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We present new simulations of the domain-growth kinetics for the Q-state Potts model in two and

three dimensions. The time dependence of the average grain radius R can be described by R =Bt",
where B is a temperature-dependent constant. In two dimensions, we find n =0.49+0.02 for a
range of Q values from 2 to 48. This value of n is obtained from very long simulations on lattices up
to size 1000 and is in contrast to our earlier estimates for n which were less than

2 (n -=0.41+0.01)
for large Q. In three dimensions on lattices of size 100, we find that n =0.48+0.04 if early-time

data are excluded from the fit to the kinetic data but smaller if the entire data set is used. The
grain-size distribution for several values of Q in both two and three dimensions is also determined
and compared with our results for grain growth in real polycrystalline materials.

I. INTRODUCTION

During the past few years, there has been a consider-
able effort' ' to understand the kinetics of domain
growth in systems with a high ground-state degeneracy
which have been quenched from a high-temperature
disordered state, T))T„ to a Anal temperature below
the transition temperature T, . After the quench the sys-
tem spontaneously develops local domains which are
highly ordered. The average domain size grows in order
to reduce the excess free energy associated with the
domain walls. For the nonconserved Ising model, '

which has a ground-state degeneracy of 2, it has been
known since the work of Lifshitz' and Allen and Cahn'
that the correlation length R grows algebraically as t'
for all dimensions above one. This result has been well
documented by both analytical' and computer simu-
lation studies' ' ' as well as experiments on ordered
alloys' (e.g. , Fe-Al and Cu-Au). However, until about
five years ago little was known about the growth kinetics
for more complex models which have a higher ground-
state degeneracy. Lifshitz' was the first to predict slow
kinetics in systems with several degenerate equilibrium
states. Safran extended these arguments to show that
domains may become pinned if the number of degenerate
ground states Q)d+I, where d is the dimension of
space. They suggested that the system could become
trapped in local metastable states which would then
greatly slow down the kinetics. Following these ideas,
we carried out computer simulations to study the ki-
netics of the two-dimensional Q-state ferromagnetic Potts
model, for a wide range of Q's from the Q =2 Ising mod-
el to Q =64. While we found that the growth
remained algebraic, independent of the value of Q, we
also found that the higher ground-state degeneracy had
an effect on the growth kinetics, the microstructure, and

the topology.
In general, the time dependence of the average grain

radius R can be described by

R =-Bt", (1)

where B is a temperature-dependent constant. For the Is-
ing model, it is well known' that n =—,'. In our early
studies, we observed that the exponent n for growth in
the two-dimensional (2D) Potts model was dependent on
Q. As Q increased from 2, n decreased slowly from 0.5 to
approximately 0.41+0.02 for Q greater than approxi-
mately 30. As Q increased the grains became more com-
pact and the domain size distribution function narrowed.
For Q larger than approximately 30, we found both n and
the domain size distribution function become indepen-
dent of Q. This result for large Q was confirmed indepen-
dently by Wejchert et al. ' and Mouritsen. ' However,
as pointed out by a number of authors, ' ' it is
difficult to determine whether the exponents one obtains
from Atting the simulation results are truly asymptotic.
This is true even when the available data give an excellent
fit to Eq. (1). It is always difficult to rule out slow tran-
sients. Our original simulations were carried out on
lattices of size 200)& 200, which were already much larger
than those used to study equilibrium critical phenomena.
Such large lattices were necessary since we were interest-
ed in following the kinetics for long times. However,
even for this size system, we had to stop the simulation
when the average grain size was of order 200 sites, in or-
der to ensure that there were enough domains in the sys-
tem to give representative results and avoid the influence
of boundary conditions. Because the average area grows
as R =t ", very large systems are needed to extend the
time regime significantly. In this paper we report new re-
sults on lattices as large as 1000)& 1000 that show, in fact,
when the simulations are extended to much larger sys-
tems and longer times the value of n for all Q studied in-
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II. MODEL AND METHOD

The Hamiltonian for the Q-component ferromagnetic
Potts model with a nonconserved order parameter is
given by

H = —J X5s.s.
t J

(2)

where S; is the state of the spin on site i (1 &5; & Q) and
5,b is the Kronecker 5 function. The sum is over all spin
pairs within a specified distance and J is a positive con-
stant. For all of the simulations, we started the system in
a random state and rapidly quenched to T=O. The ki-
netics of the boundary motion were simulated via a
Monte Carlo method in which a site is selected at random
and reorientated to a randomly chosen orientation. A
generalization of Bortz et al. "n fold" or continuous
time technique to the Potts model was employed to make
the simulations more efficient. Without this method, the
number of runs and size of the systems which we would
have been able to study mould have been greatly reduced.
This is particularly true for large Q and late times, when
most of the spins are not on the boundary. N reorienta-
tion attempts per site are referred to as one Monte Carlo

creases to n =0.49+0.02, consistent with that for the Is-
ing model. However, all of our other results for the
domain size and topological distributions remain essen-
tially unchanged.

