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Magnetic properties of Fe-Ni alloys have been investigated for both fcc and bce structures on the
basis of the finite-temperature theory of local-environment effects (LEE). The temperature and con-
centration dependencies of various local moments, susceptibilities, and the internal-field distribution
function have been calculated. The results are analyzed from the viewpoint of the LEE. The mag-
netic phase diagram obtained explains the experimental results well; the bcc alloys show a stable fer-
romagnetism while the fcc has a ferromagnetic instability at about 65 at. % Fe. In particular, the
spin-glass state in the fcc phase is theoretically obtained for the first time on the basis of the
itinerant-electron model. It is shown to be a new type of itinerant-electron spin glass which arises
from the nonlinearity of the magnetic couplings between Fe local moments. The theory predicts
also an asymmetric divergence of the high-field susceptibility around the ferromagnetic instability in

the fcc lattice.

I. INTRODUCTION

Local-environment effects (LEE) are important to de-
scribe the magnetic behavior of Fe-Ni alloys in the vicini-
ty of the ferromagnetic instability where the energy
difference between various magnetic states with local mo-
ments (LM) is very small. We therefore developed in a
previous paper' (which is hereafter referred to as I), a
theory of LEE at finite temperatures. The theory self-
consistently takes into account the number of nearest-
neighbor atomic and magnetic configurations
(2'2%2'2=16771216) for the fcc structure at finite tem-
peratures by using the method of the distribution func-
tion>® and the static approximation to the two-field
functional-integral method.*~® Applying this theory to
Fe-Ni alloys we have shown that a rapid but continuous
decrease in the curve of magnetization versus concentra-
tion’ is obtained by taking account of the large fluctua-
tion of Fe local moments with respect to the atomic
configuration. This large fluctuation implies a broad dis-
tribution of Fe LM’s, and causes a broad internal-field
distribution near the critical concentration ¢* of the fer-
romagnetic instability, in agreement with experiment.®— 14
The downward deviation of the magnetization curves
from the S = Brillouin curve was shown to be caused by
the collapse of the strong ferromagnetism and the ran-
domness of the alloys.

Since we published paper I, there have been several at-
tempts to describe the ground-state properties on the
basis of first-principle band calculations. In particular,
Williams and Kiibler!® performed compound calcula-
tions. They showed that a decrease of the magnetization
at the Invar concentration is possible in the fcc lattice.
Johnson et al.'® calculated the density of states for
FegsNiys by using the Korringa-Kohn-Rostoker
coherent-potential approximation (KKR-CPA) method.
They clarified the details of the band structure. Although
these calculations are an important step towards the com-
plete understanding of the magnetism of Fe-Ni alloys, the
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fluctuations of the LM’s with respect to the atomic
configuration and self-consistency for the LM
configuration are apparently missing. Thus it is not pos-
sible to use these methods to describe the rapid but con-
tinuous decrease of the magnetization in the ground state,
the internal-field distribution function, and other magnet-
ic anomalies near c¢*. One has to develop a method
which self-consistently takes account of LEE to progress
in the band theory of magnetism in alloys.

In the present paper we investigate various magnetic
quantities in Fe-Ni alloys in more detail using our finite-
temperature theory of LEE. This work has several
motivations.

First, theoretical examinations have recently been
made on the validity of the two-field static approximation
in the degenerate-Hubbard-band model.'”'® In particu-
lar, it has been shown that the five-equivalent-band model
used in paper I does not simply mean five times the
single-band model, but is a significant model which takes
account of the effects of degeneracy and Hund’s rule cou-
pling."® This encourages further numerical calculations
based on the theory of LEE. Moreover, a new expression
for the amplitude of the LM’s {m?), which takes account
of a quantum effect, was obtained.!® Since the quantum
effects strongly enhance the amplitude of the LM’s, it is
desirable to investigate again LEE on the amplitude of
the LM. Such investigations are important, in particular,
for the Fe-Ni alloys because the amplitude of the LM is
the rlr;ost important physical parameter in the Invar prob-
lem.

Second, Takahashi ez al.?° have quite recently report-
ed that a spin-glass state exists at low temperatures in
Fe¢sNijs alloys. The Fe-Ni binary alloys undergo the
martensitic transformation at more than 65 at. % Fe.
Thus they investigated?' quasi-Fe-Ni fcc alloys, i.e.,
(Fe,Ni;_,)9,Cs alloys (0.6 < ¢ <0.9), and deduced a mag-
netic phase diagram showing the spin-glass phase bound-
ary in the temperature-concentration plane. Therefore, it
is worth investigating theoretically, the possibility of the
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existence of the spin-glass state in the Fe-Ni concentrated
alloys.

