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A thermodynamic calculation of the depolarized scattering spectrum of a viscoelastic liquid is

presented. We introduce the stress tensor and the polarizability density as additional state vari-

ables. By using extended irreversible thermodynamics, we derive time evolution equations for all

the independent variables. The temperature dependence of the spectrum is calculated and we show

that it reproduces the general observed features of the spectrum. We also show that from our

description we recoVer, as special cases, the results of other phenomenological approaches that are

in good agreement with experiment and microscopic theories. The implications and limitations of
our approach are discussed.

I. INTRODUCTION

The first theoretical prediction on the fine structure of
the vertical-horizontal ( V-H ) light-scattering spectra
from liquids was given by Leontovich' almost half a cen-
tury ago and 30 years before the first experimental obser-
vation was made. Since then, and owing to the availabil-
ity of new experimental techniques, such as dielectric re-
laxation or photon correlation spectroscopy, the subject
has given rise to numerous experimental and theoretical
investigations on a variety of relaxation phenomena in
liquids and complex materials.

Experimentally it is well established that the depolar-
ized (V-H) spectrum of viscoelastic liquids essentially
consists of a pronounced doublet, symmetrically dis-

placed with respect to the incident frequency and with a
breadth substantially larger than the peak separation.
However, the shape of this spectrum is strongly depen-
dent on the temperature and on the values of relevant pa-
rameters such as the rate of molecular reorientation (I ),
the zero-frequency kinematic shear viscosity (v, ) and the
amplitude of the scattering vector (q). For instance, it is
known that the depolarized spectrum of viscoelastic
liquids displays a fine structure with a dip at the center,
for high temperatures such that I )~q v, . But when the
temperature is lowered so that I =q v„ this central dip
disappears with a narrowing of the entire spectrum,
which is not describable as a superposition of several
Lorentzian functions. Moreover, at low temperatures
where I «q v„ the spectrum shows two weak shifted
sidebands and an intense, although very narrow, central
component.

On the other hand, from the theoretical point of view it
was soon realized that these experimental results could

not be accounted for in terms of the classical hydro-
dynamical theory of simple liquids. So new macroscopic
and microscopic theories were developed for this pur-
pose. Actually, the observed spectral features of depolar-
ized scattering in liquids have been, essentially, analyzed
by using statistical mechanical formalisms of the Mori-
Zwanzig ' type or by adopting phenomenological
points of view based on irreversible thermodynam-
ics." ' Within this latter class of theories the basic idea
has been to consider that the systems are so highly
dispersive, that additional state variables should be intro-
duced to characterize the relaxation processes occurring
in systems like a viscoelastic liquid. Linear irreversible
thermodynamics (LIT) is subsequently used to calculate
the depolarized spectrum and it has been found that these
approaches have been successful in describing correctly
the general features of the observed spectra. In ~articu-
lar, using this type of approach, Quentrec et al. ,

' ' for
instance, have repeatedly emphasized the importance of
local order in describing the hydrodynamics of a liquid
when the correlation length and the lifetime of this order
are not negligible with respect to a characteristic length
and time of the corresponding experiment. Since there is,
indeed, experimental and molecular dynamics evidence
showing the existence of local order in different kinds of
fluids, ' ' it is reasonable to expect that in order to de-
scribe the scattering or transport properties of complex
fluids such as viscoelastic liquids, polymeric solutions, or
polyatomic fluids, it may be, in fact, convenient to intro-
duce new state variables in addition to the usual hydro-
dynamic densities. It is in connection with this idea
where the motivation for this paper lies. Our main objec-
tive is to use extended irreversible thermodynamics (EIT),
a recent theory developed precisely with the idea of ex-
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tending LIT to regimes where the inclusion of additional
state variables is necessary or convenient, ' to calcu-
late the V-H spectrum of a viscoelastic liquid composed
of nonspherical molecules. In particular, we discuss how
a phenomenological analysis recently proposed by
Wang to describe the effect of shear wave coupling on
the V-H scattering of a viscoelastic liquid can be derived
from our thermodynamic scheme as a special case. In
this way we provide a thermodynamic basis for a phe-
nomenological theory that is in good agreement with ex-
periment and other microscopic theories, but, in addi-
tion, our treatment allows us to derive the analytic tem-
perature dependence of the phenomenological coefficients
involved in our development and, therefore, of the depo-
larized spectrum. It should be pointed out, though, that
Wang has also lucidly performed a microscopic analysis
of this problem. We shall mainly refer to his phenomeno-
logical approach.