In addition to the simulations on large lattices in 2D,
we have extended our simulations to three dimensions
(3D), where we have studied systems as large as 1003.
(Although the 2D 1000 lattices and the 3D 100 lattices
contain the same number of sites, it is important to note
that the maximum linear dimension of domains in the 2D
samples is a factor of 10 larger than for the 3D study. }
Here we observe values of n which are less than —,

' for
large Q if data for times t &200 Monte Carlo steps per
spin are included. In this case, we' find that for Q larger
than approximately 12, n is independent of Q and
n =0.39+0.02. However, when more of the early time
data are excluded, we find n =0.48+0.04 for large Q.
We' also find that the microstructures and topological
distribution function depend only very weakly on dimen-
sionality. The distribution of grain areas from our 2D
simulations are very similar to the cross sections from
our 3D simulations. While the shape of the distribution
functions change with Q, they are relatively insensitive to
dimensionality. We also find that the grain size and topo-
logical distribution functions for the high-Q Potts model
agree very well with grain growth microstructures of real
polycrystalline materials.

In this paper we present new simulation results in 2D
on systems of size 380 and 1000 and in 3D on systems
of size 100 for 3 & Q &48. In Sec. II we briefly describe
the model and the Monte Carlo procedure. Our results
for the growth kinetics and domain size distributions are
presented in Sec. III. We also compare our large Q re-
sults with experimental data for polycrystalline materials.
Finally, in Sec. IV, we discuss some of the implications of
these results.

step (MCS), where X is the number of lattice sites.
Periodic boundary conditions were employed in all of the
simulations.

In 2D, we have carried out simulations on triangular
and square lattices with sizes ranging from 200 to 1000 .
For the triangle lattice, we include only nearest-neighbor
(NN) interactions in Eq. (2). We found that on the
square lattice if only NN are included, the domains be-
come pinned for quenches to T=O and the growth ex-
ponent n is zero for Q & 3, in accord with the predictions
of Lifshitz' and Safran. When the range of interaction is
extended beyond NN to include next nearest neighbors
(NNN) with coupling J equal for NN and NNN pairs,
domain walls are not pinned and R increases algebraical-
ly with the same value of n as on the triangle lattice.
Virials and Gunton' found that if J is not exactly equal
for the NN and NNN interactions, the domains become
pinned for quenches to T=O. When the final quench
temperature T +0, the growth on the square lattice with
NN interactions is not pinned and we observed an
effective growth exponent n which was T dependent ris-
ing toward the values observed on the triangle lattice
with increasing T. In 3D, similar effects occur for the
simple cubic (sc) lattice for Q & 3. When the sum is only
taken over NN in Eq. (2), domain growth becomes
pinned as there is no local driving force on the vertices
where four domains meet. However, the introduction of
further neighbors in the sum [Eq. (2}] unpins the system
and growth occurs even for T=0. In 3D, we' have stud-
ied systems of size 60 and 100 on the simple cubic lat-
tice, including 6, 18, 26, and 124 neighbors in the sum in
Eq. (2). This corresponds to the inclusion of NN sites,
NN plus NNN sites, all sites within a cube out to (111)
and all sites within a cube out to (222), respectively. We
refer to these as cases k =1, 2, 3, and 4. As the number
of neighbors increases, the interaction becomes more
spherical, eliminating effects due to the underlying lat-
tice. We have only investigated the case in which the
coupling J is equal for all pairs within the range of in-
teraction. When the final quench temperature T &0, the
domains in the sc lattice with only NN interactions do
become unpinned, but the effective exponent n increases
only slightly before T, is reached. Since our main aim
has been to search for universal features which describe
the growth kinetics, we have concentrated on systems
which do not become pinned due to loca1 lattice effects
when quenched to T=0.