A spin-glass theory for itinerant-electron systems has
been developed by Hertz?? on the basis of the functional-
integral method in order to understand the relation be-
tween the Kondo impurity and the spin-glass state at low
concentrations. He assumed linear and long-range pair
interactions (i.e., Gaussian-type interactions) and the di-
lute alloys. On the other hand, our theory of LEE (Ref.
1) treats concentrated alloys and the nonlinear-pair-
energy functional between nearest-neighbor sites. Thus
our theory is complementary to the Hertz theory and is
apparently suitable for the present purpose.

Third, susceptibilities and magnetic properties in the
bce phase have not yet been investigated on the basis of
the theory of LEE. The results of the calculations should
be published in order to clarify the consistency of the
theory and its limitation.

In Sec. II we briefly summarize the method of the cal-
culations. Details of the theory have been presented in
Refs. 23 and 1. We present in Sec. III a magnetic phase
diagram which includes the bcc phase as well as the fcc.
It is shown that a spin-glass state is possible after the
disappearance of the ferromagnetism. It is a typical
itinerant-electron spin glass based on a new formation
mechanism. A preliminary report for this point has been
published previously.?* Details of LEE on local moments
are given in Sec. IV. The concentration and temperature
dependencies of the amplitude of the LM are presented
there. Better agreement with experiment is obtained for
the internal-field distribution function.

In Sec. V the results for the high-field susceptibility
and the paramagnetic susceptibility are presented.
Asymmetric divergence of the high-field susceptibility
around the critical concentration is found for the fcc
structure. Finally, we summarize our results in Sec. VI.

II. FINITE-TEMPERATURE THEORY OF LEE

In this section we briefly review the finite-temperature
theory of LEE. A full description of the theory has been
presented in previous papers. "%

We adopt the degenerate-band Hubbard model with
Hund’s rule coupling, and apply the static approximation
to the two-field functional-integral method.'®?® The
thermal average of a LM at site i is then expressed as a
classical average of the field variable &; on the same site
with respect to the free-energy functional E (£) of a one-
electron system with the fictitious fields
E=(£,,&,, ..., &y) acting on the N different sites.

Next, an effective medium « !, which describes the
effect of the random potentials and the thermal spin fluc-
tuations on average, is inserted into the diagonal part of
the one-electron Hamiltonian in E(£). The deviation
from the effective medium is expanded with respect to
sites in the energy functional E (§). To zeroth order one
uses the effective medium only. The first-order correc-
tion consists of the sum of the energy functionals E;(§;)
of the “impurity” on site i embedded in the effective
medium. The next term forms the pair interactions
X, Pij(§:,6;). Here ®,;,(§;,§;) is the pair-energy func-

tional between sites i and j [see Eq. (2.13) of Ref. 23]. We
take account of the nearest-neighbor (NN) pair interac-
tions only, and neglect those between more distant atoms.
Moreover, all higher-order terms are neglected in the
present theory. Next we replace the surrounding field
variables by effective Ising spins in the thermal average of
a LM by making use of a decoupling approximation
which is correct up to the second moment. Finally the
local magnetic moment on site O is expressed within the
molecular-field approximation as follows [see Egs. (2.24)
and (2.25) of Ref. 23].

Jdgge ™M
(mO)EW , 2.1)
W(E)= Eg(6)+ S, @i(E)
i#0
z (m;)
S o) — L 2.2)

i#0 i

Here B denotes the inverse temperature, z being the num-
ber of the nearest neighbors. (m;) in Eq. (2.2) is the
average LM on the neighboring site i. A single-site am-
plitude x; is defined by

xp= [deEexpl—BE(©)] ] [ deexpl —BE()] .

The atomic and exchange pair-energy functionals ®,(§)
and ®F; (&) are defined by

Dy (E)=1 3 Dy (& vx;), (2.3)
v=1%

q)gf(g):—% 2 V¢0i(§,vx,~) . (2.4)

v==%

Equation (2.1) clearly shows that the central local mo-
ment in an effective medium is determined by the sur-
rounding atomic and magnetic configurations {y;} and
{{m; )} via the energy functional W(£), where y; denotes
the type of atom on a surrounding site i (see Fig. 1). The
local moments {{m,;)} are determined in principle by
solving coupled equations of the type (2.1) obtained on
each site.

In disordered alloys the random configuration of sur-

Y2 {M,)

QO
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FIG. 1. Local moment with a local environment in the
effective medium. Flexible local moment & is coupled to the
surrounding atoms {y;} and local moments {{m,}} via the
atomic (®Py; ) and exchange (b§}) pair-energy functionals.
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rounding atoms produces various local magnetic states at
the central site via Eq. (2.1), and therefore a local-
moment distribution g'’(m). Here a denotes the type of
atom at the central site. The distribution is determined
from Eq. (2.1) once we know the distribution of surround-
ings LM’s {{m;)}. Since the latter should have the same
form as the central one we obtain an integral equation for
gV(m). Further approximations lead to the self-
consistent equations for the average LM of the atom «
([{m,)].] and the configurational average of the square
of the LM ([{(m,)?].):

Xqg=[{mg)]. , (2.52)

xi=[(m,)]., (2.5b)

[(my ). = 2 C(n,z,pf®)[{m,)} 1., (i=1,2) (2.6)
[mgil=3 3 Tlkng,, T(z—ngq,,)

k=01=0

X(CED) pt ) 2.7

L |y 2e 2.8)

Here () ([].) denotes the thermal (configurational)

average. The site index / in x; has been replaced by the
type of atom on site .