To this end we have organized the paper as follows. In
Sec. II the extended thermodynamics for an arbitrary
viscoelastic fluid composed of nonspherical molecules is
set up and developed to the stage of deriving a complete
set of time-evolution equations for all the independent
state variables of the system. These equations contain
unknown phenomenological coefficients, the usual trans-
port coefficients among them, that can only be deter-
mined by comparison either with experiment or with a
microscopic model. These evolution equations also show
the possible couplings that, consistent with the theory,
may arise among the state variables and with the macro-
scopic fiow. In Sec. III the linearized hydrodynamic
model to be used is defined and the computation of the
depolarization spectrum is carried out. We then derive,
for particular choices of the phenomenological
coefficients in our result, the spectra for viscous and
viscoelastic liquids that Wang has proposed by using a
phenomenological, although not thermodynamic, ap-
proach. The explicit temperature dependence of this
spectrum is also obtained and its limits of validity are
also discussed. Finally, in Sec. IV we give some conclud-
ing remarks on the scope and validity of our approach.

lies in the fact that the vast amount of information re-
garding rheological equations of state (constitutive rela-
tions) is precisely expressed in terms of r .So, it seems
natural that the hydrodynamic equations we are seeking
should include it. On the other hand, since it is well es-
tablished that the depolarized spectrum arises from po-
larizability fluctuations, we also choose the polarizabili-
ty anisotropy density a(r, t) as as second nonconserved
thermodynamic state variable. It should be mentioned,
though, that EIT does not provide for a general criteria
to choose, in a unique way, the number and nature of the
fast variables. Although in our case their choice may be
more or less reasonable, in general, the nonconserved
variables have different physical interpretations.

'7 is defined in terms of the pressure tensor 0 through

II =pI+v, (2.1)

where p is the hydrostatic pressure and I the unit tensor.
Hence, the space of thermodynamic state variables is
composed of the set of conserved densities C —= t e, v j
(where the specific volume v is defined as the inverse of
the mass density v =—p '), and the set of fast or noncon-
served variables R—:[r,a). The primary purpose of EIT
is to provide for a closed set of differential equations
governing the time evolution of all the independent state
variables in 6=CUR. The behavior of the conserved
ones is given by the familiar conservation laws, but the
dynamics of the chosen nonconserved variables should be
derived self-consistently from the theory itself. In gen-
eral, these latter equations will be a coupled set of non-
linear relaxation equations defined in terms of unknown
phenomenological coefficients arising from the different
stages in the implementation of the theory. The essential
point to stress, however, is that these equations describe
the way in which the nonconserved variables fade away
in the system and how their dynamics affects the behav-
ior of the other variables. They play the role of general-
ized constitutive relations that allow to obtain a closed
set of hydrodynamic equations for the conserved vari-
ables. For the system in consideration the conservation
equations read

II. EXTENDED THERMODYNAMICS
DESCRIPTION

=U dlvu, (2.2a)

The foundations and methodology of EIT, considered
as an extension of LIT, have been discussed' ' in detail
and applied ' to a variety of physical systems in the
last few years. In this section we briefly describe the
main features of this theory and we use it to describe a
viscoelastic liquid composed of nonspherical molecules in
a nonequilibrium thermodynamic state beyond Onsager's
linear regime. As already mentioned in the introduction,
an appropriate hydrodynamics for such a system should
include other variables in addition to the usual hydro-
dynamic conserved internal energy e(r, t) and mass densi-
ties p(r, t). With this motivation, and according to the
usual procedure of EIT, ' we choose a stress tensor
r(r, t), which includes both elastic and viscous efFects
beyond the Newtonian limit, as a first additional variable.
A further motivation for choosing ~ as a state variable,

u
p = —gradp —div~,

dt

de
p = —p dlvu —7:L

dt

(2.2b)

(2.2c)

rt=rt(e, v;r, a) . (2.3)

where u is the hydrodynamic flow velocity, the tensor L
stands for the velocity gradient, L =gradu, and
d jdt=BIBt+u V is the usual material time-derivative
operator. The symbol: denotes the double contraction of
the corresponding tensors.