On the square lattice, all of the results presented are
averaged over five runs on a 380 lattice. We will also
present results for the Q =48 model on a 1000 triangle
lattice averaged over two runs as well as data on a 200
lattice which were averaged over 15 runs, to make com-
parison with our earlier studies. In 3D, we will present
results on a 100 sc lattice. For low Q, our results are
averaged over two to three runs, while for large Q, we
typically made only one run. This is for two reasons.
The first was computer time: a single run for a Q =48
100 simulation takes approximately 12—15 h of CPU
time on an IBM 3090/150 computer with k =3. Since
the continuous time method we use in the simulations is
scalar in its design, the amount of CPU time decreases
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III. RKSULTS

In Fig. 1 we display the microstructures for Q =3, 6,
12, and 48 simulations on the 2D square lattice with NN
and NNN interactions. The boundary is drawn as the
perpendicular bisector between misoriented NN sites.
One can clearly see the gross morphogical changes that
occur as Q increases from near the Ising value (Q =2) to-
ward the limit of high Q. The low-Q configurations con-
sist of very irregular and asymmetric domains. This irre-
gularity decreases as Q increases. For high Q, the
domains are signi6cantly more compact and equiaxed.
This dependence of the domain morphology on Q is very
similar in 3D, as shown in Fig. 2 where we plot a (100)
planar section through the sc lattice for k =2 (18 neigh-
bors) and 3 (26 neighbors) for the same values of Q. In
Refs. 14 and 17 we presented microstructures of the tem-
poral evolution of the growth on the square lattice with

Q=3, t=100 Q=6, t=600 a=12, t=2000 a=48, t=16000

FIG. 1. Domain-boundary configurations for Q =3, 6, 12,
and 48 Potts model on a square lattice that were quenched from
T&&T, to T=O. Solid curves represent the boundaries be-
tween the regions of different orientations. The times were
chosen to yield comparable domain sizes. A 200 section of the
380 sample is shown.

only slightly on a Cray supercomputer. The second is
that we see little fluctuation in our results from sample to
sample. For high Q, there is a sufficient number of
domains to obtain good statistics for both the domain
size and topological distributions from one run. Two
runs for k =3, Q =48 on the 100 lattice gave nearly
identical results for all properties studied. However, for
small Q, where the domains are less compact, the small
linear dimension of our 3D simulations does begin to play
a role, limiting the time we can follow the growth and in-
creasing the magnitude of the statistical fluctuations. For
the Potts model, unlike the Ising model, the growth ki-
netics can easily be monitored by measuring the average
grain area or volume directly by using a cluster-
enumeration routine. Both of these quantities are strong-
ly self aver-aging' unlike L(t)=L (g ), l(g )T, which
is not self-averaging, ' where P is the order parameter
and ( ), and ( ) T denote the time-dependent and equilib-
rium averages, respectively. Measuring the average area
or volume is computationally efficient and gives an accu-
rate measure of the growth without having to average
over many samples as is usually necessary for the Ising
model. While it would be advantageous to use larger lat-
tices in 3D to follow the growth for very long times, this
is not possible with our present resources.

(a)
Q=3, t=100 Q=6, t=500 a=12, t=2000 a=48, t=15000

Q=3. t=100 Q=6. 1=500

FIG. 2. Planar (100) cross section of the 3D microstructure
for a 100' sc lattice with Q =3, 6, 12, and 48 for (a) k =2 and (b)
k = 3. The times were chosen to yield comparable domain sizes.

NN and NNN interactions and on the simple cubic lat-
tice with interaction range k =2, 3, and 4 for a number of
values for Q. The results for the square lattice are nearly
identical to those on the triangle lattice presented in Ref.
3. From these microstructures, it is clear that in the
low-Q limit, large discontinuous changes in the area of in-
dividual grains can occur when one domain meets and
coalesces with another domain with the same orientation.
The probability of such change meetings decreases as Q
increases, though one can see occurrences of this in the
micrographs for Q as large as 30. Since such coalescence
events are strictly forbidden in the limit Q —+ ~, the rari-
ty of such events for Q ) 36 indicates that the infinitely
degenerate system can be modeled with a large finite Q.
An example of a highly degenerate system is the grain
structure of polycrystalline materials, where the Q orien-
tations can be associated with the Ising value (Q =2) to-
ward the limit of high Q. Boundaries for the k =2 case
are flatter; reminiscent of the 2D square lattice with NN
interaction, which becomes pinned by T shaped vertices
where three domains meet. The longer range interaction
in the k =3 case which has a more isotropic grain bound-
ary energy seems to eliminate these, producing grain
boundaries which on a coarser scale meet at 120' even
though the sc lattice grain boundaries which meet at tri-
ple lines are constrained to meet at either 90 or 180', due
to the symmetry of the lattice.

