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Finite-temperature theory of local-environment effects in Fe-Ni alloys
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Magnetic properties of Fe-Ni alloys have been investigated for both fcc and bcc structures on the
basis of the finite-temperature theory of local-environment effects (LEE). The temperature and con-
centration dependencies of various local moments, susceptibilities, and the internal-field distribution
function have been calculated. The results are analyzed from the viewpoint of the LEE. The mag-
netic phase diagram obtained explains the experimental results well; the bcc alloys show a stable fer-
romagnetism while the fcc has a ferromagnetic instability at about 65 at. % Fe. In particular, the
spin-glass state in the fcc phase is theoretically obtained for the first time on the basis of the
itinerant-electron model. It is shown to be a new type of itinerant-electron spin glass which arises
from the nonlinearity of the magnetic couplings between Fe local moments. The theory predicts
also an asymmetric divergence of the high-field susceptibility around the ferromagnetic instability in

the fcc lattice.

I. INTRODUCTION

Local-environment effects (LEE) are important to de-
scribe the magnetic behavior of Fe-Ni alloys in the vicini-
ty of the ferromagnetic instability where the energy
difference between various magnetic states with local mo-
ments (LM) is very small. We therefore developed in a
previous paper' (which is hereafter referred to as I), a
theory of LEE at finite temperatures. The theory self-
consistently takes into account the number of nearest-
neighbor atomic and magnetic configurations
(2' X2' =16771216)for the fcc structure at finite tem-
peratures by using the tnethod of the distribution func-
tion ' and the static approximation to the two-field
functional-integral method. Applying this theory to
Fe-Ni alloys we have shown that a rapid but continuous
decrease in the curve of magnetization versus concentra-
tion is obtained by taking account of the large fluctua-
tion of Fe local moments with respect to the atomic
configuration. This large fluctuation implies a broad dis-
tribution of Fe LM's, and causes a broad internal-field
distribution near the critical concentration c' of the fer-
romagnetic instability, in agreement with experiment.
The downward deviation of the magnetization curves
from the S = —,

' Brillouin curve was shown to be caused by
the collapse of the strong ferromagnetism and the ran-
domness of the alloys.

Since we published paper I, there have been several at-
tempts to describe the ground-state properties on the
basis of first-principle band calculations. In particular,
Williams and Kubler' performed compound calcula-
tions. They showed that a decrease' of the magnetization
at the Invar concentration is possible in the fcc lattice.
Johnson et al. ' calculated the density of states for
Fe65N135 by using the Korringa-Kohn-Rostoker
coherent-potential approximation (KKR-CPA) method.
They clarified the details of the band structure. Although
these calculations are an important step towards the corn-
plete understanding of the magnetism of Fe-Ni alloys, the

fluctuations of the LM's with respect to the atomic
configuration and self-consistency for the LM
configuration are apparently missing. Thus it is not pos-
sible to use these methods to describe the rapid but con-
tinuous decrease of the magnetization in the ground state,
the internal-field distribution function, and other magnet-
ic anomalies near c*. One has to develop a method
which self-consistently takes account of LEE to progress
in the band theory of magnetism in alloys.

In the present paper we investigate various magnetic
quantities in Fe-Ni alloys in more detail using our finite-
temperature theory of LEE. This work has several
motivations.

First, theoretical examinations have recently been
made on the validity of the two-field static approximation
in the degenerate-Hubbard-band model. ' ' In particu-
lar, it has been shown that the five-equivalent-band model
used in paper I does not simply mean five times the
single-band model, but is a significant model which takes
account of the effects of degeneracy and Hund's rule cou-
pling. ' This encourages further numerical calculations
based on the theory of LEE. Moreover, a new expression
for the amplitude of the LM's ( m ), which takes account
of a quantum effect, was obtained. ' Since the quantum
effects strongly enhance the amplitude of the LM's, it is
desirable to investigate again LEE on the amplitude of
the LM. Such investigations are important, in particular,
for the Fe-Ni alloys because the amplitude of the LM is
the most important physical parameter in the Invar prob-
lem. "

Second, Takahashi et al. have quite recently report-
ed that a spin-glass state exists at low temperatures in

Fe65Ni35 alloys. The Fe-Ni binary alloys undergo the
martensitic transformation at more than 65 at. %%uoFe.
Thus they investigated ' quasi-Fe-Ni fcc alloys, i.e.,
(Fe,Ni, , )9zCs alloys (0.6 & c & 0.9), and deduced a mag-
netic phase diagram showing the spin-glass phase bound-
ary in the temperature-concentration plane. Therefore, it
is worth investigating theoretically, the possibility of the
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existence of the spin-glass state in the Fe-Ni concentrated
alloys.