In order to derive time-evolution equations for the R
variables, EIT first postulates the existence of a
sufficiently continuous and differentiable function
defined over 6:
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d de du d dT rt=—+p +uP). 7.+—uP2: a r:L—.
dt dt dt —' dt -' dt

(2.4)

Although this function cannot be a priori identified with a
physical nonequilibrium entropy of the system, in a
strictly formal sense it generates a differential form which
generalizes the Gibbs relation of local equilibrium ther-
modynamics. This idea has been frequently used in other
formulations of nonequilibrium thermodynamics. In
fact, if we now carry out the standard manipulations of
EIT, 's 2 from Eq. (2.3) and to lowest order in the non-
conserved variables we arrive at

and if the resulting equation together with Eq. (2.7) is
then inserted in Eq. (2.6), we get an explicit expression
for o„. But this quantity may be also obtained in a
difl'erent way, namely, by substitution of Eq. (2.9) into
(2.8). Thus, by equating these expressions for O„and
after performing tedious but straightforward calculations,
we arrive at the sought time-evolution equations for the
nonconserved variables:

d
'T) v = —~+a &a+a2L +a3~ L +a4a L +a5L L

(2.10a)
Here the second-rank tensors P, , i = 1,2, are given by

P;=P;(g +P;,a, (2.5)

d
~2
—a= —a+b, z+b2L+b3z L+b4a L+b5L L .

cf
p—q+divJ„=o „, (2.6)

where J„and o „denote, respectively, the generalized flux
and source terms associated with g. As the tensors P;,
J„,and cr„should be constructed as the most general vec-
tor and scalar in 6 up to the required order. Thus, con-
sistency with Eq. (2.4) requires that

J„=O,
cr„=X &.~+X 2.a,

(2.7}

(2.8)

where, by the assumptions of the theory, one has, to
lowest order in the R variables (i = 1,2),

X - =p OT+p. )a+pI2L +p.g L

+p;4a.L +p;5L L . (2.9)

As usual the multidot between two tensors denotes their
scalar product. Again, it is worth stressing that the phe-
nomenological coefficients p;J, as well as the previous P;J.,
are unknown and can only be determined either from ex-
periment or from a microscopic theory. Moreover, for
simplicity in our development we shall assume from now
on that all these phenomenological coefficients are con-
stant parameters.

If we now substitute Eqs. (2.2a) and (2.2c) into Eq. (2.4)

where the phenomenological coefficients are, in general,
functions of all the scalar invariants in G. Consistently
with the order involved in writing Eq. (2.4), they are
functions of the local equilibrium variables e and U only.
Also, to this order of approximation the coefficients T
and p are identified with the local equilibrium tempera-
ture and pressure, respectively. The idea of order used
here should be understood as follows: the first powers of
the nonconserved variables measure first-order deviations
with respect to local equilibrium and so on. Thus, a Tay-
lor series expansion of all the quantities appearing in the
theory around the local equilibrium state allows for the
consecutive inclusion of deviations from the latter up to
any desired order. In this sense the results of EIT should
reduce to those of LIT when the system reaches local
equilibrium.

We now introduce the assumption that g obeys a bal-
ance equation, namely,

(2.10b)

It is worth emphasizing several important features of
these equations. First note that several possible cou-
plings arise among the nonconserved variables v, a them-
selves and with the macroscopic How through L. But
these couplings are not introduced ad hoc, they result as a
consequence of the postulates of the theory to the ap-
proximation to which it has been developed. Second, the
coupling constants a;,b; are functions of the phenomeno-
logical coefficients P;,p; and of the temperature T.
However, in order to avoid lengthy. expressions in the
main text and since the explicit form of a;, b; is unneces-
sary to exhibit the structure of the time-evolution equa-
tions, their explicit definitions are given in Appendix A.
The essential point to be stressed, though, is that these
quantities depend on the temperature T. This fact will al-
low us to derive the explicit temperature dependence of
several physical properties that can be calculated on the
basis of Eq. (2.10}. This will be developed in the follow-
ing sections. Third, it is important to mention that Eqs.
(2.10) are indeed relaxation equations if it is possible to
show that the "relaxation times" ~, , vz, defined by Eqs.
(A2), are positive definite quantities. Actually, as men-
tioned before, the explicit determination of the phenome-
nological coefficients is beyond EIT. This can only be ac-
complished by restoring to microscopic formulations or
to experiment. For other systems such as fluids with
internal degrees of freedom, where kinetic descriptions
are available, the explicit form and sign of the phenome-
nological coefficients can be established. For the sys-
tems we are dealing with we are not aware of microscopic
time-evolution equations for the variables we have
chosen, for which the same comparison can be done.
However, it is reasonable to expect that Eqs. (2.10)
should be relaxation equations, if the nonequilibrium
states under consideration are not too far from equilibri-
um, since in this case they ought to be thermodynamical-
ly stable. So, we shall view Eqs. (2.10) as a coupled set of
relaxation equations with constant coefficients.