Equations (2.5a) and (2.5b) define unknown parameters
u, and v,. Equation (2.6) shows that the averaged LM’s
[{m,)], are obtained by averaging the LM’s [{m,),].
over the NN atomic configuration described by the bino-
mial distribution function I'(n,z,p7%) defined by

[2V/nlz —n))(pZ*) (1 —pJo)y—" .

a

Here p;“ is the probability of finding an atom o at a
neighboring site of an atom a, and is given in terms of
Cowley’s atomic short-range order parameter 7 as
Pa =cq+(l—c )71, ¢, being the concentration of the
atom a. Equation (2.7) is concerned with the LM’s in a
given NN atomic configuration, which are averaged over
the local moment distribution at the surrounding sites.
9ot (gq_) in Eq. (2.8) means the probability that the
fictitious spin on atom a with magnitude v, is in the up
(down) direction. (&,),. in Eq. (2.7) is the local moment
of an atom of type a at the central site when k of the ficti-
tious spins among the surrounding n atoms of type «a
point up, and in addition, / spins of the remaining z-n
atoms of type & also point up:

(i = [ Pama(£)dE 2.9)
e"B‘[’ank/(§)
Panki(€E)= fdgeﬁm"‘"“(g) , (2.10)
Yo ()= E o(£)+n® o £)+(z —n)D_(£)
—(2k —n)P (8, — (2] —z +n)DT(ENv .
2.11)

Here the site indices i/ and j in the impurity energy and
pair-energy functionals in Eq. (2.11) have been replaced
by the type of atoms on the sites.

As we have mentioned before, Egs. (2.5a) and (2.5b)
determine [{(m,)]. and [{(m,)?]. when the medium
{£,'} is given, since the energy functionals E,(§),
d)a,,(é’), and <I>e"(§ in Eq. (2.11) are functionals of the
medium {£;'}]. We determine the effective medium Ly
so that the single-site electron scattering from the med1-
um disappears [see Eq. (2.40) of Ref. 23]:

1 [{€)]. 2
Co - Vo | [ 7 | 2G o (0, ([ E2) 1)V L) =F (L)) . (2.12)
§ v:zi2 ([(E1)'? 7l [i&a7]
This is called the coherent-potential approximation (CPA). Here [{(£))]. (i =1,2) is defined by
[KEN =3 Tnzpe S S T(kyngo Tz —n,qy, KED > 2.13)
n=0 k=01=0
L it = [ 6P amia(£)E . (2.14)

Gaol®,&,L;") in Eq. (2.12) is the one-electron Green
function at an impurity site occupied by an atom of type
a in spin state ¢ with the field variable &,

1 0—wy(E)+pu+1iTE0

|7q |2

Gaa(w’g’igl)‘_‘

|7q|?
—1
— LIV FULIH|

(2.15)

f

where | r, | is the off-diagonal factor in the CPA, w (&)
is the charge potential of atom a,  is the chemical poten-
tial, and J,, denotes the effective exchange energy param-
eter of atom a. F(o ;') is the coherent electron Green
function of spin o,

f l'i 2.16)

where p(e) is the density of states (DOS) for an energy
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band of the pure metal with no interaction. Note that
G,, and F do not depend on the orbital because we have
adopted the fivefold equivalent band model. Equations
(2.5a), (2.5b), and (2.12) have to be solved self-consistently
together with the equation for the determination of

|
gq (M)
¥4 n Z—n
gP M) =3 Tinzp S I T(knqg,, T,z—n
P _(H) n=0 k=01=0
where
(m2) =3n,—3n%+ (&) —2/BT,) , (2.18)
Hank1= aa(§a>nkl+(2k _l)baaxava
+(2l —z4n)b  x v . (2.19)

We have assumed here a phenomenological expression
for the internal field acting on atom i,

lea‘(m,>+2bu(mj> ) (2.20)

j=1

where (mj) is a local moment at the neighboring site j.
All results for g\"(M), g'¥(M), and P_(H) are shown by
histograms in the following sections.

III. PHASE DIAGRAM AND ITINERANT-ELECTRON
SPIN GLASS

We adopted the following set of input parameters for
both bce and fcc lattices to obtain a reasonable critical
concentration of the ferromagnetic instability:

npe=17.05, Wg,=0.45 Ry, Jp =0.0700 Ry,
nai=9.00, Wy;=0.35 Ry, Jy;=0.0983 Ry .