The domain size distribution functions are shown in
Fig. 3 for the 2D square lattice with NN and and NNN
interactions and for that obtained from (100) planar cross
sections through both the k =2 and 3 models on the sc
lattice for Q =6, 12, and 48. Results for the triangular
lattice with NN interactions are indistinguishable to
those for the square lattice with equal strength NN and
NNN interactions. For Q &4, the 100 lattices are too
small to obtain good statistics for the volume, V, or
cross-sectional area, A, distributions but the linear inter-
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FIG. 3. Time-averaged domain size distribution function f ( log, oA /A ), for Q =6, 12, and 48 for the square lattice (bottom curve)
and sc lattice with k =2 (middle curve) and k =3 (top curve). The upper two curves have been displaced vertically by 0.03 and 0.06,
respectively, for clarity. The solid line corresponds to the log-normal function with appropriate values for the mean and standard de-

viation as determined from the histograms.

15.0

10.0—

V
C

CF
o}

LL

5.0—

~ ~

0.0
1.0

I

—0.5
log&o (R/R)

0.5

FIG. 4. Grain radius distribution as determined from a
cross-sectional area analysis of pure Fe (histogram) and from
cross sections of the three-dimensional k =3 lattice model (solid
circles).

cept can be obtained. The 2D results are nearly identical
with the k =2 sc results and both differ only slightly from
the k =3 sc case. In cross section there appear to be
more small grains for the k =3 sc case than for the other
two cases. These distributions were found to be time in-
variant when normalized by their respective means. This
property, which is referred to as statistical self-similarity,
was always observed at late times. The only data avail-
able to test how well our model compares with experi-
mental data is for polycrystalline materials. In Fig. 4, we
present the linear grain-size distribution from our simula-

tions for the k =3 model with Q =48 and data for pure
Fe.' ' ' Note that the grain-size distribution function for
the simulations and experiment agree remarkably well.

Also shown in Fig. 3 as the continuous curve is the
log-normal function f (logtox), where x = A /A, plotted
using the values for the mean p and standard deviation 0.
measured for each distribution. Note that the log-normal
function is symmetric on the logarithmic scale employed
and has tails extending to +00 while the data is actually
skewed. The log-normal form is a better representation
of our data for small Q . The development of the log-
normal distribution in domain growth has been rational-
ized in terms of a probabilistic mechanism in which in-
dividual domains are assumed to change area or volume
in a random and uncorrelated manner. This argument is
not appropriate for high Q, where the density of vertices
is high. The presence of vertices couples each domain to
its neighbors, so that changes in area or volume are
correlated. In this limit, we find a better fit between the
cross-sectional data and Louat's function: f(3/3 )
= exp( —A /A ). However, the volume distribution
f(log&o( V/V)} is better fit by a log-normal function. ' ' '

In Ref. 17(b} we also present results for the relationship
between the number of faces, corners, and edges for indi-
vidual grains and the frequency of the number of grain
faces as well as a more detailed analysis of the grain-size
distribution functions for Q =36 and 48 in both two and
three dimensions.

Domain-growth kinetics were evaluated by monitoring
the time evolution of the mean chord length L, mean
cross-sectional area A, and mean domain volume V (in
3D). Data for the time dependence of the area A are
shown in Fig. 5 for four values of Q on the 2D square lat-
tice with NN and NNN interactions. The lattice size is
380 and the data is presented as both a log-log and
linear-linear plot. Data for the k =2 and 3 model in 3D
on a 100 lattice are shown in Fig. 6. These data can be
fit to the kinetic equation:
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X(r) X—(0) =Bt, (3) 3.0
3D sc (k = 2)

where X is equal to either L, A, or V. For X(t)»X(0),
Eq. (3) reduces to R =Bt", Eq. (1), where R =X ' " and
n = I/(md), where d = 1 for L, 2 for A, and 3 for V. The
average growth exponent n determined from fitting L or
A in 2D or L, A, and V in 3D give the same result within
statistical error. Results for growth in 2D indicate that
N =0.49+0.02 for all Q. As can be seen from Fig. 5(b),
the late time results seem to be quite linear on the plot of
A versus t. Our new results for Q =48 on a 1000 trian-
gle lattice out to 60000 MCS (see Fig. 7), give n =—,', in