A spin-glass theory for itinerant-electron systems has
been developed by Hertz on the basis of the functional-
integral method in order to understand the relation be-
tween the Kondo impurity and the spin-glass state at low
concentrations. He assumed linear and long-range pair
interactions (i.e., Gaussian-type interactions) and the di-
lute alloys. On the other hand, our theory of LEE (Ref.
1) treats concentrated alloys and the nonlinear-pair-
energy functional between nearest-neighbor sites. Thus
our theory is complementary to the Hertz theory and is
apparently suitable for the present purpose.

Third, susceptibilities and magnetic properties in the
bcc phase have not yet been investigated on the basis of
the theory of LEE. The results of the calculations should
be published in order to clarify the consistency of the
theory and its limitation.

In Sec. II we briefly summarize the method of the cal-
culations. Details of the theory have been presented in
Refs. 23 and 1. We present in Sec. III a magnetic phase
diagram which includes the bcc phase as well as the fcc.
It is shown that a spin-glass state is possible after the
disappearance of the ferromagnetism. It is a typical
itinerant-electron spin glass based on a new formation
mechanism. A preliminary report for this point has been
published previously. Details of LEE on local moments
are given in Sec. IV. The concentration and temperature
dependencies of the amplitude of the LM are presented
there. Better agreement with experiment is obtained for
the internal-field distribution function.

In Sec. V the results for the high-field susceptibility
and the paramagnetic susceptibility are presented.
Asymmetric divergence of the high-field susceptibility
around the critical concentration is found for the fcc
structure. Finally, we summarize our results in Sec. VI.

II. FINITE-TEMPERATURE THEORY OF LEE

In this section we briefly review the finite-temperature
theory of LEE. A full description of the theory has been
presented in previous papers. '

We adopt the degenerate-band Hubbard model with
Hund's rule coupling, and apply the static approximation
to the two-field functional-integral method. ' ' The
thermal average of a LM at site i is then expressed as a
classical average of the field variable g; on the same site
with respect to the free-energy functional E(g) of a one-
electron system with the fictitious fields

g=(g„g2, . . . , g~ }acting on the N different sites.
Next, an effective medium ~ ', which describes the

effect of the random potentials and the thermal spin fluc-
tuations on average, is inserted into the diagonal part of
the one-electron Hamiltonian in E((}. The deviation
from the effective medium is expanded with respect to
sites in the energy functional E(g). To zeroth order one
uses the effective medium only. The first-order correc-
tion consists of the sum of the energy functionals E, (g,. )

of the "impurity" on site i embedded in the effective
medium. The next term forms the pair interactions
gi; Ji 4~(g';, g, ). Here tlat;-(g;, g;) is the pair-energy func-

tional between sites i and j [see Eq. (2.13) of Ref. 23]. We
take account of the nearest-neighbor (NN) pair interac-
tions only, and neglect those between more distant atoms.
Moreover, all higher-order terms are neglected in the
present theory. Next we replace the surrounding field
variables by effective Ising spins in the thermal average of
a LM by making use of a decoupling approximation
which is correct up to the second moment. Finally the
local magnetic moment on site 0 is expressed within the
molecular-field approximation as follows [see Eqs. (2.24)
and (2.25) of Ref. 23].

(2.1)

2

'P(g) = Eo(g)+ g 4o;(g)
i~O

(m, &—Q @oi(k)
i~0 i

(2.2)

4o;(g}=—,
' g 4o;(g, vx;),

+

4o";(g)= ——,
' g v4o;(g, vx;) .

y=+

(2.3)

(2.4)

Equation (2.1) clearly shows that the central local mo-
ment in an effective medium is determined by the sur-
rounding atomic and magnetic configurations Iy; ] and

[ ( m, & I via the energy functional %(g), where y; denotes
the type of atom on a surrounding site i (see Fig. 1). The
local moments I (m;& ) are determined in principle by
solving coupled equations of the type (2.1} obtained on
each site.