Here n,, W,, and -7(, are the electron number, d-band
width, and effective exchange energy parameter, respec-
tively. These parameters lead to a magnetization of
2.23up at T =0 for bcc Fe, and a local magnetization
1.54pp for paramagnetic fcc Fe at T =0. The former
should be compared with the experimental value
2.216up.?® The latter is consistent with the theoretical
value 1.87u in the KKR-CPA.?” The ground-state mag-
netization 0.62up of Ni in the present calculation is in
good agreement with the experimental value 0.615u,.%
The model DOS p(¢) are given in the inset of Fig. 2.

A measure of the magnitude of magnetic coupling be-
tween atoms a and y is given by the effective exchange
energy &,, defined by

,qa+) 8(M—((mf,)nk1)l/2) s
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charge potentials which appear in E,(§), G, etc.

The distributions of the LM at atom «, the amplitude
of LM ({m?2))!2, and the internal-field distribution seen
by nuclei of atom a are calculated from the following ex-
pressions (see Appendix of Ref. 25):

8(M —(&y) it
2.17)
8(H —H oy

2 }‘“(Day()"xa’/"'xy)
A=tp=1

(3.1)

1
2 ay a)‘

We note that Eq. (2.1) reduces to the following localized
model when the medium is chosen to be spin independent
and the amplitude fluctuation is neglected:

S seexp | —B io"oj(sj) 5o
(s0)— (mg)  so=2 j#0
"7 xg S exp —B[E 40j(sj)]s0
So=*+ j#0 (3.2)
fcc
C=0625

~
o
T

S T T

kae“*’»n]c (states/Ry atom)

20F

20+

W (Ry)

FIG. 2. The fcc and bece local density of states for Fe in vari-
ous environments specified by n (the number of Fe nearest
neighbors) at T =150 K. The values of C denote the Fe concen-
tration here and in the following figures. The insets show the
model density of states used in the calculations.
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The coupling &,, reduces to the Anderson superex-
change interaction for a half-filled case in the insulator
limit?82°,

Calculated &,, are shown in Fig. 3. The interactions
in the fcc lattice qualitatively agree with those in I. The
most important difference between bee and fcc is seen in
the Fe-Fe interactions; &g.p. is ferromagnetic in bcc,
while it rather shows the antiferromagnetic couplings.
The Fe-Ni couplings are enhanced by changing the struc-
ture from fcc to bee.

The magnetic phase diagram in the present theory is
shown in Fig. 4(a). fcc Fe is considered to show type I
antiferromagnetic structure in which the LM are parallel
to each other in a (001) plane but they vary alternately
along a [001] axis. Thus one has to calculate the Néel
temperatures in Fe-Ni binary alloys to complete the
phase diagram. This has not yet been performed because
of its laborious nature.

When the Fe concentration increases, the Curie tem-
peratures in the fcc alloys rise. This is explained by a
simple replacement of the ferromagnetic couplings &y;ni
by the stronger ferromagnetic couplings JFg.y; With in-
creasing Fe concentration. The Curie temperature shows
a maximum at about 30 at. % Fe, and finally disappears
at 70 at. % Fe because the weak Fe-Fe interactions lower
the molecular field acting on the LM.

The present choice of parameters leads to a spin-glass
state ([{m,)],=0 and [{(m,)?].#0) in the fcc lattice.
Ishio, Nushiro, and Takahashi?' have quite recently
determined the magnetic phase diagram of the fcc
(Fe,Ni;_,)9,Cg (0.6 <c <0.9) alloys which simulate the
fcc Fe.-Ni;_. (0.65 <c <1.0) binary alloys. The spin-

20

-0.5’—

L |

i
Fe 0.8 0.6 0.4 02 Ni
Concentration

FIG. 3. Exchange pair interactions &,, for the fcc (solid
curves) and bcce (dotted-dashed curves) structures at 7 =150 K.
The fcc results at 900 K are also shown by dashed curves.

glass temperature T, decreases with increasing Fe con-
centration and disappears at ¢ =0.9 as shown in Fig. 4(b).
The result shows a good correspondence with our phase
diagram in Fig. 4(a). In the present calculations we have
neglected the transverse spin fluctuations, and have
adopted a molecular-field approximation. This is prob-
ably the reason why the calculated T, are much higher
than the experimental values. It is quite interesting, in
connection with this point, to see a spin glass in amor-
phous Fe alloys in which the frustration of spins on the
fcc lattice disappears so that the molecular-field approxi-
mation becomes better. Recent investigations show that
T,~110 K in amorphous Fey;Zr, alloys®! and T,=~120
K in amorphous Fegla,, alloys,> which are several
times as large as those in (Fe Ni;__)9,Cy alloys, and con-
sistent with our results in magnitude.

