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Dynamics of kink-kink collisions in the double-sine-Gordon system
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We study the double-sine-Gordon kink-kink collisions in a formalism which employs collective

variables to describe the internal oscillations of the kinks and their translational motion in their

center-of-mass frame. The equations of motion are solved in the absence of the radiation Aeld and

dynamical dressing and the results are compared with numerical molecular-dynamics simulations.

We investigate the energy exchange between the translational and internal modes, and a mechanism

is proposed to explain the values of the translational velocity at which maximum energy is ex-

changed between the two modes.

I. INTRODUCTION

The soliton or kink concept has been applied as a para-
digm to model nonlinear excitations, localized defects,
and particles in many areas of physics: condensed
matter, ' quantum optics, plasma physics, particle
physics, and even biophysics. However, the nonintegra-
bility of many soliton c1asses has hampered the explicit
treatment of the corresponding multisoliton systems and
of the underlying soliton-soliton and soliton-antisoliton
interactions. Even in cases of integrable soliton systems,
such as the sine-Gordon system, where multisoliton solu-
tions can be readily obtained, it has been rather difficult
to extract the relevant details about the nature of the pair
interaction process. For example, although the statistical
mechanics of the sine-Gordon system has been treated
exactly within the transfer-integral method (TIM), and
can yield successfully a virial expansion of the free energy
in terms of the soliton density, it fails to provide a physi-
cal interpretation of the virial coefficients in terms of in-
tersoliton interactions. It has only been recently that
direct investigations of these interactions was undertak-
en. Campbell et al. ' have extracted information about
kink-antikink interactions from a series of numerical
simulations of the P and modified sine-Gordon systems;
including the double sine Gordon. Sasaki has investigat-
ed the kink-kink collision in the case of the sine-Gordon
system" in terms of a position shift parameter in an effort
to explain the physical significance of the second virial
coefficient obtained by TIM.

Thus it is desirable to develop a framework within
which it is possible to treat the kink-kink collisions as an
interparticle interaction and then investigate the proper-
ties of the ensuing interaction potential and its dynamics.
It is the purpose of this paper to introduce such a scheme
using as example kink-kink co11isions in the double-sine-
Gordon (DSG) system. ' The DSG kink has found
diverse applications in condensed matter physics: ele-
mentary excitations in He, ' ' domain walls in one-

II. COLLECTIVE VARIABLES IN KK SCATTERING

We start with the field Lagrangian
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dimensional magnetic chains' and in ferroelectrics, ' and
very recently as misfit dislocations in the reconstructed
(111) surface of gold. ' It has also been used to model
self-induced transparency in nonlinear optics' and as an
extended object in particle physics. ' Another interesting
aspect of the DSG kink is that it possesses internal
dynamical structure ' ' which adds to the richness and
complexity of the collision problem and provides a chal-
lenging test to the proposed approach.

In the present approach we extend our recently
developed Hamiltonian formalism which treats the
DSG kink as a particle with one internal degree of free-
dom to the analysis of the DSG kink-kink (KK) collision.
We have used computer simulations as a posteriori check
on the dynamical details resulting from the formalism.
In Sec. II we will present the outline of the DSG collec-
tive variable formalism. In Sec. III we derive the La-
grangian and equations of motion and consider the
asymptotic motion of the DSG kinks with special con-
sideration to the coupling between the internal and exter-
nal degrees of freedom. In Sec. IV we present the results
of the kink-kink scattering and a comparison with the re-
sults obtained from computer simulations. The con-
clusion is presented in Sec. V and in the Appendix we dis-
cuss the importance of using the Lorentz-boosted DSG
kink solution in the kink-kink ansatz.
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rt= —,
' sinh (R) . (2.3)

In terms of this new parameter, the potential (2.2) reads

V(4) =
cosh~R

1+cos
2

+tanh R(1 —cos4} .

