, although useful for
describing structural phase transitions, is not appropri-
ate for materials where particles can jump from one unit
cell to another. Hence, this local potential confines each
particle to its cell and the average lattice distortion
(u„+,—u„) must be zero for an equilibrium lattice
structure:

N

lim —g (u„+&—u„)=0 .w-~ N„
(2.4)

Were this not so then, with (u„+,—u„)=5, the energy
E (N) of a chain of N atoms would increase dramatically
with N:

N

E(N)- g Eo(nfi)
n=1

(2.5)

III. EXACT FREE-ENERGY FUNCTIONAI. OF
THE ELASTIC VARIABLES

Hence, adding a pressure term proportional to
(u„+ &

—u„) to (2.2) would have no effect on the equilibri-
um lattice structure. However, the action of a pressure
could be simulated, in a first approximation, by changing
Jo and keeping Eo, K&, J, constant.

J& ——0, the spins decouple entirely from the elastic vari-
ables, and frotn (2.2) it is easily seen that the equilibrium
lattice structure is that of the uniform phase Iu„=0).
More generally, it has been shown' ' that the ground
state of (2.2) is always uniform for a convex substrate po-
tential and for convex first-neighbor interactions. Hence,
periodically modulated lattice phases can only occur in this
model for a nonzero value of the magnetoelastic coupling
Ji.

H =H, + g J(u;+, —u;)S; S;+, ,
i=1

with the elastic part H, of the Hamiltonian given by

(2.1)
As in Ref. 12, the 3D equilibrium lattice structure is

the ground state of the following temperature-dependent
free-energy functional F, of the elastic variables:

H, = g [—,'Eau„+K, (u„+,—u„}],
n=1

(2.2)
—13F —PH pe '=e ' tr e g J(u;+& —u;)S; S;+~

I st. I

(3.1)
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where P=(kttT) '. This mean-field approach, although
useful for finding the equilibrium structures, can only
yield the classical critical exponents. In this work, we
will be only concerned with the equilibrium phases.

For the Ising model (n = I), the trace in (3.1) has the
following meaning:

2 2 2X X '' X
S) S2 SN

(3.2a)

where each sum is restricted to the two possible values of
S; =%1. For the Heisenberg model (n =3},the trace in
(3.1) becomes

4(J)= ——,'PJ ( Ising ),
4(J)= ——,'PJ (Heisenberg) .

(3.6a)

(3.6b)

Apart from quantitative diff'erences, the lattice structure
phase diagrams are expected to be qualitatively the same
for these two models since their function 4(J) is similar.
For this reason, the numerical calculations in Sec. III are
performed for the Ising model only.

Equation (3.3) is written as

The polarization action of the spins is less effective for
continuous Heisenberg spins than for discrete Ising spins.
This is revealed in the expansion of (3.4) for J«P

( dQ) I dQ2 I dQN

Is,. I
4m- 4~ 4~

(3.2b)
F, = g [—,'x„+g(x„+,—x„—v)],

n=1
(3.7a)

where the d 0,. are the spherical solid angle elements. Be-
cause of the unidimensionality of the spin interactions
and the rotational invariance of the Hamiltonian, these
integrations can be performed exactly. ' %e immediately
find

f(x):ax + 4—(J),

x„=J i u „/( J i /Ko ),

(3.7b)

(3.7c)

F, =H, + g %[J(u;+,—u;)],
i=1

(3.3)
a =K, /Ko, (3.7d)

where 4(J) is defined by

4(J)= —P 'in[cosh(PJ )] (Ising), (3.4a)

+(J)= —P ' ln (Heisenberg) .sinh( J)
J (3.4b)

At T =0, for all n-vector models, 4(J) becomes

%(J}=—
~

J
~

(T =0), (3.5)

where
~

x
~

means the absolute value of x.
The form of %(J) leads us directly to the mechanism

responsible for structural instabilities in the model given
by (2.1). The ground-state energy of a pair of spins in-
teracting with an exchange integral J is —

~

J
~
. Indeed

for J positive or negative, the spins align themselves, re-
spectively, antiferromagnetically or ferromagnetically at
T =0, giving the result (3.5). Hence, for nonzero magne-
toelastic coupling, the atoms displace themselves in order
to minimize the total energy which includes the contribu-
tion —