P
l1000 (@)
/>5oo P .
N 0
<
~ <
= o000k el
0 L 1

1
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FIG. 4. (a) Calculated magnetic phase diagram showing the
ferromagnetic (F), spin-glass (SG), and paramagnetic (P) states.
The Curie temperatures for the bcc structure are shown by
dashed curve. The inset shows the experimental result (Ref. 30).
(b) The experimental phase diagram for (Fe.Ni; _.)9,Cg by Ishio
et al. (Ref. 21), which shows the existence of the spin-glass state
in the fcc lattice. The dashed curve shows the Curie tempera-
tures for the binary Fe-Ni alloys (Ref. 30).
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In the following we show that the spin-glass state in
Fe-Ni alloys is formed by a new mechanism. As seen
from Eq. (3.2), the present theory gives the well-known
spin-glass temperature T, of the molecular-field approxi-
mation,

Tg2=%z[ CAJZAA +034238
+(c By —cpdap)+ac epdhp]?) . 33

if we neglect the amplitude fluctuations due to the atomic
configuration, and the temperature dependence of &,,.
This is nothing else but a localized model, and explains
well the existence of the spin glass in Ni-Mn alloys since
Frini >0, Frimn>0, and Fyumn <0.33* However, all
the exchange interactions &#,, in Fe-Ni alloys are positive
in the spin-glass regime as shown in Fig. 3. Therefore,
the spin glasses in Fe-Ni alloys are not explained by the
localized model. We have to take account of LEE on the
amplitude of the LM and the anomalous magnetic cou-
plings between Fe LM to explain the presence of the spin
glass.

Figure 5(a) shows the field-variable dependence of the

fce (a)
2 )
-
[+4
P
o
z O
ol
_.2» 4
1 1 1 1
-4 -2 0 2 4
€ (1B)
T T T T
(b)
2k i
>
[+ 4
o
o
Z o0
=
_2-— 4

£ (MB)

FIG. 5. Pair-energy functionals ®,,(£) and —®g,(§) for (a)
fcc and (b) bee FegsNijs alloys. They are calculated at T =900
K. The notation ay(at) [ay(ex)] means @,,(£) [ — P (8)].

magnetic couplings. The curves do not sensitively de-
pend on the temperature. As seen from Eq. (2.2), 5‘,7,(5)
[ — g} (§)] means the atomic (exchange) pair-energy con-
tribution to the adiabatic energy W(&) of a flexible central
LM § when the neighboring LM with the amplitude x,,
points up. If the pair interactions follow the Gaussian
form, the § dependence of ®¢)(£) should be linear and
there is no anomaly in the vicinity of the ferromagnetic
instability. However, the exchange energy functional
DE (&) in the fcc structure shows an S-shape curve as
seen in Fig. 5. This implies that Fe LM’s, with the aver-
age amplitude ({£2)'/?) less than about 1.7up, couple an-
tiferromagnetically to the neighboring Fe LM’s, while the
Fe LM’s with the amplitude more than 1.7u5 couple fer-
romagnetically to the surrounding Fe LM’s. Since the
pair-energy functionals @, (&) and ®p.y;(&) show the
downward and upward convex curves, respectively, the
amplitude of the central LM varies from 2.6 to 1.5ug
with increasing the number of Fe NN. This means that
the Fe LM’s with a small number of Fe NN show the fer-
romagnetic coupling to the neighboring Fe LM, while the
Fe LM with a large number of Fe NN show the antiferro-
magnetic coupling to the neighboring Fe LM. These fer-
romagnetic and antiferromagnetic couplings between Fe
LM’s produce the spin-glass state (see Fig. 6.) The mech-
anism mentioned above is based on the nonlinearity of
the exchange energy ®fir.(£) and LEE on the amplitude
of the LM. Thus the spin-glass state in Fe-Ni alloys be-
longs to a new type of itinerant-electron spin glass.

The antiferromagnetic coupling of ®F.r.(£) does not
appear in any value of £ in the bcc lattice. Thus the fer-
romagnetism is recovered in the bcc lattice. The Curie
temperature in the bcc lattice decreases with increasing
Ni concentration. This is not explained by the rigid-band
model.

Fe [AA~~A | Fe

(Fe NN <10)

\L/W\MT
(Fe NN =10)

FIG. 6. Nonlinear coupling between Fe LM’s in the fcc Fe
alloys. Fe LM’s with less than ten Fe NN (see Fig. 8) have large
amplitudes ((£2)!/2) and therefore show ferromagnetic cou-
pling, but Fe LM’s with more than ten Fe NN have small ampli-
tudes, thus the antiferromagnetic coupling.
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IV. LEE IN THE bcc AND fcc LATTICES
A. Concentration dependence

Figure 7 shows the concentration dependence of vari-
ous LM’s. The present choice of parameters shifts the
critical concentration of the ferromagnetic instability to
the Fe side, resulting in better agreement with the experi-
mental data.”~® The amplitudes of the LM [({m?2))!/?]
are enhanced by about 1.5 times for Fe and 3 times for Ni
by taking account of the quantum effect. The reduction
of the amplitude of Fe LM at ¢* is only 7.5%, while it is
16% in the classical expression.!

