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Low-temperature properties of the kJ Ising spin glass in two dimensions
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The replica Monte Carlo simulation method and finite-size transfer-matrix method are used to
study low-temperature properties of the kJ Ising spin glass in two dimensions. We find the spin-

glass susceptibility exponent y=5. 11+0.05 with a zero-temperature transition. The ground-state

entropy so ——0.071+0.007 by Monte Carlo simulation agrees well with previous transfer-matrix cal-

culation, and the specific heat at low temperature has an asymptotic form
2

—2J/(I(B T)
c/kB=1. 3J /(kBT) e, which indicates an energy 2J as low-lying excitations. We show

that the replica Monte Carlo method is much faster than standard annealing for finding ground
states.

I. INTRODUCTION

The spin-glass problem has been an interesting and
difficult problem. ' Recent large-scale computer simula-
tions for short-range models give strong evidence of a
finite-temperature transition from a paramagnetic phase
to a spin-glass phase in three dimensions. ' However,
the low-temperature spin-glass phase is still not very well
understood. ' In two dimensions, a phase transition
occurs only at zero temperature. In this paper we
concern ourselves with the two-dimensional model at low
temperatures. Using a recently proposed new Monte
Carlo simulation technique, replica Monte Carlo
method, we can equilibrate the system at much lower
temperature than previously possible by the standard
Monte Carlo method. The new method gives the spin-
glass susceptibility exponent y =5.11+0.05 in agreement
with a high-temperature expansion result. ' The zero-
temperature entropy so, from integrating specific-heat
data, is in good agreement with transfer-matrix results, "
while previous Monte Carlo work gave a larger value. '

We also find a peculiar property of the asymptotic low-
temperature specific heat c/E =1.3e ' (E =J/ktt T).
The "elementary excitation" for the system is a =2 in-
stead of 4, which might be naively expected.

In the next section, the spin-glass model and the repli-
ca Monte Carlo method are described. A study of the re-
plica Monte Carlo method for finding ground states is
given in Sec. III. The replica Monte Carlo method is
shown to give fast annealing speed to a ground state. The
susceptibility and correlation length data are discussed in
Sec. IU, and energy, specific heat, and entropy calcula-
tions are presented in Sec. U. A summary is given in the
last section.

II. REPLICA MONTE CARLO METHOD

The Monte Carlo method' is a way of sampling the
states in configuration space according to a desired Gibbs
distribution by a Markov process. A difficulty, which be-
comes severe near a phase transition, is that the states so
generated are highly correlated (critical slowing down).
Although the long-time correlation has physical

significance, ' it severely hampers the application of the
method. The replica Monte Carlo method is aimed at
reducing correlations in spin-glass simulations. The
correlation time of the replica Monte Carlo algorithm has
been reported in Ref. 9. Here we give a description of the
algorithm. In the next section the efficiency of ground-
state search by replica Monte Carlo method will be
presented.

Consider an Ising spin glass, defined by the Hamiltoni-
an"

H =K g B,jcr;cr

where o, takes on the values +1 and the factor —J/ktt T
has been absorbed into the coupling constant K. The 8;.
are dimensionless variables, which describe the quenched,
random interactions. In this study, we take the indepen-
dent, equally probable + 1 or —1 distribution. The in-
teractions are nearest neighbor only.

Instead of simulating different temperatures sequential-
ly, n replicas of the system are simulated simultaneously.
Each of them obeys the same Hamiltonian (the same set
of coupling), but is in different states and at different tem-
peratures. The Hamiltonian for the whole system is

H„~(cr)= g H'(cr')= g E' g B,Jcr,'cJJ . .

a=1 a=1 &ij &

If we simulate H„(o) by standard Monte Carlo
method, the system is just n independent original spin-
glass systems. An important point is to pass "informa-
tion" between replicas. Consider two replicas, a and b.
The Hamiltonian for the pair is

(3)

Introduce new variables, P =cr;'o;, which are closely re-
lated to the spin-glass order parameter q. If two replicas
are at the same temperature, then q =[(r'; )]z, where
angular brackets indicate the thermodynamic average
and square brackets indicate the average over random
couplings. The spins r';" form clusters or domains of +
spins and —spins. They give more information of the
spin-glass ordering than the original variables. Within
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each cluster the o spins of two replicas change their
directions in a coherent fashion. When crossing
boundaries of the clusters this coherent property is lost.
Thus v; spins are important variables. We eliminate one
of the original spin-glass variables o; in favor of v; . Us-
ing a;/cr;'=o, "o';=v;" (since cr =1), Eq. (3) is rewritten
as

H (o)= 'g B cr cr (K +K (4)
&ij }

Holding H fixed, we observe that the couplings are
strengthened in the region of ~ clusters. In those regions,
the coupling is proportional to K'+K, roughly twice of
the original couplings if K' and K are close. This tends
to make the o spins strongly locked and form rigid clus-
ters. On boundaries of ~ clusters, couplings are propor-
tional to K' —K . So the couplings between clusters are
much weaker, all o spins within a cluster can then be
turned over with little cost of energy. In a standard
single-spin-Aip Monte Carlo simulation, the domain
structure is not used. To flip a whole cluster takes a long
time.