~

J
~

of their spin degrees of freedom and, in this
manner, the lattice becomes polarized. At finite temper-
ature, this effect is reduced due to an entropy contribu-
tion resulting from a nonzero occupation probability of
the excited spin states. In addition, %(J) shows a con-
tinuous variation near J =0 at finite T. This reflects the
fact that the spin-state energies and the occupation prob-
ability of the states vary continuously with J. It is only
the ground-state energy that varies discontinuously be-
cause of the discontinuous change of the ground state
from ferromagnetic (FM) to antiferromagnetic (AF) at
J =0. Hence, it is the possibility of inuerting the sign of
the exchange integral, as a function of the interparticle
distance, that permits the occurrence of lattice instabilities
in Hamiltonians of the form (2.1). This feature is to be
contrasted with the quantum spin-Peierls transition
where it is not needed.

where F, and v are, respectively, F, and Jo scaled in units
of Jf /Ko. In (3.7b), %(J) is (3.4a) for the Ising case and
(3.4b) for the Heisenberg case where P is scaled by
Ko/J, . The reduced temperature r is defined by
r=P '/(J, /Ko). This choice of energy unit is more ap-
propriate than J

&
/2K, (Ref. 12) made for translationally

invariant models since the ground state of (3.7}exists and
is, a priori, nontrivial when K1 ——0.

From (3.7) and (3.4), the magnetoelastic coupling is
seen to generate an effective nonconvex first-neighbor in-
teraction and, therefore, in solving (3.7), we seek a better
understanding of both magnetoelastic systems and sys-
tems with nonconvex interactions. ' ' In particular it is
interesting to see to what extent the features present in
the phase diagrams of Refs. 14 and 15 remain in the
phase diagram of (3.7).

IV. NUMERICAL RESULTS

The numerical algorithm proposed recently by
Griffiths and Chou' ' is used to find the phase diagram
as a function of K, v, and v. The notation and a descrip-
tion of the algorithm that we have used is presented in
Sec. III of Ref. 15. The phases are identified by the wind-
ing number ~:

(4.1)

where Q is the period of the state (we restrict ourselves to
states of finite periodicity), xo=x& and e(x)=+1 (if
x )0), and e(x) =0 (if x &0). Note that the numerator
and denominator are two separate integers so that, in this
way, we can dist&nguish between the state ~=—,', which
has Q = —,', and the state to= —'„which as Q =4 (see Fig. 1

of Ref. 15).
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A. The phase diagram for the lattice structure 0.5

Hence, a solution a &0 can exist only if

r'&(&1, (4.3)

where r'=r/4 for the Ising model (r'=3m/4 for the
Heisenberg model) and

(—:(1+8m } (4.4}

Note that the other terms of the expansion (4.2) are need-
ed to stabilize the system when the inequality (4.3) is not
satisfied.

As shown in Refs. 13—15, the symmetry properties of
(4.1) are such that the phase co=P/Q becomes the
co=(Q P)/Q phas—e when v~ —v and, therefore, only
the part v)0 of the phase diagram needs to be con-
sidered. The parameter space of the phase diagram is of
dimension 3. The chosen parameters are g, r', and v',
where v' is defined by

v' —=v/(4g) . (4.5)

As in Refs. 12—15, g(x) is a double-quadratic well at
T =0. Hence, in this limit, the phase diagram is that of
model 1 of Refs. 14 and 15. At T ~0 however, this dou-
ble quadratic well becomes nonconvex in a finite interval
of x when r&(21') ' for the Ising model [v. &(6v) ' for
the Heisenberg model]. Thus, it is plausible that the
phase diagram at these temperatures be similar to that of
model 2 of Refs. 14 and 15. When v=O (Jo ——0), the re-

gions, in the plane (Ir, r) where modulated phases can be
found, are easily determined. Indeed, it is sufficient to
consider the free energy per atom f, in the dimerized
phase [x„=(—I)"a]:

f, = —,'a +4a [Ir (2r)—']+0(a ) (Ising), (4.2a)

f, = —,'a +4a [tr —(6r) ']+O(a ) (Heisenberg) .