In disordered alloys the random configuration of sur-

'89
g, (ITlt)

FIG. 1. Local moment with a local environment in the
effective medium. Flexible local moment g is coupled to the

surrounding atoms ty;) and local moments ) (m, )t via the
atomic (No; ) and exchange (+0";)pair-energy functionals.

Here p denotes the inverse temperature, z being the num-
ber of the nearest neighbors. (m; & in Eq. (2.2) is the
average LM on the neighboring site i. A single-site am-
plitude x; is defined by

x; =f d g g exp[ PE, (g) ] —f d g exp[ PE; ( g) ] .—

The atomic and exchange pair-energy functionals 4'o;(g)
and 4o";(g) are defined by
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x u =[(m, )], , (2.5a)

x'.v' =[&m. )'], , (2.5b)

[(m )'],= g I (n, z,p, )[(m )'„]„(i=1,2)
n=0

(2.6)

rounding atoms produces various local magnetic states at
the central site via Eq. (2.1), and therefore a local-
moment distribution g'"(m). Here a denotes the type of
atom at the central site. The distribution is determined
from Eq. (2.1) once we know the distribution of surround-
ings LM's I (m; ) ). Since the latter should have the same
form as the central one we obtain an integral equation for
g" '(m). Further approximations lead to the self-
consistent equations for the average LM of the atom a
([(m ) ],] and the configurational average of the square
of the LM ([(m ) ], ):

[z!/n!(z —n )!)(p, )"( 1 —p, )'

Here p, is the probability of finding an atom a at a
neighboring site of an atom a, and is given in terms of
Cowley's atomic short-range order parameter ~ as
p, =c +(1—c )r, c being the concentration of the
atom a. Equation (2.7) is concerned with the LM's in a
given NN atomic configuration, which are averaged over
the local moment distribution at the surrounding sites.
q + (q ) in Eq. (2.8) means the probability that the
fictitious spin on atom a with magnitude v is in the up
(down) direction. (g ) „kl in Eq. (2.7) is the local moment
of an atom of type a at the central site when k of the ficti-
tious spins among the surrounding n atoms of type a
point up, and in addition, l spins of the remaining z-n
atoms of type a also point up:

& 4).kl = fP..
kl(k)fdic

(2.9)

[(m )'„],= g g I (k, n, q +)I (l, z n, q— )

k =01=0

e
P .k((k) = —pp (g)ankl

kl'«kl(g) = E (g)+nck (g)+(z n)C—k (g)

(2.10)

X((g )„kl)', (2.7) —(2k n)4'"(g—)v —(2l —z +n)4'"(g)v

(2.8)

Here ( ) ([ ], ) denotes the thermal (configurational}
average. The site index i in x; has been replaced by the
type of atom on site i.

Equations (2.5a) and (2.5b) define unknown parameters
u and v . Equation (2.6) shows that the averaged LM's
[(m )], are obtained by averaging the LM's [(m )„],
over the NN atomic configuration described by the bino-
mial distribution function I'(n, z,p, ) defined by

(2.11)

Here the site indices i and j in the impurity energy and
pair-energy functionals in Eq. (2.11) have been replaced
by the type of atoms on the sites.

As we have mentioned before, Eqs. (2.5a) and (2.5b)
determine [(m )], and [(m ) ], when the medium

'j is given, since the energy functionals E (g),
4 r(g), and 4'"r(g) in Eq. (2.11) are functionals of the
medium [X ' }.We determine the effective medium X
so that the single-site electron scattering from the medi-
um disappears [see Eq. (2.40) of Ref. 23]:

(2.12)

This is called the coherent-potential approximation (CPA). Here [(g ) ], (i = 1,2) is defined by

[(g' )],= g I (n, z p, ) g g 1(k,n, q +)I (l, z n, q +)(g' )„kl—,
n=0 k =01=0

&g.)„„=fgp.„„(g}dg.