(2.4)

Figure 1 shows V(4) for R = 1.5. In this region the stat-
ic kink solution takes a simple form

0'nso(x Xp R ) =4 tan

sinh (x —Xo)
2'

0

cosh(R)

(2.5)

l0 above, is the width of the DSG kink and X0 is the posi-
tion of its center of mass. Equation (2.5) can be expressed
in terms of two sine-Gordon (SG) solitons

The potential (2.2) exhibits a variety of structures as the
parameter g is varied from —ao to ~. Reference 9 gives
a detailed analysis of the different regimes and associated
solutions as a function of g. V(@) above is normalized
such that the bottom of the continuum of small oscilla-
tions around the DSG kink solution is always unity. The
additional constant terms in the potential are introduced
to ensure V(4) vanishes at the absolute minima 4 =4nm
In writing (2.2) we have anticipated working in the region
—,
' & q & ~, where there exist only one type of kink which
connects two adjacent absolute minima. In this region
the potential (2.2) can be rewritten in tertns of a new pa-
rameter R defined by

=4tan-'

2'
sinh y(x —Xo —Ut)

l0

cosh(R)
+4n n. ,

(2.8)

where y =(1—U )
' . (We work in units where c = l.

For a detailed discussion of units see Ref. 23.) Equation
(2.8) represents a DSG soliton moving with constant ve-

locity U. The separation between the two subkinks of the
DSG kink will appear Lorentz contracted to an observer
at rest with respect to the moving kink. This is shown
explicitly in Fig. 2 which shows the boosted solution (2.8)
together with the static solution (2.5). The separation be-
tween the subkinks in the moving solution is given by
2R /y.

In our approach to KK scattering we consider two
boosted DSG kinks with centers located at x =X& and
x =X2. Working in the center of mass of the system
(c.m.s.) we set X, +X2 ——0 and define a relative position
coordinate X which is defined as the distance of the kinks
centers from the c.m.s. [x =(x2 —x

&
)/2]. Using a collec-

tive variable approach the relative position X and the
parameter R in (2.8) are promoted to dynamical vari-
ables. In terms of these variables, we write the following
ansatz for the DSG kink-kink solution

aration between the subkinks which make up a DSG soli-
ton.

The moving solution is obtained by Lorentz boosting
the static solution (2.5}

cr Dso[y(x —Xo —Ut), R]

2'o' ns(ox—XO, R) =crso (x —Xo)+R
l0

4[y(x X(t) ),R (t),—t]=o «+X(x, t),
where

(2.9)

where

2m
+crso (x —Xo)—R +4n n,

l0

(2.6)
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v = 0.800
Ro =6.000
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oso(x) =4 tan '(e") . (2.7)

Equation (2.6) shows that a static DSG kink can be
thought of as two bound SG solitons separated by a dis-
tance 2R. The parameter R can then be taken as the sep-

-4.0-
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-40 0 40

F&G. 1. DSG potential for Ro ——1.50.

FIG. 2. DSG static solution (2.5) (solid line) and boosted

solution (2.8) (broken line) for Ro ——6.0 and Xo ——0. The boosted

solution appears contracted to an observer at rest with respect
to the moving kink.
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trKK='rDso[}'(x X—(t)),R (t)]

+crDso[1 (x +X(t)}&R(t)] (2.10)

uosG is given by (2.8) with y = [1—X (t)]
The basic idea behind this parametrization of the field

involves substituting the degrees of freedom of the con-
tinuum field 4 by two collective coordinates X(t) and
R (t) which describe the translational and internal motion
of the kinks, respectively. Equation (2.10) represents two
DSG solitons located at x =X(t) and x = X(t—) moving
with velocity X(t) and X—(t) with respect to the c.m.s.
The field X(x, t) in (2.9) is an independent dynamical vari-
able which includes the dynamical dressing and radia-
tion contribution to the solution. In our treatment of
KK scattering it will be set equal to zero. This is done to
simplify the analysis of the ensuing equations of motion
with the hope that such treatment remains qualitatively
correct. As it turns out, the dynamics of KK collisions
obtained in the absence of the field X agree well (within
5% at low velocities) with numerical molecular-dynamics
simulations (MDS). The discussion and comparison of
the results using this approach will be presented in Sec.
IV.