All the average LM in bcc are on the lines extrapolated
from the Ni-rich fcc phase. However, the LEE of the bcc
phase are considerably different from those in fcc as seen
in Fig. 8.

In the fcc lattice, the exchange pair-energy functionals
between Fe LM’s show the ferromagnetic coupling for
the absolute field variable |&| R 1.7up, and the antifer-
romagnetic couplings for |£| $1.7up. The latter cou-
plings become effective when the Fe concentration in-
creases because more atomic pair-energy functionals
Bpr(£) act to decrease the amplitude ({£2))'/2. The
self-consistent treatment of such antiferromagnetic cou-
plings due to LEE leads to the ferromagnetic instability
at about ¢ * =65 at. % Fe in the fcc phase, and to a broad
LM distribution near ¢*. The ferromagnetic instability

(KB)
4t 4

Concentration

FIG. 7. Concentration dependence of various local moments
(LM) in the bcc (¢ >0.65) and fcc (0<c < 1) structures at
T=150 K. (- - -.): [{m)]; ( o [{mg)]; (— — —)
[(m2)1% (= ——. ): [{mg)?]}"%. Experimental LM
[(m,)]. at T=4.2 K are shown by A (a=Fe,(fcc), A
(a=Ni,fcc) (Refs. 8, 35, and 36), O (a=Fe,bcc), and B (a=Ni,
bee) (Ref. 37). O show the experimental data for the magnetiza-
tion (Refs. 7-9).

and strong LEE on the LM do not take place in the bcc
lattice because of no anomaly in ®F(£). This is also
seen from a comparison of the local DOS of Fe in various
environments between the bce and fcc phases in Fig. 2.

The local-moment distributions for Fe are shown in
Fig. 9. The main difference between the previous and
present results is that the width of the distribution in the
present calculations remains in a small concentration re-
gime after disappearance of the ferromagnetism because
of the existence of the spin-glass state. The correspond-
ing internal field distributions seen by 3’Fe are shown in
Fig. 10. They are consistent with the experimental re-
sults by Window.!! The negative internal fields which
imply the existence of the LM antiparallel to the magne-
tization has recently been verified experimentally by
Ullrich and Hesse.!*

The amplitude distributions for Fe have been calculat-
ed by using the new expression (2.17) (see Fig. 11). The
widths of the distributions shrink by 50% as compared
with the classical results (see Fig. 5(b) in I).

B. Temperature variation

The temperature change of the amplitude of LM is
shown in Fig. 12. The amplitudes of Fe are enhanced by

(HB) ,

ceeasssssssrnnd—-]

1 Il 1 i

Fe 0.8 0.6 0.4 0.2 Ni

Concentration

FIG. 8. Average LM ([{m,),].) and the amplitude of LM
([{m2),1}"?) for Fe (solid curves) and Ni (dashed curves) in
various environments at T =150 K. The curves for even num-
bers of n (the Fe nearest neighbors) are plotted for Fe atoms.
For Ni the curves only for n =0 and 8 (or 12) are shown be-
cause of weak local environment effects. The amplitude of Fe
LM in the bec phase are drawn by dotted curves to avoid the
confusion.
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FIG. 9. Distribution functions of Fe LM on the fcc lattice at FIG. 11. Calculated distribution functions for the amplitude
T=150K. of Fe LM in various fcc Fe-Ni alloys.

the quantum effect but the temperature dependence is
similar to the previous results.! Note that a large change
of the amplitude of Fe LM at 60 at. % Fe is responsible
for the Invar effect.!” The Ni LM hardly change the am-

FedH) C=0625 plitude with increasing temperature in the whole concen-
trations because of the strong quantum effect.
The temperature change of Fe LM in each environ-
T T
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FIG. 10. Internal-field distribution functions relative to *’Fe T (K)
on the fcc lattice at T=150 K. The inset shows Window’s ex-
perimental results (Ref. 11) for 67.2 and 69.1 at. % Fe alloys at FIG. 12. Amplitude of LM vs temperature curves for Fe

300 K. (solid curves) and Ni (dashed curves).
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ment is shown in Fig. 13 for 62.5 at. % Fe, which is just
in the Invar regime. In the previous paper I the results
were presented for SO at. % Fe because of the smaller
critical concentration c*, and therefore the validity of
our results was questioned.®® The new results verify the
temperature change near ¢* in our previous results; the
reversal of Fe LM with ten Fe NN with rising tempera-
ture.