In replica Monte Carlo method, the r clusters are used
as a template, a usual Monte Carlo method on the clus-
ters is performed. This is equivalent to simulating an
effective Hamiltonian for the clusters during one Monte
Carlo updating,

H„(g)= g k~grl rip (5)
(a,P)

with the interactions between clusters given by
k+0 — g g. gg~~(K~ K. b)

a,P boundary

where the summation is carried over the boundary be-
tween clusters a and P. o'; is the value before updating.
Each cluster a is associated with a new Ising variable rl,
initialized to +1. After updating each cluster, new
states are obtained through cr,"=o';g, cr,' =cr; g for site
i belongs to cluster a. The ~ spins are fixed during one
Monte Carlo updating. This is necessary in order to
maintain the cluster configuration unchanged.

Replicas are arranged at successive temperatures
separated by a constant bK =K' —K . Each replica in-
teracts with its neighbor replicas through the above de-
scribed algorithm. We do not let hK =0. Although that
leads to cluster flip without cost of energy, what it does is
only an exchange of configurations between two replicas.
The parameter b,K and the number of replicas n can be
adjusted to minimize correlation. The number of replicas
are essentially limited by computer memory and speed.
We like to have a whole range of temperatures. So AK is
chosen by considering these two factors.

The above simulating process alone does not lead to
transitions from any configuration to any other
configuration. Certain transitions are forbidden. As an
example, suppose all spins are in up state, o',.= + 1, as the
algorithm is applied, the system always stays in all spin-
up or all spin-down state. To ensure ergodicity, a stan-
dard Monte Carlo simulation on the original spin-glass
system is used. The whole combined process obeys de-
tailed balance and correctly generates the states of the
original Hamiltonian.

The replica Monte Carlo simulation method is applied
to the problem of a ground-state search by annealing. It
is compared with a standard Monte Carlo method. The
problem has its applications in optimization subject to
confiicting constraints. '

To make sure a ground state is actually obtained, an in-
dependent method to calculate the ground-state energy
for given set of random interactions is necessary. There
are exact polynomial-time algorithms for the two-
dimensional problem. ' The algorithm of Lawler'9
executes in a time of order L, here L is the linear size of
a two-dimensional lattice. The algorithm is complicated
and the dependence of computer time with size is still
strong in practice. A second method is Morgenstern and
Binder s exact transfer-matrix calculation of the partition
function. Summation of spins is performed row by row.
This reduces the number of operation from 2 of a naive
enumeration of all the states to ML2 for a M)&L stripe.
One data point for a 12' 12 lattice takes 40 s on a Micro-
Vax II, which is fast enough to allow us to determine the
ground-state entropy, the ground-state energy, and the
first-excited-state degeneracy. We fit the reduced free en-

ergy, with free boundary conditions for a given set of ran-
dom couplings, to a form

1 g2f= lnZ =so —eoK+ —exp( —aK)+, (7)N Ngo

where go and g2 are the degeneracy of ground states and
first excited states. The zero-temperature entropy is
given by so=(lngo)/N. The ground-state energy per spin
eo can be obtained to high accuracy.

We simulated the two-dimensional Ising spin-glass
model with 16 replicas. The dimensionless inverse tem-
peratures K are set at various values from 0.4 to 10 or 20.
This differs from the usual annealing, since we do not
vary the temperature of each replica. For the largest K,
system is essentially at zero temperature. Table I is a list
of typical time in Monte Carlo steps to reach a ground
state, starting from random configurations. The standard

TABLE I. Monte Carlo steps needed to reach ground states
of the two-dimensional +J Ising spin-glass model by replica
Monte Carlo with 16 replicas and by standard Monte Carlo
from Ref. 7.

Size L

8
12
18
24
32

Replica MC

5-20
10-40
20—200
40—200
60-600

Standard MC

10'-104
3X104
3x10 —6X10
8X 10'
1X10 -2g10

Replica Monte Carlo techniques can also be combined
with the Potts percolation algorithm. ' When the Potts-
percolation transformations are applied only to the in-
teractions inside ~ clusters, it further breaks the clusters
and ergodicity is ensured without invoking standard
Monte Carlo.