At this point it is important to mention that the boost-
ed solution (2.8) in the ansatz (2.9) is not only the natural
choice to use in this type of problem but more important-
ly, the use of the solution (2.5) with Xo and R promoted
to dynamical variables leads to unphysical results as is
shown in the Appendix.

Working in the absence of the field X(x, t), (2.9) can be
written in a simpler form

with @=[1—X ]
Equation (2.11) is used in the field Lagrangian (2.1) to

arrive at the equations of motion. This and the approxi-
mations involved are described next.

III. THE LAGRANGIAN
AND EQUATIONS OF MOTION

The time derivative of (2.11) is explicitly given by

~+KK

BX BR

Bo rm X.
BX

ae
Bt

Be Be Be
BZ BR By

(3.2)

Using (3.2), the kinetic term in the field Lagrangian (2.1)
reads

" =p zz +2 ~z +2 yy'Y2

where

+Iztt ZR +Irtt y R + Iyz jZ, (3.3)

B4
Ba

ae
dx (3.4)

(3.1)

In order to simplify the notation the time derivative will
be written in terms of a dimensionless variable
Z =(2m/Io)yX

C&(x,X,R,X)=aKK ——4 tan
~

&
sinhy

cosh A

+tan sinhy

cosh8
+4n m,

The other terms in the Lagrangian are
2

B4 2n.
—,
' f dx= yV„ (3.5)

(2 11) and

where

2Ky= fX
lo

(2.12a)

00 lof V(4)dx = —V(Z, R },—00 . 2". y

where

(3.6)

A= yX —R,2v
lo
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(2.12b)

(2.12c)

V„=8t 2[1+g (R)+g (Z)]+g(Z —R)+g(Z jR) j

(3.7)

V(Z, R)=8 2 cothZ
osh R ( tanhR

R sinh(2Z) —Z sinh(2R)
(sinh Z —sinh R)

+tanh Ro [f(Z+R)+f (Z —R)]
tanh R

cothZ z q Z sinh(2R ) —R sinh(2Z)+ (coth Z coth R —1)
tanhR sinh2Z —sinh2R

(3.8)
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We have simplified the notation by defining the following

functions:
rewriting V,~

as follows:

V„=Mz(Z,R ) +m (Z, R ), (3.12)
2

sinh(2()g( )=

f(g)=coth (g)[1—g(g)] .

(3.9a)

(3.9b)
m(Z, R)=16[2g (Z)+g(Z —R)+g(Z +R)] . (3.13)

The parameter R appearing in the potential (2.4) has been
denoted by R o in order to distinguish it from the dynami-
cal variable R in (2.8). It is fixed by the physical system
and is not allowed to change within a given system.

Due to the dependence of (3.3) on the translational ac-
celeration, the equations of motion generated by such La-
grangian are quite lengthy and of fourth order in the X
variable. However, they simplify considerably if one con-
siders collisions at small translational velocities. The
simplifying argument behind this approximation goes as
follows: since the DSG soliton-soliton interaction is
repulsive in nature, the translational velocity of the kinks
will be bounded at all times by the initial velocity which
we shall denote by uo. This is, if X(t = —~)=uo, then

~

X(t)
~

&
~

uu
~

for —~ & t & ~. In addition, from ener-

gy conservation, the internal motion of each kink will
also be bounded by vo. Furthermore, the duration of the
collision is proportional to r- lo/up (tp is the size of each
kink) and therefore the accelerations experienced during
collision are of the order of v o. If we only keep terms up
to order vp, the terms proportional to y in the kinetic ex-
pression (3.3) can be dropped. The resulting Lagrangian
takes the following form:

Employing the same approximation scheme used to drop
the j terms in (3.3), the dimensionless variable Z can be
written as follows:

Z= 2 7T X
I y

p

(3.14a)

Z= yX,
0

(3.14b)

~ ~

Z ~ 27T

I0
(3.14c)

where we have neglected all terms of order higher than
X . Using (3.12) together with (3.14) in (3.10) we arrive
at a particlelike Lagrangian in the dimensionless variables
Zand R:

—[a MaR +a MzaZR
Io y

[Mz+ —m y'+ V(Z, R }]], (3.15)

where a=(lu/2n ) and from (3.14b) y is approximately
given by

2K

Io
—M~R

1 ~
p

. y
'

2
Ip

M»X +
277

y =+1+a Z, c =1 . (3.16}

lo 1
MzRXR —V,)y ——V(Z, R)2' y

(3.10)

The Lagrangian (3.15) is now a function of Z, Z, R, and
R. The dependence on X and X is only implicit through
the definition of Z in (3.14a). The above Lagrangian can
be written in a more compact form by defining a
velocity-dependent effective potential

Mz(Z, R) =— ) J

=8[2[1—g (Z)+g (R)]—g(Z —R)

—g(Z+R)),
'2

M„(Z,R)= — y J dx
2 I — BR

(3.11a)

=8[2[1+g (Z) —g(R)]—g(Z —R)

—g(Z+R)], (3.11b)

Mz~(Z, R) = 2m. p B4 B4
aR

=16[g(Z —R) —g(Z+R)], (3.11c)

where the function g has been defined in (3.9a). The Mz
term in (3.10) can be combined with the V,~

term by

The terms V,~
and V(Z, R) have been defined in (3.7) and

(3.8). The other terms in the Lagrangian are
t

84
az "'

V,fr(Z, Z, R)= V(Z, R)+Mz(Z, R)+y m (Z, R), (3.17)

where the dependence on Z is understood to come only
from y.

Figure 3 shows a three-dimensional picture of this
effective potential as a function of Z and R for Rp =2.50
and Z =0.40. For large values of Z the potential has its
minimum at R =Ro. The lateral barriers at both sides of
Z =0 have their maximum at Z =R. This corresponds
to a superposition of a SG subkink belonging to one of
the DSG kinks with another SG subkink belonging to the
other DSG kink. This is more easily seen in Fig. 4, which
shows the effective potential as a function of Z for vari-
ous values of the variable R. The central barrier corre-
sponds to the superposition of all four SG subkinks. The
shape of the potential is controlled by the parameter Rp
and the velocity Z. An increase in translational velocity
leads to an increase in the height of the barriers by an
amount directly proportional to the increase in y. On the
other hand, an increase in Ro leads to a decrease in the
curvature of the potential along the R axis and vice versa.
This can be seen in Fig. 5, which shows a three-
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FIG. 3. Perspective plot of the velocity dependent effective

potential V,z as a function of the variables Z =(2n/lo)yX and

R for Ro ——2.50 and X=vo ——0.40.

FIG, 5. Perspective plot of the effective intersoliton potential
V,N as a function of the variables Z and R for Ro ——1.20 and

vo ——0.0 (static case).

dimensional plot of V,tt for Ro ——1.50 and Z=0 (static
case).

It is instructive to look at this effective potential in the
limit in which the DSG kinks are very far from each oth-
er (Z ~ ~ ). In this limit, it takes the following very sim-

ple functional form:

2RO
lim V,s(R =Ro)=V(RO) =32 1+

Z~ oo sinh(2R o }

(3.18}

In the limit in which the kinks are very far away from
each other and in the absence of internal oscillations
(R =Ro), the effective potential reduces to the energy of
creation of the two DSG kinks which will be referred to
as VR . This energy of creation is comprised of the rest

0

masses of four SG subkinks [eight per subkink, in units of
(2m/lo)] plus the binding energy of the SG subkinks

which make up each DSG soliton. This binding energy
(16[2RO/sinh(2RO)] per DSG kink) goes to zero as
Ro~~. In this limit each DSG soliton disassociates
into two free SG solitons.