III. THE HYDRODYNAMIC MODEL

In order to derive a closed set of linearized hydro-
dynamic equations for the conserved variables only, we
first linearize both the conservation equations (2.2} and
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the relaxation equations (2.10), selecting as a reference a
total equilibrium state defined by the values po, eo, uo=0,
~=0, and a=0. Thus, if the deviations from this refer-
ence state are denoted by 5, we have that

p(r, t ) =po+5p(r, t ), e(r, t ) =eo+5e(r, t },
u(r, t ) =5u(r, t ), r(r, t ) =5r(r, t ),
a(r, t)=5a(r, t) .

(3.1)

e=~vT

p =cT(p+apoT»

(3.2}

(3.3)

we arrive at the following set of linearized hydrodynamic
equations:

It should be remarked that this linearization does not im-

ply that the system is in the linear regime of LIT, since
the deviations in the nonconserved variables, however
small, do not vanish and their presence invalidates the lo-
cal equilibrium assumption.

By substituting Eqs. (3.1) into Eqs. (2.2} and (2.10),
neglecting nonlinear deviations, taking the Fourier-
Laplace transforms of the resulting equations with
respect to r and t, and expressing e as a function of T and

p in terms of p, T through the relations

r(q, z }(zr,+ 1)=r, r(q}+a,a(q, z)

—iazq6(q, z ),
a(q, z )(z+ r2 ') =a(q)+ b, r(q, z )

—ib2q5(q, z ) .

(3.5a)

(3.5b)

poa

aT0 p

whereas cz stands for

Cp

cv
(3.6)

"=' apo ro
(3.7)

Equations (3.4) and (3.5) represent a rather general closed
set of hydrodynamic equations which involve several phe-
nomenological coefficients (r, ,a;, b; } that are, so far,
unspecified. In the following subsections we shall now
use this model to calculate the depolarized light-
scattering properties of our system.

The tilde and the caret denote, respectively, the Fourier
and Laplace transforms; a and y represent the isobaric
expansion coefficient and the ratio of specific heats, i.e.,

z5p(q, z }=5p(q) —i poq p(q, z ),
z5T(q, z)=51(q)+i q P(q, z),a
zP(q, z ) =P(q) iCr2po —'q5P(q, z )

icraq5T(—q, z) ipo 'q—r(q, z),

(3.4a)

(3.4b)

(3.4c)

A. Depolarized spectrum

It is well known that this spectrum arises from the
temporal and spatial fluctuations of the polarizability an-
isotropy density. More specifically, its spectral density is
proportional to the Fourier transform of two anisotropic
polarizability time-correlation functions, namely, s 27

I&H(q, co)= dt exp( itot) (a~, (q, t—)a",(q)) cos —+(a „(q,t)a~„(q)) sin-+ oo

27K

=I„,(q, co) cos —+I„„(q,co) sin —.ge . 28 (3.8)

This expression corresponds to a geometry such that the
scattering plane, which contains the incident (k;) and
scattering (k, ) wave vectors, is the xz plane. The polar-
ization of the incident light is along the y axis and the
scattering vector q=k, —k; is directed along the z axis.
As usual, 8 is the scattering angle, the angular brackets
denote an equilibrium ensemble average and the asterisk
stands for the complex conjugate. Moreover, for the pur-
pose of a later comparison of our results with those of
Wang, we further assume that the liquid is Bowing with
a velocity u along y under the effect of a velocity gra-
dient along z, that is, L, =au~/az. With these assump-
tions our hydrodynamic model simplifies and the conser-
vation equations (3.4) reduce to

u~(q, z) = icrpo 'qz 5p(q—} icraqz 5—f'(q)

ip, 'qz 'r —(q, z-), - (3.9c)

whereas for the zy component the relaxation equations
read

(q, z)(zr, +1)=r&r, (q)+a, a, (q, z) iazqu„(q—,z),
(3.10a)

a~(q, z)(z+r2 ')=a~(q}+b, r~(q, z) —ib2qu (q,z},
(3.10b)

and for the yx component they are given by

z5p(q, z ) =5p(q),

z5T(q, z ) =51'(q),

(3.9a)