III. GROUND STAI KS
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Monte Carlo data from Morgenstern and Binder are also
listed for comparison. The time to reach a ground state
depends on the size of the system, and also depends on
the starting configurations and random couplings. Those
runs of sizes L ( 12 are checked against exact values. Re-
sults of larger sizes are compared between several runs.
The replica Monte Carlo is 100 to 1000 times faster in
terms of Monte Carlo steps per spin. If we take into ac-
count of the fact that 16 replicas are simulated simultane-
ously, we still gain roughly a factor of 10 or more.

The ground-state energy per spin, extrapolated to
infinite lattice size based on data from 8)& 8 to 32)& 32 lat-
tices, is eo ———1.407+0.008. This is in good agreement
with transfer-matrix calculation of Morgenstern and
Binder. The latest transfer-matrix result of Cheung and
McMillan" is eo ———1.4024+0.0012.

depending on data points. The largest coupling for which
McMillan obtained reliable data by the standard Monte
Carlo was K =1.16 (log, orat.

' =0.06). The data lay fairly
well on a straight line for log,+ &0. 1, indicating a
power-law behavior with a zero transition temperature.
%e use a least-squares fit of the form PsG ——aE . The
fitting results in an exponent y=5. 11+0.05. This is
larger than found in the previous work. ' ' It is in agree-
ment with a recent high-temperature series result

y =5.3+0.3 by Singh and Chakravarty. '

The spin-glass spatial correlation function,

s 1 N

gSG(r)= —g (O;a;+„) =—g (r(t, +r )
i=1 i=1

is calculated on a 128&128 lattice. It is least-square
fitted to

IV. SUSCEPTIBILITY
AND CORRELATION LENGTH

exp( r /g)—gSGr=
7

(10)

The spin-glass susceptibility, defined by
N

x,.=—y ~&~, , &'~,
i j =1

(8)

is calculated on a 128)&128 lattice. Two sets of replicas
with the same distribution of temperatures are used in or-
der to obtain ~; =0,'0;. Figure 1 shows XsG versus K in a
log-log scale. The data are averages of two to eight runs,

3.5

The fit gives a constant A =0.77+0.02 for I( =0.6-8.0.
Figure 2 is a plot of the correlation length g versus K in a
log-log scale. A power-law divergence g-E" is expected.
An exponent v=2. 8+0.2 gives the best fit to the data.
This value is slightly larger than McMillan's result
v =2.64+0. 38 (Ref. 8) obtained in the range
K =0.667—1. 16. As we can see from the plot, one would
get a smaller slope at smaller couplings. The exponent g
in the fitting has a temperature dependence. It is
g=0. 33—0.28 in the coupling range k =1.2—2.6. At
stronger couplings, g decreases to 0.25-0.22. From the
scaling relation y=v(2 —ri), using y=5. 11+0.05 and
v=2. 8+0.2, we obtain g=0. 18+0.15. The error is
large, mainly due to uncertainty of v, and it is smaller
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FIG. 1. Log-log plot of the spin-glass susceptibility as a func-
tion of the dimensionless inverse temperature K for the two-
dimensional +J Ising spin-glass on a 128' 128 lattice, with use
of several random interaction distributions with up to 1.8)& 10
Monte Carlo steps per site.
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FIG. 2. Log-log plot of the correlation length g vs the cou-
pling E for the two-dimensional +J Ising spin-glass model.
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than the value obtained by direct fitting. However, in the
direct three-parameter fitting, the value g does go to a
smaller number at large couplings. We think that a more
accurate estimate of the exponent g is given by a Monte
Carlo renormalization group study, g =0.20. This is in
agreement with the scaling result 0.18+0.1S. McMillan
obtained the somewhat higher value of g =0.28+0.04.

V. ENERGY, SPECIFIC HEAT, AND ENTROPY

The replica Monte Carlo method provides accurate re-
sults of the energy and specific heat for spin glasses. Fig-
ure 3 is the energy e and the reduced specific heat c/K
per spin for the two-dimensional kJ Ising spin-glass
model plotted against 1/K. The smooth curves are high-
temperature expansion results

e = —2x+4x —4x +

dK
=(2—28x +36x )(1—x )+, (12)

1.Q

0.8—

0.6
Y
O

0.4

0.2

0
+ ——~ ~ 0 ~ ~ L ~ ye I

2 3

FIG. 4. The specific heat c over the dimensionless coupling K
vs E of the two-dimensional +J Ising spin-glass model. The
smooth curve is the high-temperature expansion result. Data
are averages of 4-17 runs on 64' 64 and 128' 128 lattices. The
area under the curve is used to estimate the zero-temperature
entropy.

where x =tanhE. These high-temperature expansions
give a good description of the energy and specific heat up
to E=0.6.