In terms of this effective potential V,ff, the Lagrangian
(3.15) takes the following form:

L= (a MAR
—+a MzttZR —V,s) . (3.19)

1O y

We obtain the equations of motion for the variables Z (t }
and R(t) directly from the Euler-Lagrange equations
which follow from (3.19) and by neglecting terms of order
higher than uo [same scheme employed in obtaining Eqs.
(3.14b) and (3.14c)]. The distance of the kinks from the
c.m.s., X(t) is obtained by inverting Eq. (3.14a). These
equations form a pair of second order, coupled
differential equations which are solved self-consistently
using numerical methods. They are given by

90.0
,
'k = 0.14

o Ig~ 154

8QjO- ---' -- '44

70.0-

& BO.O-

50.0-

40.0-

vo 0,40
Ro ~ 250

Z= 2Mtt fz Mzzf R

M

R= Mettftt ™zttfz
M

where

1
Meff 2 Veff —2mr'
M =2MeffMR MZR

and

fz =[(dzM„} (B~Mz~ )]R—— (B~ V,tt)ZRy'

+2(8am)ZR

(3.20a)

(3.20b)

(3.21a)

(3.21b)

30.0
-10

I

-5 0 10

2
2m CK Z

(~zVr) 1+ y'
Z2

+(Bzm) y'

FIG. 4. V,N as a function of the translational variable Z for
various values of R for RO=2. 50 and vo=0. 40.

(3.22a)
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f„=— (a„M„}R'+(a,M„)Z'

+2(BzM„)RZ+ (Ba V,a)
0

(3.22b)

In the limit in which the kinks are far apart, Eqs. (3.20a)
and (3.20b) reduce to

V(R)Z= —[BaV(R)]ZR,

2 V(R )+Jka R
0

~zR = —4

(3.23a)

(3.23b)

where
V(R ):—lim V,z(Z, R )

Z~ 00

tanh2R0
=16 1+

tanh~R

tanh R01—
tanh R

2
cosh R 2R (324 )

cosh2R0 sinh(2R )

lim Ma(Z, R)=16 1 — . . (3.24b)
2R

z ~ '
smh 2R

X(t}=UO—
V(R) —V(RO)

yV(R)V(RO)
0

(3.25}

where V(Ro) above is given by (3.18). The time depen-
dence is implicit in the change of V(R) with R (t). The
term [V(R)—V(RO)] represents the change in the inter-
nal energy of the kinks. In the case of small energy
transfer, V(R) can be expanded about Ro by writing
R (t) =R +0p(t} (Ref. 23) with p/Ro small. Carrying out
this expansion to order p (3.25) reads

At„(Ro)~z,
X(t)=vo— p (r) . (3.26)

2m

I0
rV'«o}

In the above expression co+ is the frequency of oscilla-
0

tion of the internal mode (assuming harmonic motion)
and is given by

We can see from Eqs. (3.23a) and (3.23b) that in order to
have the kinks move with constant velocity (Z =0), inter-
nal oscillations must be absent. This leads to the condi-
tion [BzV(R)]=0 which has the solution R =Ro. Ro
represents the equilibrium separation between the two
subkinks of the DSG soliton. Equation (3.23a) gives the
asymptotic velocity of the kinks in terms of the effective
potential at infinity V(R} and the initial velocity vo

[vo ——X(t~—~ )]

IU. KINK-KINK SCATTERING

4e-

120
—::—800.0
400.0

-20.0
-40.0

O.Q

As it was mentioned in Sec. III, our study of kink-kink
interactions is limited to low velocities due to the approx-
imation scheme employed to simplify the equations of
motion. The repulsive nature of the intersoliton potential
(3.17) does not allow the kinks to go through each other
and thus, they simply reflect. In kink-kink collisions we
do not find the extremely rich variety of interactions ob-
served by Campbell et al. in kink-antikink collisions.
However, we do observe energy exchange between the
translational and shape modes of the kinks. %e will

present later in this section a mechanism for explaining
maximum energy exchange between these two modes.