(3.9b)

r „( , q)(zzr& 1+)=
& r~„r(q) a+&a „(q,z),

ay„(q, z)(z+rq )=a„„(q)+by„(q,z) .

(3.11a)

(3.11b)
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From this set of equations we can now calculate the po-
larizability correlation functions involved in Eq. (3.8). By
eliminating r (q, z) from Eqs. (3.9) and (3.10) we obtain
an expression for a (q, z) in terms of the initial values

5p(q), 5f'(q), a (q), r (q). If this resulting equation is

then multiplied by a „(q) and averaged over an equilibri-
um ensemble, owing to the fact that p, T, a, , and r~
have been chosen as (statistically) independent state vari-
ables, we arrive at the result

z~1+1+a2PO q z
—1 2 —1

( a,~(q, z )a ~(q) ) =1 —1 2 —1 —1 2 —1(z+rz )(zr, + 1+a2po q z )+a, (b2po q z b, )—

with

(3.12a)

X—:(
~
a, (q)

~

') =(
~

a „(q)
~

'),
due to the isotropy of the fiuid. In a similar way, from Eqs. (3.11}we get

Z&1+ I
(a „(q,z)a'„(q)) =X

(zr, +1}(z+r ) —a, b,

This, if we now set z =i co, from Eqs. (3.12), (3.14), and (3.8) we finally have that

1+Z71
I~H(q, co}-Re

(1+zr, )(r2 '+z) —a, b,

1+ZV'1+Q2PO g Z
+

(rz '+z)(1+zr~+a2po 'q z ')+a, (bzpo 'q z ' b, )—

(3.12b)

(3.13)

(3.14)

To avoid writing complicated expressions in the main
text, in Appendix B we give the explicit form of I„H(q, co)

in full detail.

B. Viscous Suid limit

The spectra given by Eq. (3.14},being a result of a ther-
modynamic theory, involves phenomenological
coefficients which are, so far, completely unspecified. We
shall now show that for particular choices of these
coefficients we may recover, as special cases, several re-
sults obtained by using different approaches. To this end
let us first set r, ~0 in the relaxation equations (3.10}.
This eliminates the relaxation in the stress tensor and
corresponds to a limit where the Quid is essentially
Newtonian. More explicitly, if, in addition, we set b1 ——0
and make the identifications

—1 I
~2 =I, a2 =g„a1—=P, b2 =P

the relaxation equations (3.10) reduce to

r,„(q,z ) =pa~(q, z ) i rt, qu„(q, z—),
a,~( zq)(z +I)=a~(q) i@'qu~( —zq) .

(3.15)

(3.16a)

(3.16b)

These equations are precisely the Fourier-Laplace trans-
forms of Eqs. (Al) and (A2) in Ref. 20. Equation (3.16a)
describes a viscous fluid whose shear stress component
Tzy is related, as usual, to the zy component of the veloci-
ty gradient through the shear viscosity g, . Also, from
these equations follows that I may be interpreted as the
time rate of molecular orientation. Note, however, that
these and the remaining coupling constants p, p' arise as
a consequence of the postulates of the thermodynamic

'gN +I N g+ cos
(

2 2)2+ 21 2
(3.17)

Here, following Wang's notation to facilitate the compar-
ison, we have used the abbreviations

g=g, q p, I,=I +g,
co, =—gI +5, 5=q pp'po ', (3.18)

to denote certain combinations of phenomenological
coefficients. However, the physical interpretation of
these quantities is obtained in Ref. 20 from a microscopic
theory. X is defined by Eq. (3.12a). Equation (3.17) is the
form of the V-0 spectrum commonly used to analyze and
successfully compare with experiment the depolarized
Rayleigh scattering data of many viscous liquids.
Note that the second term in (3.17) shows that the spec-
trum is not composed of a single Lorentzian, except in
the limit I'»riq po '. Furthermore, Eq. (3.17) is precise-

ly of the same form as the spectrum obtained from the

theory itself and have not been introduced ad hoc. More-
over, according to our previous results, these coupling
coefficients are functions of temperature and their explicit
form is given in Appendix A, a fact that will be used later
on.