The distribution functions of the Fe LM for the same
concentration as in Fig. 13 are shown in Fig. 14. The
width becomes maximum at 0.67,. The Fe LM antipar-
allel to the magnetization is clearly seen at finite tempera-
tures. The internal field distribution functions calculated
from the LM distributions are presented in Fig. 15.
Better agreement with the experimental data'® is ob-
tained. A peak at H =0.7up in the distribution functions
for 0.53T, and 0.74T, shows the internal fields for the Fe
with nine or ten Fe NN, and do not imply the existence
of the two 7y states suggested by many experimental-
ists*>* and theoreticians.'>*!

The amplitudes of LM in various environments are de-
picted in Fig. 13. The use of the new formula enhances
the amplitudes and suppresses the temperature change.
However, LEE on the amplitude are qualitatively the
same as before; the amplitudes of Fe LM with nine or ten
Fe NN are considerably reduced with increasing tempera-
ture.! The widths of the distribution for the amplitude of
Fe LM are approximately 0.5up at 62.5 at. % Fe as
shown in Fig. 16. They are considerably reduced as com-
pared with the previous results (~0.7up)," but the tem-
perature dependence of the line shape is the same as be-
fore.
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3 T E
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.‘:::::::::_‘.'.;.2' ...........
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10,
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12
L Il
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T (K)

FIG. 13. Temperature dependence of the average LM
([{mg),].) and amplitudes ([{m2),]}?) for Fe (solid curves)
and Ni (dashed curves) atom in various environments.
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FIG. 14. Temperature dependence of the distribution func-
tions for Fe LM on the fcc lattice at 62.5 at. % Fe.
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FIG. 15. Temperature dependence of the internal-field distri-
bution functions for ’Fe at 62.5 at. % Fe. The inset shows the
experimental results at 65 at. % Fe (Ref. 13).
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FIG. 16. Temperature variation of the distributions of the
amplitude of Fe LM at 62.5 at. % Fe.

V. SUSCEPTIBILITY

The inverse paramagnetic susceptibility versus temper-
ature curves are presented in Fig. 17. The susceptibilities
follow the Curie-Weiss law at high temperatures. The
curve for y-Fe deviates from the Curie-Weiss law at low
temperatures, and shows a bending at about 300 K. This
is related to a minimum in the amplitude (&%) versus
temperature curve where the sign of the slope changes.
Note that the Curie constant in the weak ferromagnetic
case is given by C =(&*)(14+ad(&?) /dT) (see Ref. 42).
The constant a is determined by a given band structure.
The cusp for 75 and 80 at. % Fe curves shows the spin-
glass phase transition.

X~1(10-3Ry atom/lig)

0 500 1000 1500
T (K)

FIG. 17. Paramagnetic susceptibility vs temperature curves
in the fcc (solid curves) and bec (dashed curves) structures.
Numerals in the figure show the Fe concentration. Dotted
curve shows the result for FeysNi;s with the atomic short-range
order 7= —0.436.

The effective Bohr magneton numbers and the Weiss
constants are presented for both bce and fcc lattices in
Fig. 18. The results are in good agreement with the ex-
periments*~* and previous results of the CPA calcula-
tions.*”*® The difference of the effective Bohr magneton
number m; between fcc and bcc alloys arises at more
than 70 at. % Fe where the fcc ferromagnetism disap-
pears. The calculated m s of a Fe is 2.8up, while it is
4.6up for y Fe. This indicates a weak magnetism of y-
Fe.®

The susceptibility for the 65 at. % Fe alloys with the
atomic short-range order 7= —0.436 which leads to the
lowest probability p NN on the fcc lattice is also shown in
Fig. 17 by a dotted curve. Since g.n;> Fpepe and
Fnire > Fnini the Curie temperature is larger than that in
the complete random alloys. The effective Bohr magne-
ton number for 7= —0.436 is larger than that in the com-
plete random alloys because the Fe LM are more local-
ized in the environment with the larger number of Ni
NN.

A typical example of LEE on the susceptibilities near
the ferromagnetic instability is depicted in Fig. 19. The
Fe LM with more than ten Fe NN do not follow the
Curie-Weiss law. The negative divergence of these Fe
LM is due to the antiferromagnetic couplings with sur-
rounding Fe LM’s.

(Up)

Metf
(o]
o—

-1000

1 i 1 -l

Fe 0.8 0.6 0.4 0.2 Ni

Concentration

FIG. 18. Concentration dependence of the effective Bohr
magneton number m . (dotted and dashed curves) and the
Weiss constant (solid curves) for the bce (¢ >0.65) and fcc
structures. The results are obtained at about 1300 K. Open
(closed) triangles and circles show the experimental m . and
Weiss constants, respectively, for the fcc (Refs. 43 and 44) (bcce)
(Refs. 45 and 46) structure.
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FIG. 19. Paramagnetic susceptibilities of Fe (solid curves)
and Ni (dashed curves) atoms in various environments for 65
at. % Fe fcc alloys.