Equations (3.20a) —(3.20c) were solved self-consistently
using a sixth-order Runge-Kutta-Fehlberg algorithm.
The kinks were started far from each other with no inter-
nal motion (R =0) and at various translational velocities.
Figure 6 shows a perspective plot of a typical kink-kink
collision obtained by solving (3.20) and placing the result-
ing X(t), X(t), and R (t) in the kink-kink ansatz (2.11).
In Fig. 7 we show a phase diagram of the internal vari-
able R (t) versus R(t) for a collision in which the initial
velocity U0 ——0.20 and the parameter R0 ——2.5, while in

Fig. 8 we show a phase diagram of the separation of the
kinks from the c.m.s. X(t) versus X(t) We c.an view the
kinks as compressible particles which are deformed dur-
ing collision, increase their internal energy and reflect
with their shape mode undergoing oscillations about R0
[the minimum of V(R)]. The amplitude of oscillation
will depend on the energy transferred to the internal
mode. For small energy transfers, the internal motion is
harmonic with a frequency given by (3.27). At higher en-
ergies, the amplitude increases and higher harmonics of
co& will be present. Furthermore, as is shown in Eq.

0

(3.26), these internal oscillations of the kinks, induce os-
cillatory motion in the translational velocity X which os-
cillates about the average velocity (vo) with the shape
mode frequency. These oscillations are a result of
translational momentum conservation.

The numerical simulations method used to check the
dynamics of kink-kink collisions involved solving coupled
Newtonian equations of motion of particles in a discrete

2
COg

0 I0
(3.27)

FIG. 6. Perspective plot of kink-kink collision as a function
of time. The velocity of approach was set equal to 0.25 and the
parameter Ro ——2.50.
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FIG. 7. Phase diagram of the internal mode (R) in DSG kink

in kink-kink collision generated by solving Eqs. (3.20a)-(3.20c)
with Rp ——2.50 and Up =0.20.

FIG. 9. Plot of the field 4(x =2Rp, t) obtained using MDS
(solid line) and the ansatz (2.11) with X(t), X(t), and R (t) from
solving (3.20). Rp ——2.50 and the initial velocity was set to 0.20
(in units with c = 1).

R.- 2.SO
%n~ 0.20

x 0.00-

-0.25
0.0 5.0

rel

W.O 15.0

FIG. 8. Phase diagram of the translational mode (X) in
kink-kink collision generated from (3.20) with Rp ——2.50 and
Up =0.20.

chain. The chain was made up of 600 particles and to
avoid discreteness effects, the kinks width was made
equal to 20 particles. The kinks were started 100 parti-
cles apart and the reflection symmetry (x~ —x} of the
problem was employed to reduce computational time.

The point x =2RO of the solution 4(x, t), obtained us-

ing molecular-dynamics simulations was plotted as a
function of time and compared with the ansatz (2.11)
evaluated at the same value of x. Figure 9 shows one of
such plots. The dotted line represents the analytic result.
In all runs generated, the impact parameter (or distance
of closest approach between the kinks) in the analytic re-

suits was always larger than in the MDS runs. This
disagreement lead to an error in the phase shift of the or-
der of 4—8 % for velocities between 0.1 and 0.4. This
gives us an estimate of the contribution of the field X(x, t )