If this particular choice of phenomenological
coefficients is also used in Eqs. (3.11},then our V-H spec-
trum, as given by Eqs. (3.14) or (Bl), reduces to the result
obtained by Wang in Appendix A of Ref. 20, namely,

I . 28
I„H(q, co)=— sin—

N +I
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microscopic theory of Andersen and Pecora. It is worth
stressing that in spite of the many phenomenological
coefBcients introduced at the different stages in our devel-
opment, only a few combinations of them are the relevant
ones to describe the spectra. Therefore, the introduction
of a host of parameters in the phenomenological theories
does not necessarily make the comparison with experi-
ment more diScult. Since Wang has discussed and com-
pared Eq. (3.17) with experiment and with other theories
such as Pecora's, we may say that the results of EIT for
the depolarized spectrutn of a viscous liquid are also in
good agreement with experiment and with microscopic
approaches. Let us now turn our attention to viscoelasti-
city.

C. Linear viscoelastic liquids

Let us now consider explicitly the relaxation in the
stress tensor by assuming ri+0. If, as before, we keep
the identifications (3.15) but now we set a2 ——G(0), where
G(0) stands for the static relaxation modulus of the fiuid,
Eqs. (3.10) become

Equation (3.20) may be rewritten in differential form as

8
ri —r» —— r—»+riG(0)L» .

Bt
(3.22)

Clearly, if following Wang we now couple this viscoelas-
tic model with a, we get the EIT result given by Eq.
(3.19a). This then shows that the phenomenological
models proposed by Wang, both for Newtonian and
viscoelastic (Maxwell) fluids, may be consistently derived
from our version of extended irreversible thermodynam-
ics. However, although the models are formally the
same, from our thermodynamic description we may ob-
tain in addition the (analytic) temperature dependence of
the phenomenological coefficients in Eqs. (3.19), up to the
order of approximation considered, and, therefore, of
properties derived from them, such as the V-H spectrum.
Indeed, if we solve Eqs. (3.19) for a,y, taking into account
Eqs. (3.9), a similar procedure to the one leading to Eq.
(3.12) yields

z+q po 'C(z)
(a, (q,z)a,'(q)) =I

(z+r)[z+q'p,-'G(z)]+a '

r, —r, = r»+r, G—(0)L»+tt, a,
Bt 'y (3.19a) (3.23a)

—a» ———I a»+p L» .
Bt

(3.19b)

G(t)=G(0) exp( tri ') . — (3.21)

It can be easily seen that these equations correspond to
the viscoelastic model proposed by Wang: Eq. (3.19b) is
identical to Eq. (A2) in Ref. 20, and (3.19a), as we shall
see below, essentially corresponds to Eq. (A6), namely,

+zy = G t —t'
Lzy

l"' t'+a
crazy

' 3.20
0

Here G(t) is the relaxation shear modulus and is only a
function of time. Note that if in this last equation we
neglect the coupling between

hazy
and a,„and assume that

the modulus G (t) is of the Maxwell-type (linear viscoelas-
ticity),

(a,„(q,z)a,'„(q) ) =X
z+~, ' (3.23b)

To exhibit the effects of temperature on the spectrum we
follow Wang and assume that for viscoelastic liquids
where r, '

&& 1, G(t) may be approximated by

G(t) =G(0)+2rt'5(t) (3.24)

[see Eq. (A10) in Ref. 20], so that the memory in Eq.
(3.20) may be neglected. In this case (3.23a) reduces to

with X and 5 given, respectively, by Eqs. (3.12a) and
(3.18), and where C(z) denotes the Laplace transform of
the shear modulus G(t). Similarly, by setting bi ——0 in

Eqs. (3.11),we also arrive at

z +q rI'po 'z+q po 'G(0)(a, (q, z)a', (q)) =X
(z+I )[z +q po '[G(0)+rl'z](+z5

and from Eqs. (3.8), (3.23b), and (3.25), using Wang's notation, we also arrive at

r . , o rico, o~ +I (co —0 ) 28
IvH(q ~)=- sin —+ cos

co +I 2 co [—co +(o) +0 )] +(oi I —I 0 )