(4.2b)

0.4

0.3

0.2

O. I —(-')
5

(-')--
5

0 I t I I ) t I & & 1 I I & I I t s i a I t s s & l & sl a, a0.
0.30 035 0.40 0.45 0.50 0.55 0.60

pl

FIG. 2. Same as Fig. 1 for (=0.5.

The phase diagram at finite temperatures is shown, for
the Ising model, as a function of v' and ~' in Figs. 1 —4 for
(=0.3, 0.5, 0.7, and 1.0, respectively. Note that the
modulated phases are indeed restricted to the region
(4.3).

It is interesting to note from Fig. 4 that only the —
,'and

—,
' nonconvex phases exist when g= l. Hence, there is no
frustration leading to periodically modulated phases
when ~=0. Indeed, in this limit, the effective first-
neighbor interaction is repulsive and does not, by itself,
favor a particular structure. A nontrivial competition be-
tween the external potential and the interactions exist
only when both magnetoelastic coupling and first-
neighbor elastic interactions are present.

Nonconvex phases exist only for r & 0 (except for the
marginal case (= 1) since, at v=O, P(x) is nonconvex
only at the isolated unstable point x =0. They are locat-
ed above (to the left of, for the uniform phase of Fig. 1)
the separation lines' ' represented by dashed lines in the
figures. As for model 2 of Refs. 14 and 15, some phases
(such as the —,

' phase) are always convex, and others (as
the —,

' phase) are always nonconvex though most of the

02
0.6

O. I

04

0 0 I s t I I & & & I l I I I I I I I j I I I I I I I i i I I

0.0 0 I 0.2 0.3 0 4 0.5 0.6,0.7
V

0.2

FIG. 1. Phase diagram at /=0. 3 in the (r', v') plane.
numbers are values of the winding number co. The unlabeled re-

gions contain additional commensurate phases. Also shown are
separation lines (dashed lines) and magnetic separation lines
(dashed-dotted lines) defined in the text. TCP denotes a tricriti-
cal point.

0 &is,Ill«gliiiil», &Isis& I

0.400 0.425 0.450 0.475 0.500 0.525 0.550
P

FIG. 3. Same as Fig. 1 for /=0. 7. T denotes a triplet point.
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FIG. 4. Same as Fig. 1 for g= l.0.
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phases are both convex and nonconvex in different re-
gions of the phase diagram.

For a given phase of period Q, the fraction co& of anti-
ferromagnetic bonds is given by

Q

coJ =—g e(x„,—x„+v) .
Q„

(4.6)

0.092

1

0.09 I
2

0.090

The magnetic separation lines, represented by dashed-
dotted lines in the figures, separate the region where
co=P/Q =co& from the region c0&coJ (P + 1}/Q——of the
same phase. Almost all of the phases have coJ ——co except
the —,

' phase where cuJ ———,
' in a narrow region near the uni-

form phase and the nonconvex P/Q phases, where P and

Q have a common divisor such as —,', ~„and —', where

co~=(P+1)/Q everywhere. However, as illustrated in

Figs. 5 and 7, there is a region to the left of the magnetic
separation line of the —,

' phase where coJ ———', . This case ex-

ists only in the presence of a tricritical point (TCP} (be-
tween the —,

' and the —,
' phases) at which the first-order

transition line, to the right of TCP, becomes one of
second order, to the left of TCP. In addition, it is in-

FIG. 6. Phase diagram at the crossing of the —', , 2 3 4 and
3 phases for )=0.1.

teresting to note that this tricritical point collapses in the
—,
' phase as g is increased and has disappeared completely
in Figs. 2-4.

The phase diagram at finite temperature is similar to
that of model 2 of Refs. 14 and 15; namely, a devil' s-
staircase behavior is observed for transitions between
convex phases whereas first- and second-order transitions
are observed between nonconvex phases. For the same
reasons as in Refs. 14 and 15, incommensurate phases
should not occur in this model with a finite measure in
parameter space.