in (2.9) to the overall solution. The MDS show that the
radiation is negligible in all cases presented here (small
velocities, Ra=1.5 —4.0). This implies that to lowest or-
der the field X(x, t} is a dynamical dressing which takes
into account the overlap of the two DSG kinks. In order
to further investigate the role of X(x, t), the shape mode
parameter R (t) and the separation between the kinks
X(t), were computed from MDS data and compared with
the solution of Eqs. (3.20a) and (3.20b). Figures 10 and
11 show one of such comparisons. The dotted line again
represents the analytic result. The very good agreement
demonstrates that the collective variables Eqs. (3.20a)
and (3.20b) which were obtained in the absence of the
field X(x, t) are a very accurate representation of the exact
MDS results. In Fig. 10, the analytic curve is shifted rel-
ative to the MDS curve by an amount equal to the
phase-shift error caused by neglecting X. The omission of
the dynamical dressing to lowest order is mostly responsi-
ble for the difference in the impact parameter observed in
Fig. 9. In order to remove the disagreement in the im-

pact parameter and the phase shift one needs to include
the X contribution to the solution (2.9) to the same order
as Eqs. (3.20a} and (3.20b}. Doing this, however, will not
change R (t) and X(t) and therefore will have no effect on
the energy transfer.

Let us now turn to the energy-transfer mechanism.
The energy transfer between the translational and inter-
nal modes was computed from the asymptotic internal
motion of the kinks and compared with the initial
translational energy. This was done for several values of
the parameter Ro and initial translational velocities vo.
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FIG. 10. Plot of the internal mode R (t) obtained using MDS
(solid line) and the analytic solution from Eq. (3.20b) (dotted
line). Ro ——2.50 and Uo ——0.20.

FIG. 11. Plot of the distance between the kinks X(t) ob-
tained using MDS (solid line) and the analytic solution from Eq.
(3.20a) (dotted line). Ro ——2.50 and vo ——0.20. hX is the separa-
tion between the kinks normalized to the initial separation.

The results are presented in Fig. 12, which shows the ra-
tio of the internal energy (E„)to initial translational ener-

gy (E,) as a function of initial translational velocity. We
observe that the energy transfer between the translational
and shape modes is small, of the order of 2-4 % of the
initial translational energy of the kinks. The mechanism
that leads to maximum energy transfer can be explained
by assuming the interaction between the kinks takes place
in a time which is close or equal to the period of oscilla-
tion of the shape mode of the kinks. The translational
motion and the internal motion would then be in-phase.
In order to 6nd an approximate expression for the time
during which the kinks interact, we define a region of in
teraction in which the kinks feel each other strongly. In
this region the kinks will be compressed and the transla-
tional velocity will change rapidly. The length of this re-
gion will depend on the size of the kinks and we will ap-
Proximate it by alo+PRo (Ro is measured in units of
lo/2n), where a and P are parameters to be determined
empirically from the data. The time T which the kinks
spent in this region will approximately be given by

COg
0

Uo = (alo +PR o )
. 277

(4.3)

0.06
Ro ~ L.SO
Ro ~ 2.00

~ Ro ~ 2.SO
~ Ro & 3.00

Ro ~ 3.50
x g ~ 4H

0.04-

The parameters a and p which best fit the data are found
to be equal to a 2/n. =0.212, p/2n. =0.294.

Figure 13 shows a plot of the values of the velocity at
which one finds maximum energy transfer using the
present formalism as a function of the parameter Rp. In
the same plot, we have included a curve generated using
Eq. (4.3) above. The agreement is quite good for values
of Rp (4.0.

alo+PRoT=
Vp

(4.1)
0.02-

T-2
COg

0

(4.2)

The condition which leads to maximum energy transfer
relates this time T with the frequency of oscillation of the
shape mode of the DSG kinks [co+ in Eq. (3.27)]. There-

0

fore, maximum energy transfer will take place when
OQO

0.0 0.1 0.2
Initial Velocity

Q.3 0.4

Combining (4.1) with (4.2) leads to an equation for the in-
itial velocity at which there is maximum energy transfer

FIG. 12. Ratio of internal energy to initial translational ener-

gy as a function of initial kink velocity for various values of Ro.
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APPENDIX

The purpose of this appendix is to show that to get the
equation of motion for the collective variable X correct to
order X in any kink problem where the original non-
linear field equation is Lorentz invariant, it is necessary
to assume the Lorentz boosted solution and not the static
solution for cr. We consider the simplest case of a single
DSG kink moving with uniform center of mass velocity
X=vo. If we assume the static solution

2'
oDso ——oso (x —X)+R

lo

FIG. 13. Plot of velocity of approach at which there is max-

imum energy exchanged as a function of the parameter Ro. The
solid line is generated by using Eq. (4.4) with a/2n =0.212 and

P/(2m ) =0.294.