agreement with the result for the square lattice, and fall
on top of the early time data (t &6000) on the 200 lat-
tice. Both of these results give a value of n which is
greater than our previous estimates of 0.41+0.02 for
Q & 30. As seen from Fig. 5(a), there is significant curva-
ture in the early time regime for high Q and this is ap-
parently the reason we obtained a lower estimate of n for
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FIG. 6. Plot of log&o( A ) vs log&o(t) for the Potts model on a

100 sc lattice for four values of Q for (a) k =2 and (b) k =3.
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FICi. 5. Plot of average area A vs t(MCS) for the Q =6, 12,
24, and 48 Potts model following a quench from T&~T, to
T =0. Data is averaged over five runs on a 380 square lattice
with NN and NNN interactions of equal strength. In (a) we
show the data on a log-log and (b) on a linear-linear plot. The
exponent n is obtained by least-square fitting this data to Eq. (3).

FIG. 7. Average area A vs t on a linear scale for Q =48 Potts
model on (a) 380 square lattice with NN and NNN interac-
tions, (b) 1000 triangle lattice with NN interactions, (c) 100 sc
lattice with k =2 and (d) 100 sc lattice with k =3.
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high Q from fitting Eq. (3) to our original data. ' If we

fit our new data for t (4000 MCS, we obtain estimates
for n which are consistent with our previous results, indi-
cating the rather slow crossover to the asymptotic time
regime and the need to do long simulations which require
large lattices.

In fitting the available simulation data in 3D to deter-
mine the kinetic exponent, we found that the results were
sensitive to the time regime examined. When all data for
time t )200 MCS was included in the least-square fit to
Eq. (3), the grain growth exponent obtained for Q ) 12 is
approximately' ' 'n =0.2820.02 for k =2 and n =0.39
+0.02 for k =3 and 4. These were the exponents we re-

ported in an earlier short communication' '" and an ear-
lier review on the 3D work. ' However, we now know
from our work for 2D, as discussed above, that inclusion
of short time data results in artificially low exponents.
To rigorously check this possibility for the 3D kinetic
data, it is desirable to run this simulation to longer times
as we did in 2D. Unfortunately, the maximum lattice
size which can currently be treated is 100, and the data
have been collected to the time and grain-size limits im-

posed by this lattice size. Therefore, the only recourse at
this time is to carefully examine the data for a possible
crossover from short time n =0.39 kinetics to kinetics
with larger n. Figure 7 shows a plot of the cross-

300
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2000 4000 6000
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8000 10000

FIG. 8. Time dependence of the area A; of individual grains from the 2D simulation with a specific number of edges N, on the tri-
angle lattice. Symbols are shown every 20 MCS when the grain has the number of edges specified. The simulations were started from
a random starting state and run for 1000 MCS, after which the clock was reset to 0. The data plotted are for grains which had the
specified number of edges over unusually large portions of the next 10000 MCS.
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sectional area versus time for Q =48 for k =2 and 3.
The k =2 data do not exhibit a linear regime for the time
scale studied, indicating that if a crossover to n =0.5
occurs, it does so for times much longer than those
currently examined. The k =3 data have a curved region
at small time, followed by a linear behavior at large time.
Fits to these long time data (t &2000—4000 MCS for
k =3 and t &1000 MCS for k =4) presented in Ref.
17(b), yield a kinetic exponent of n =0.48+0.04. The nu-
merical fitting parameters obtained from least-square
fitting to Eq. (3) are tabulated in Table I of Ref. 17(b} for
Q =30 and 48. The k =3 and 4 data obey Eq. (3) with
n =0.48 at large time, but not for short time.

The long-time linearity of the A versus t plots (Fig. 7)
and our experience with small and large lattices in 2D to-
gether strongly suggest that the asymptotic growth kinet-
ics are of the form R =Ct . The apparently lower ex-
ponents found when short-time data are also included are
presumably due to the presence of two competing length
scales in the simulation: namely, the mean grain size and
the lattice spacing, ao as suggested by Kumar et al. and
Beenakker. " The effect of the finite lattice spacing is re-
duced as R grows but is only completely negligible in the
limit iY»ao. Only in this limit can we expect the
growth to be strictly self-similar. Nevertheless, the grain
size and topological distributions presented above do ap-
pear to be evolving in a self-similar manner.