B. Tricritical point between the uniform and dimerized phases

cosh(z) —( gz) 'sinh(z) +cosh( I ) =0, (4.7)

where z =4a/r, I =v/(2r'), and g:r'/(2() Mo—reover, .
we can use the following expansion:

In contrast with model 2 of Refs. 14 and 15, there is a
tricritical point, below which the transition is first order
and above which the transition is second order, between
the uniform and the dimerized phase for large enough
values of g (see Figs. 2 —4). This point is located precisely
by using a Landau-type approach which consists of
minimizing the free energy per atoms f, (a) when
x„=(—1}a. The dimerization a at equilibrium has to
satisfy c}f,/c}a =0. For the Ising model, this condition
can be written as

0.089

0.088—

0.087
0.22 0.24 0.26 0.28 0.30 0.32, 0.34

P

FIG. 5. Phase diagram in the neighborhood of the —phase
for /=0. 1.

cosh(z) —(gz ) 'sinh(z)

1
"

1

, (2n)! (2n +1)g

Hence, dimerization cannot occur for g& —,'. A solution
a~0 grows continuously (second-order transition) from
a =0 for —,

' &g& —,'. For g& —,', however, a solution ap-
pears discontinuously (first-order transition) at a finite



4850 MARIO MARCHAND AND ALAIN CAILLE 38

0.24

023

0.22

02l

0.20
0.34 0.36 0.38 040 0.42 0.44 046 0 48

FIG. 7. Same as Fig. 5 for (=0.3.

value of a. Therefore, the tricritical point is located at
g=gr, I'=I T, where

1

T 3

cosh(I )=2 .

(4.9a)

(4.9b)

This result agrees with the well-known result"' ' for
the tricritical point of the Ising incompressible magneto-
elastic chain. It is interesting to note that in model (2.1),
this tricritical point does not manifest itself in the phase
diagram for small values of g (see Fig. 1) since, at this
point, the ground state of (4.1) is neither the —

,'nor the —,
'

phase.

C. Superdegenerate lines

Figure 5 presents the phase diagram in the neighbor-
hood of the —,

' phase for (=0.1, and Fig. 6 shows more

clearly how the
~ 2 3 4 and —,

' cross each other. As in

model 2 of Refs. 14 and 15, the transitions 4 p g 3 2 4,

4 3 4 l
and 3 4 are al 1 first order and only trip le points

(identified by T in the figures) exist in this region of the
phase diagram. However, it is clear in Fig. 7 that the —,

phase boundary terminates on the —', phase for (=0.3. In

addition, we have not been able to find a common bound-
ary between the —

,
'and —', phases for this value of g. A

careful examination with the algorithm of Griffiths and
Chou reveals that the equilibrium lattice structure in the
-,'- phase, slightly above the point SDU& of Fig. 7, is of the
form (+x„—e, +e, —x, ) over one period where e is
small. On the other hand, the equilibrium lattice struc-
ture in the —,

' phase slightly below the point SDU, is of
the fortn (+x„+e, —e, —x

&
). Note that the —,

' and the —,
'

phases are identical when @=0. In this case, we can con-
sider the group of atoms ( —x&, +x& ) as a soliton of the
uniform phase. These solitons are noninteracting since
they are separated by a sufficiently large number of atoms
(two for a Hamiltonian where the range of interaction is
limited to first neighbors) at positions corresponding to
the uniform phase. Hence, we have infinite degeneracy
when e=O since, starting from this state of period four,
we can build an infinite number of other states of the
same free energy of separating these solitons by an arbi-
trary number ()2) of atoms located at X=O. If this
state is the ground state of F, at SDU&, then SDU& would
be a superdegenerate point' ' ' where the ground state
of F, is infinitely degenerate.