27T
+oso (x —X)R +4nn. ,

lo

and substitute in Eq. (2.1) for L and integrate, we obtain
the following Lagrangian:

L = ,'Mx(R)X —+,'Ma(R)R——Va(R),

where

(Al)

V. SUMMARY AND CONCLUSIONS

In this paper we have developed a theoretical formal-
ism for describing DSG kink-kink interactions. We in-
troduced two collective coordinates, X(t) and R (t) which
describe the translational and internal motion of the
kinks, respectively. We introduced an ansatz for the
DSG kink-kink solution which employs two DSG boost-
ed solutions and a radiation field X(x,t) The relati. vistic
Lagrangian obtained in the absence of the field X was
simplified by working at small velocities and defining a
new variable Z=(2m/lo)yX(t) The coupl. ed equations
of motion for the variables Z(t) and R (t) were solved for
various initial conditions and the energy in the internal
and translational mode was computed in the asymptotic
limit in which the kinks are very far apart. Even though
we neglect the radiation and dynamical dressing contri-
butions, these equations provide us with a powerful tool
to investigate the dynamics and energy exchange rnecha-
nism in kink-kink collisions. The results obtained using
this formalism were compared to MDS and good agree-
rnent was observed in all cases studied. The radiation
was negligible and to lowest order the field g is the
dynamical dressing which takes into account the overlap
between the DSG kinks. The omission of the dynamical
dressing leads to an error of 4—8 % in the phase shift.

The energy exchange between translational and inter-
nal modes was observed to be small for all values of Ro
(2—4 % of the initial translational energy). A condition
was found which predicts the velocity at which energy
transfer is a maximum. This condition defines a region of
interaction whose length can be approximated by
(alo+PR o) with a/2m =0.212 and P/(2m. ) =0.294.

V~(R)= f
'2 '2-

2K BO'
V(o )+ dx .

0

However, if we substitute instead the Lorentz-boosted an-
satz

2n 2K
y(x —X),R =o so y(x —X)+R

Io lo

2'+o so y(x —X)—R
Io

into Eq. (2.1) for L we obtain

L =y '[M~(R)R —V,s(R)]

=y ' M„(R)R —Mx(R)—
'2

V(o )
lo

(A2)

where the second equality follows from the definition
2

V,q=M~(R)+ V(R) .
0

(A3)

The Lagrangian of Eq. (A2) is Lorentz invariant in the
center-of-mass variable I and the internal variable R, is
treated nonrelativistically. The most important conse-
quence of the difference between the correct Eq. (A2) and
the incorrect Eq. (Al) is the value of the separation R be-
tween the two subkinks as predicted by the two equa-
tions. If we consider the case R =0 so that we have a
uniformly translating kink, then the value of R is ob-
tained from the equation of motion BL/BR =0. For Eq.
(Al) we obtain
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[—,'Mx(R)vo —Vg(R)] =0,

while for Eq. (A2) we obtain

V,~(R)=0,8

which gives

R min RO

(A4)

(A5)

We see Eq. (A4) gives the incorrect result that R,„de-
pends on U0, i.e., the value of the separation of the kinks
for a uniformly moving DSG is diFerent for diFerent
inertial frames which cannot be. On the other hand, Eq.
(A5) gives the correct result that a uniformly moving
kink has the correct minimum value of R, namely R0, in-

dependent of the velocity of the kink. In conclusion we

observe that the case of the static kink solution instead of
the boosted kink solution is seriously in error already at
terms of order X .
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