IV. DISCUSSION

One interesting problem which requires more attention
is why the growth exponent n appeared to be less than —,

'

for high Q in our earlier 2D simulations and for both the

simulations and experiment in 3D. In 2D, Mullins has
shown that only by assuming statistical self-similarity
(which our simulations appear to demonstrate) and local
equilibrium that n must equal —,'. He uses the result, first

proven by von Neumann and Mullins, that for both
bubble growth and idealized grain growth in 2D, the rate
of change of the area A; of an individual grain (or bubble)

depends only on the number of sides,

(N, —6}, (4)

where k is constant. This equation should be valid for an
arbitrarily shaped 2D grain of N, sides under the as-
sumption that the local velocity u =k/R and the angle
between the intersecting grain boundaries is 120'. (R is
the signed local radius of curvature lying in the plane,
counted positive when it lies along the normal. ) Thus
A, &0 for N, &6 and is g0 for N, &6. The statistical
self-similarity hypothesis may be written in the form

f„(A, t) =P( A /A )/A,

where f~( A, t) is the probability that a grain has N,
edges and area A between A and A+dA. Mullins
then proves that if local equilibrium is satisfied [i.e., Eq.
(4) is valid for all grains at all times] then n =—,'.

Since we have already shown that Eq. (5) is valid, ' ' '

it is of interest to examine Eq. (4) more closely in order to
understand the apparent slow crossover to asymptotic be-
havior. This is particularly interesting in light of the
simulations by %ejchert et al. ' for 2D soap bubbles,
who using a procedure similar to ours, introduced the ad-
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FIG. 9. Time dependence of the area Q; of five randomly chosen grains from the 2D simulations. The symbols represent the num-
ber of edges, N, . As in Fig. 8, the clock was reset to 0 after an initial run of 1000 MCS.
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ditional constraint that Eq. (4) be satisfied at all times.

They found that the growth kinetics followed Eq. (1) with
n =—,

' even for very early times. Without this constraint

they obtained our previous result, n =0.41. To test the
local equilibrium property of the growth, we carried out
a simulation for the Q =48 Potts model in which we fol-
lowed each grain, monitoring the number of edges as a
function of time. This was first done by performing a
normal domain-growth simulation in 2D for Q =48 on a
200 triangle lattice for 1000 MCS until there were 960
grains remaining. In Fig. 8, we present results for the
temporal evolution of the area of several individual grains
with the same number of edges. Those grains monitored
in Fig. 8 were highly unusual in that their number of
edges did not change during the majority of the 10000
MCS run. For convenience we have reset the clock to 0
after we started monitoring the number of edges and we
have plotted a symbol only when the number of edges
equal the number N, specified in the figure. From Fig. 8,
we see that the slope of A; is approximately zero for
N, =6 and that the slopes for N, =4 and 8 are approxi-
mately of equal magnitude and opposite sign. An average
slope for N, =5 and 7 is harder to determine. We must
point out that most of the grains change N, to often to be
plotted in this way. Shown in Fig. 9 is the temporal evo-

lution of the area A,. for five more typical grains observed

during the 10000 MCS run. A different symbol is used to
label the number of edges at a given time. Note how
often N, changes. The data in Fig. 9 are the norm, while

those in Fig. 8, are the exceptions.
Thus it appears that for those grains which keep the

same number of sides for a long time, Eq. (4) is satisfied.
However, there are large fluctuations around the mean
slope and for most grains N, changes too often for Eq. (4)
to be applicable. From these results, we may be able to
understand why the asymptotic growth regime was hard
to obtain in our earlier simulations. Local equilibrium
was apparently established very slowly and n appeared to
be less than —,'. Even though the grains were several hun-

dred sites in size, they were continuously changing their
number of edges N, too rapidly for the system to reach
local equilibrium. Every time N, changes, the micros-
tructure rearranges to accommodate the new growth
rate, as per Eq. (4). This accommodation process is not
instantaneous but requires a finite amount of time ~. If
this time had scaled with the grain size, we would have
expected that n would remain less than —,'. Apparently,
though ~ does not scale with the grain size for long times,
leading to the observed crossover to n =0.50 kinetics for
very late times.
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