(3.25)

(3.26)

Here instead of defining ii =rt, q Po ', as in Eq. (3.18), we
have used

rt= q'po 'g' —n=q'po 'G(0} (3.27}

There are four independent parameters in Eq. (3.26),
namely, g, I, 5, and Q. However, if we set Q=O, then
rI'~il (Ref. 20) and we are left with three parameters
whose temperature dependence follows from Eqs. (3.18),

(A2b) and (A5), i.e.,

I =AT,
q=DT '+C,
5=T(ET+F) .

(3.28a)

(3.28b)

(3.28c)

The coeScients in these equations are combinations of
phenomenological coeScients and their numerical values
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FIG. 1. The dynamic coupling 5 vs T as given by Eq. (3.29c).
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should be determined from experimental data. Now, for
those temperatures for which the V-H spectrum has been
measured, Wang has adjusted the values of I, r}, 5. So,
if we choose the values of these quantities at 122 and
101.5'C for liquid salol, from Eqs. (3.28} we find that

I =0.33T,

g =31.25T ' —0.16,
5=2.16X10 'T'+2. 75X10 4T .

(3.29a)

(3.29b)

(3.29c)
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T ( C)

130 140

FIG. 2. Evolution of the calculated depolarized spectrum for
a continuous range of high temperatures.

Thus, our thermodynamic description allows us to esti-
mate the numerical values of these parameters at any
temperature. However, since for salol Q=O above 40'C,
we expect our results to be valid only at high tempera-
tures. In Fig. 1 we have plotted 5 as a function of T, as
given by Eq. (3.29c). Note that for high temperatures its
behavior is similar to the one given in Fig. 4 of Ref. 20.
If we now insert Eqs. (3.29) into Eq. (3.26) and plot IvH
vs co for difFerent values of T, we get the qualitative be-
havior shown in Fig. 2. From this figure it follows that,
indeed, as T decreases there is a narrowing of the entire

FIG. 3. Variation of R vs T, as defined by Eq. (3.31), for

g = —2. 111X10 and h =3.294X10

spectrum, consistently with the experimental observa-
tions. However, for the rather small temperature interval
considered, it is not clear if the dip also tends to disap-
pear. To show that this is indeed the case, we first recall
that the spectral central dip is now understood as due to
scattering from the overdamped shear mode, which cou-
ples to the polarizability density. So if, following Refs. 8
and 20, we take this into account by changing the damp-
ing constant g, Eq. (3.18), of the shear wave to

rl=q po 'g, (1—R ), (3.30)

we expect, according to (3.29b), that as T decreases, tl in-
creases and R should decrease. Now the temperature
dependence of R may be obtained from Eqs. (3.15) and
(A3b} and the measured values of the viscosity of salol. 3'

This leads to

R(T)=1—T(gT+h) exp[2. 74—148(T—226) '] .

(3.31)

If the numerical value of the constants g, h is determined
by choosing the values of R at T=122 and 101.5'C in
reference 20, we find the behavior plotted in Fig. 3. So,
from Figs. 2 and 3 we see that EIT qualitatively predicts
for the spectral dip, the observed tendency.

IV. CONCLUDING REMARKS

To clarify and elaborate on some of the points raised in
this paper the following comments may be useful. First,
we want to emphasize that the main result of this paper
has been to show that EIT is, indeed, an alternative ther-
modynamic description for the depolarized scattering
spectra of viscoelastic liquids, when their nonequilibrium
states lie beyond the linear regime of LIT. We have
shown that in a consistent way, EIT allows for couplings
between relaxation processes for the nonconserved state
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variables, whose explicit (analytic) temperature depen-
dence is provided by the theory itself. As a consequence,
as shown in Sec. III, the dependence of the V-H spectrum
on temperature may be also determined.