To find the superdegenerate points that can exist on
the boundary of the —

,'phase, we have solved the system
of equations (4.6) of Ref. 15 with E = 1 and p(x) =l(t'(x).
These equations arise from BF, /Bx„=0. For a given M
(M =1,2, 3, . . . ), the solution of this system of equations
defines a surface in ( g, r', v') space where the phase
(2M+1)/(2m +2) has two consecutive atoms at x =0.
As in Ref. 15, we define the line SDUM as the line on this
surface where the energy is identical to that of the uni-
form phase. These lines are plotted in the (g, v') plane
(see Fig. 8) and in the (g, r') plane (see Fig. 9) for M =1,
2, 3, and 4. On these lines, there is an infinite number of
states of F, with the same energy. As explained in Ref.
15, we use the algorithm of Griffiths and Chou to deter-
mine which points on these SDUM lines are superdegen-
erate points. On the SDUM lines with M g 1 and on the
portion of the SDU, line located to the right of the point
Z (see Figs. 8 and 9), the algorithm of Griffiths and Chou

I.O

0.4

T

0.6
0.3— SDU

0.4— SDU2 0.2

02—

0.0
0.0 0.2 0.4

SDU3
SDU4

I I

0.6 , 0.8

O. l

0.0
0.0 02

I

08 l 0

FIG. 8. Superdegenerate lines in the (g, v') plane as defined in
the text. FIG. 9. Same as Fig: 8 in the (g, r') plane.
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always gives the —,
' phase, indicating that the ground state

of F, on these lines consists of noninteracting solitons
with zero creation energy. Hence, these lines are super-
degenerate lines. However, the algorithm of Griffiths and
Chou gives the —,

' phase on the portion of the SDU, line

located to the left of the point Z (indicated by a dashed
line on Figs. 8 and 9); indicating that the ground state of
F, is the —,

' phase on this portion of the line.

We can precisely locate the point Z by searching for
the point on the SDU& line where the —,

' phase bifurcates
to the —,

' phase. Numerically, we obtain the following

coordinate for Z:

v,
' =0,3 501 189, (4.10a)

(,=0, 1 334020, (4.10b)

w,'=0, 1129 648, (4.10c)

with an uncertainty of one unit in the last digit.
From Figs. 5 and 6, it seems plausible that for (&0.1

and M g 1, the points SDU~ could be located in the —,
'

phase. However, a careful numerical examination shows
that the phase boundary between the —,

' and —,
' phases is al-

ways located between the points SDU, and SDU2 for
(~0.01. Hence the points SDUM for M &1 are all su-

perdegenerate points.
In addition, the same numerical procedure used in Ref.

15 reveals that the phase diagram near the —,
' phase

boundary has the same structure as that sketched in Fig.
11 of Ref. 15, namely that each superdegenerate point
SDUM is surrounded only by the nonconvex phases —', ,

2M /(2M + 1 ), 2M /(2M +2), and (2M + 1 ) /( 2M + 2 )

which are separated from each other by first-order transi-
tions. Since only a finite number of phases merge to these
superdegenerate points, they qualitatively differ from the
multiphase point of the ANNNI model.

V. CONCLUSION

By using the numerical algorithm of Griffiths and
Chou, we have obtained, in a 3D parameter space, a com-
plex phase diagram for the magnetoelastic model (2.1).
At T =0, the model is the same as model 1 of Ref. 15 and
our numerical results are suggestive of a devil' s-staircase
behavior. For T & 0, the phase diagram becomes similar
to that of model 2 of Ref. 15; in particular, first- and
second-order phase transitions are found among noncon-
vex phases. In addition, we have found a tricritical point
between the uniform and the dimerized phase. More-
over, we have shown that, in contrast with model 2 of
Ref. 15, the point SDU, can become a superdegenerate
point. This result also shows that the situation encoun-
tered in the chiral XY model' where a superdegenerate
point is located between the —', , 4 3 4 and —,

' phases is a
marginal case since this point is located precisely on the

transition line. This superdegenerate point is the

analog of the point Z of the magnetoelastic model (2.1).
The algorithm of Griffiths and Chou has certainly

proven to be useful in obtaining a global and complex
phase diagram without postulating, a priori, the nature of
the phases. Indeed, certain results, such as the existence
at finite temperatures of nonconvex phases like —,

' and 6

were not easily predictable. However, in order to locate
some specific details of the phase diagram, such as super-
degenerate points and tricritical points, we had to rely on
more precise methods such as the set of equations (4.6) of
Ref. 15 and a Landau approach which is based on com-
paring the free energies of two given phases. These
methods, although biased, are powerful when preliminary
results, obtained from the algorithm of Griffiths and
Chou, justify their use.
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