The specific-heat data are used to calculate the zero-
temperature entropy by'

s =ln2 — —E .
p Z

(13)
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Figure 4 is a plot of the integrand. On the high-
temperature (K &0.5) part, Eq. (12) is used. We ob-
tained sp =0.071+0.007. This value is smaller than
Kirkpatrick's' result of sp=0. 99 using a similar method
by the standard Monte Carlo techniques. Our result is in
good agreement with the transfer-matrix calculation of
Morgenstern and Binder, and also with estimates of
Vannimenus and Toulouse. The latest, most accurate
(transfer-matrix) value of Cheung and McMillan" is
sp =0.070 1+0.0005 ~ A larger value from the previous
Monte Carlo result was interpreted as a dynamic eFect.
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FIG. 3. The energy and the reduced specific heat vs the di-

mensionless temperature for the kJ Ising spin-glass model in
two dimensions. Data are average of several runs on 64X 64 lat-
tice. The smooth curves are high-temperature expansion re-
sults.

K

FIG. 5. Semilogarithmic plot of the reduced specific heat
c/EC vs coupling E for the two-dimensional kJ Ising spin-glass
model.
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One of the interesting features of the specific heat is its
low-temperature behavior. Figure 5 is a plot of c/K
versus K in a semilogarithmic scale. The reduced specific
heat c/K behaves like an exponential of the form

exp( —3K) in a large range from K =0.6 to 2. Then it
bends over to a slope close to —2. For a system with
discrete energy levels, the specific heat goes to zero ex-
ponentially with I(,

c/K =coexp( aK—), (14}

where a is determined by the lowest possible excitation in
the system, for example, the lowest excited states in a
two-dimensional Ising model are due to single reversed

spins, and lie 8J above the ground state. The "elementa-
ry" excitation of the +J spin glass is more subtle. For a
finite system with periodic boundary conditions, a single-
spin-flip gives the lowest excitation 4J. On the other
hand, unlike the ferromagnetic Ising model, where the
number of such lowest possible excitations is proportion-
al to the size N of the system, the number of 4J excitation
grows much faster than N in the +J Ising spin glass.

The one-dimensional nearest-neighbor Ising model pro-
vides an example to show how this happens. Simple cal-
culation shows that the specific heat goes as exp( —2K} in

the thermodynamic limit. But a finite system with a
periodic boundary condition can only have 4J excitations
(a kink-antikink pair}. However, there are of order N
such excitations, so it is not elementary. A single kink is
the lowest excitation for an infinitely long Ising chain, or
a finite system with free boundary. The number of such
single kinks is N, so it contributes a finite value to the
specific heat in the large-N limit. Analogous to the one-
dimensional Ising model, if we use free boundary condi-
tions, the spin glass does have 2J excitations. An exam-
ple is when a single spin on the boundary is flipped. Such
an excitation can be moved into the interior of the system

by rearrangements of a larger number of spins. We made
a numerical calculation of the specific heat in the low-
temperature limit with free boundary conditions using
the transfer-matrix method of Morgenstern and Binder.
The data are fit to the form Eq. (14). It is found that a is
unambiguously 2. We are interested in whether the
coefficient co=4g2/(Ngo) decreases with the size of the
system. The value varies from realization to realization
of the random couplings, but we do not observe a sys-
tematic size dependence (1.36, 1.16, 1.38, 1.28 for linear
size 4, 8, 12, and 16). The best estimate for the coefficient
is co =1.3. In summary, we believe that 2J is the correct
lowest excitation. It is a nonlocal effect involving rear-
rangements of a large number of spin orientations.

VI. SUMMARY

The replica Monte Carlo method is shown to give fas-
ter speed for a ground-state search, which could have
practical applications. The algorithm is very efBcient to
calculate thermodynamic quantities at low temperatures.
The spin-glass susceptibility shows an asymptotic power-
law behavior. We found a previously unnoticed behavior
of the low-temperature specific heat, which is due to
larger degeneracy of lower-level states. The zero-
temperature entropy is in agreement with static calcula-
tions. Thus the replica Monte Carlo method gives true
equilibrium states at very low temperatures for the two-
dimensional Ising spin glass.
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