Second, we should stress that the time-evolution equa-
tions for the (fast) nonconserved variables, Eqs. (2.10) or
(3.9), were derived within two approximations: the first
one assumes that the phenom enological coefficients

a;J,P;?,p;? appearing in the theory are strictly constants,
in spite of the fact that, to lowest order in the fast vari-
ables, they ought to be functions of the local equilibrium
densities e(r, t) and p(r, r). The second approximation
consists in performing the expansions of these coefficients
only up to first order in the sense discussed in Sec. II.
This approximation eliminates their possible dependence
on higher-order scalar invariants in 6, involving terms
with powers of order higher than 1 in the nonconserved
variables. The removal of the first approximation would
lead to relaxation equations with nonconstant
coefficients, whereas the elimination of the second one in-
troduces nonlinear terms in the relaxation equations.
Thus, EIT is a far more general theory than the approxi-
mated scheme presented here; however, its potential use
in connection with other problems of depolarized light
scattering, where the introduction of additional state
variables might be necessary, remains to be assessed.

A third and important aspect of the theory dealt with
here is the way in which the dispersive character of the
medium has been taken into account. Instead of assum-
ing a frequency dependence of the transport coefficients
to describe that the dispersive mechanisms vary with fre-
quency, we have introduced additional relaxing state
variables (processes) with constant phenomenological
coefficients, the usual transport coefficients among them.
This point of view is clearly different from the usual
ones, " but as shown here for viscoelastic liquids, and for
other systems as well, it is capable of yielding a descrip-
tion in good agreement with experiment and with micro-
scopic theories.
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rl ~(P'20P20 P lot 21 }
—1

r2 T~(P211 20 P11~21}=
(A2a)

(A2b)

The remaining coefficients a;, b; in Eqs. (2.10) stand for
the following combinations of phenomenological
coefficients:

+1 =alrl (P21~10 Pili 11)

~2 =~2rl T~(P12P21 P'22P20)+~P21

a3 = T~(P'13I 21 82420)

124 = T~(P'14P21 P'241320 }

~ 5 = T~(P'1421 1 20P'25 }

Similarly,

bl =—TA(P2(@10 Plogll)

b2
—= TA, (P22P10 P 15 11) ~~1 1

b3 =—TA(P2410 P13pli)

b4 =T~(P2810 Pl/11)

b5 = ~(P25) 10 P'15t 11) '

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)

While the coefficient A in Eq. (3.28a} is defined by Eq.
(A2b), the expressions for the remaining coefficients in
Eqs. (3.28) are found from Eqs. (3.15}, (3.18), and (A3)
with the result

=P21(P20P20 Plo 21)

C = (P1+21 P2?820 }(P2(—P20
—P lot 21)

E=~ (P20P10 P 1 1~11 )(P22P10 P'12P11 }

F=AP»(P iiPii —P20t io) .

(A5a)

(A5b)

(A5c)

(Asd)

APPENDIX B

(B2}

In this appendix we give the explicit expression for the
V-H spectrum corresponding to Eq. (3.14). By setting
z =iso and taking the real part of Eq. (3.13) we get

Re(a~„(q, o?)a '„(q) ) =I Hco +I (Bl)
Jco +Kco +M

with

APPENDIX A

In this appendix we give the explicit definitions of the
coefficients ~;,a;, b; appearing in the time-evolution equa-
tions (2.10} for the fast variables and for the coefficients
A, D, C,E,F in Eqs. (3.28), in terms of the constant phe-
nomenological coefficients a,",P,",p," and the tempera-
ture T, up to first order in the nonconserved variables.

If we define

~=(i 10821 ~lli 20)

the relaxation times ~, and ~2 are given by

I—:~2 —a)b, ,
—1

K—:1+2r,a lb 1 + rir2

M =(r2 al bi)——1 2

Similarly, from Eq. (3.12a) we find

Re(a~(q, oi)a,'~(q) ) =X
6 4 2J J 6++ +U

where

(B3}

(B4)

(B5)

(B6)

(B7)
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P=I—q po (2 zr&&z +&tatbz)

~=—q azpo (atbz+azrz

S:—K 2q Po ~ia2,

U =M 2q—po (a ibz+a i azb, +az~, rz
2 —1 —2

+a~bz~~wz )+q po az,4 —2 2

W=q po (azrz '+atbz)

(B10) I&H(q, r0) = sin
0~2+I . , e

J~ ++~ +I 2

(811)

(B12)

Hro4+ Prinz+ o ' ~
. (B13)+ OS

(BS) Thus, the V-H scattering spectrum is given by

(B9)
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