The calculated high-field susceptibilities at low temper-
atures are shown in Fig. 19 as a function of the concen-
tration. When we approach to the critical concentration
from the lower Fe concentration the calculated suscepti-
bilities rapidly increase. But the rate of the increment is
too large as compared with the experiments.®® One has
to take into account more seriously the electron correla-
tions there. When the ferromagnetism disappears, the
amplitude of Fe LM shrink considerably as has been
shown in Fig. 8. The Fe LM with eight and nine Fe NN
hardly feel the molecular fields from the surrounding Fe
LM via the exchange coupling ®gi.(£) because of the
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FIG. 20. High-field susceptibility as a function of the Fe con-
centration at T=150 K. Open circles show the experimental
results at 4.2 K (Refs. 50 and 51).

reduction of the amplitude [see Fig. 3(a)]. This causes
relatively large susceptibilities in the paramagnetic and
spin-glass phase as seen in Fig. 20. Therefore, an asym-
metric divergence of susceptibility arises around the criti-
cal concentration in the fcc phase. Unfortunately there is
no experimental data available at more than 70 at. % Fe.

VI. SUMMARY

In the present paper we have investigated the finite-
temperature magnetism of Fe-Ni alloys in both bcc and
fce structures on the basis of the theory of LEE.

The bee and fcc magnetic phase diagrams explain well
the experimental ones. The decrease of the Curie temper-
ature with increasing average electron numbers in the bcc
phase®® has been shown to be due to the alloying effect.
In the fcc structure we have given theoretical support to
the spin-glass state which has quite recently been found
experimentally by Takahashi et al.?*?! Calculated sus-
ceptibilities show a cusp at the transition temperatures.
This spin-glass state is purely itinerant in the sense that it
does not occur unless we take account of the nonlinearity
of the magnetic coupling between Fe LM and LEE on the
amplitude of Fe LM. These characteristics seem to be
quite general in the close-packed Fe alloys. We speculate
therefore that the spin-glass states in amorphous Fe-Zr
and Fe-La alloys,“'32 which have recently been found,
might be explained by the same mechanism. It is quite
interesting to clarify in experimental and theoretical in-
vestigations what are the characteristics which distin-
guish itinerant-electron spin glasses from insulator spin
glasses.

As we have shown in the previous paper (I), the key to
understanding the magnetism of Fe-Ni alloys is the non-
linearity with respect to the atomic configuration of the
couplings between Fe LM’s via the amplitude fluctua-
tions. This explains the rapid decrease of the magnetiza-
tion near c¢*, and the temperature and concentration
dependence of the internal-field distributions acting on
3'Fe. In the present calculations we have checked our
previous conclusions,' and have obtained better agree-
ment with experiments by using more reasonable input
parameters.

We have taken into account the quantum effect on the
amplitude of LM by using a new expression'® consistent
with the free energy. The amplitudes of LM are
enhanced by a factor of 1.5 for Fe and 3.0 for Ni as com-
pared with the previous results. The temperature and
concentration dependencies of the amplitude are
suppressed by the quantum effect; the amplitude reduc-
tion at T, is only 4.5% at 60 at. % Fe and the amplitude
change at ¢ * is only 6.5% at low temperatures.

The effective Bohr magneton numbers m g and the
Weiss constants ®, in the paramagnetic susceptibilities
were shown to be consistent with the experiment; the cal-
culated m ¢ in the fcc structure increase rapidly near c*
while those in the bcc hardly change in the Fe-rich con-
centrations. One of our predictions is that the high-field
susceptibility shows an asymmetric divergence around c*
in the fcc structure. This asymmetry is caused by the Fe
LM’s with eight Fe NN, which have very small exchange
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coupling in the paramagnetic state. It might be possible
to verify the asymmetric dependence by investigating
(Fe,Ni; _.)9,Cs, (Feg ¢sNig 35);_Mn, alloys,”!">? and Fe-
Zr’! Fe-La,*? and (Fe,__Ni,),sP;sBgAl; amorphous al-
loys.*?

Finally we note that we did not discuss the so-called
Invar problems. The static approximation with reduced
Coulomb and exchange-energy parameters, which has
been used in the present calculations, describes qualita-
tively well {m ) and x,.>* It also explains the large neg-
ative thermal-expansion coefficient!” and large forced
volume magnetostriction*® near c*, but it does not de-
scribe the change of sign as a function of concentration in
these quantities.'”*® Furthermore, one has to assume a

volume dependence of the effective exchange energy pa-
rameter in order to explain the pressure dependence of T,
(3T, /3P) versus concentration curves.*® One has to take
account of the electron correlations at finite temperatures
to consistently discuss the Invar phenomena on the basis
of a microscopic theory.”> This is one of the important
problems in Fe-Ni alloys, which needs to be addressed in
the future.
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