(2.13)

(2.14)

G (~,g,Q ') in Eq. (2.12} is the one-electron Green
function at an impurity site occupied by an atom of type
a in spin state cr with the field variable g,

co —w (g)+p+ —,'J go.

where
~

r
~

is the off-diagonal factor in the CPA, w (g)
is the charge potential of atom a, p is the chemical poten-
tial, and J denotes the effective exchange energy param-
eter of atom a. F ( ~ '

) is the coherent electron Green
function of spin 0.,

1+F(~ 1)—1 F(~ )
)

P(E) ds
X—' —E

'
a

(2.16)

(2.15) where p(c. ) is the density of states (DOS) for an energy
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band of the pure metal with no interaction. Note that
G and F do not depend on the orbital because we have

adopted the fivefold equivalent band model. Equations
(2.5a), (2.5b), and (2.12) have to be solved self-consistently
together with the equation for the determination of

charge potentials which appear in E (g), G, etc.
The distributions of the LM at atom a, the amplitude

of LM ((m ) )'~, and the internal-field distribution seen

by nuclei of atom u are calculated from the following ex-
pressions (see Appendix of Ref. 25):

g.'"(M) WM —(g.&„„)
z n z —n

g'"(M) .= y r(n, z,p, ) y y r(k, nq )r(1,z —n, q, ) gM —((m2 &„„,)'"),
P (H) 5(H H„—I,I )

(2.17)

where

(m )„ki 3n———
,', n + —,"—,((g )„kt —2/pJ ),

H „kI
——a (g )„1,1+(2k 1)b x—u

+(21 —z+n)b x v

(2.18)

(2.19)

We have assumed here a phenomenological expression
for the internal field acting on atom i,

g Ap@ r(W, px )
A, =k p=+

g A,4'"
(rA, x) .

A, =k
(3.1)

We note that Eq. (2.1) reduces to the following localized
model when the medium is chosen to be spin independent
and the amplitude fluctuation is neglected:

T

z

H;=a;(m;)+g b~(mj),
j=l

(2.20)

(mo&

Xp

g s,exp —P g cP,, (s, & s,
Sp = k j~p

exp —P g 40, (s, ) so
Sp ——+ (3.2)

where (m. ) is a local moment at the neighboring site j.
All results for g"'(M), g' '(M), and P~(H) are shown by
histograms in the following sections.

III. PHASE DIAGRAM AND ITINERANT-ELECTRON
SPIN GLASS

E0
a
K 40
I

20-

fcc
C = 0.625

We adopted the following set of input parameters for
both bcc and fcc lattices to obtain a reasonable critical
concentration of the ferromagnetic instability:

C
03 I

~(L

20- Down

nF ——7.05, WF ——0.45 Ry, JF ——0.0700 Ry,

nN, =9.00, O'
N, =0.35 Ry, JN, =0.0983 Ry .

bcc
C = 0.75

Here n, 8', and J are the electron number, d-band
width, and effective exchange energy parameter, respec-
tively. These parameters lead to a magnetization of
2.23p~ at T =0 for bcc Fe, and a local magnetization
1.54pz for paramagnetic fcc Fe at T=0. The former
should be compared with the experimental value
2.216p~. The latter is consistent with the theoretical
value 1.87p~ in the KKR-CPA. The ground-state mag-
netization 0.62pz of Ni in the present calculation is in
good agreement with the experimental value 0.615p~.
The model DOS p(e) are given in the inset of Fig. 2.

A measure of the magnitude of magnetic coupling be-
tween atoms o. and y is given by the effective exchange
energy 4 ~ defined by

20-
Up

0

20-

—0.4 -0.2

(Ry)

0.2

FIG. 2. The fcc and bcc local density of states for Fe in vari-
ous environments specified by n (the number of Fe nearest
neighbors) at T = 150 K. The values of C denote the Fe concen-
tration here and in the following figures. The insets show the
model density of states used in the calculations.
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In the following we show that the spin-glass state in
Fe-Ni alloys is formed by a new mechanism. As seen
from Eq. (3.2), the present theory gives the well-known

spin-glass temperature T of the molecular-field approxi-
mation,

Ts = 2Z t CA 8AA +CBPBB

+[(CA~AA —Ca+Ba) +4CACB~AB] 1

fcc

I

(a)

lZ
P)

0
IS

if we neglect the amplitude fluctuations due to the atomic
configuration, and the temperature dependence of cP

This is nothing else but a localized model, and explains
well the existence of the spin glass in ¹iMn alloys since
8N;N;)0, 8N;M„)0, and ~f'M„M„(0. ' However, all
the exchange interactions cP r in Fe-Ni alloys are positive
in the spin-glass regime as shown in Fig. 3. Therefore,
the spin glasses in Fe-Ni alloys are not explained by the
localized model. We have to take account of LEE on the
amplitude of the LM and the anomalous magnetic cou-
plings between Fe LM to explain the presence of the spin
glass.

Figure 5(a) shows the field-variable dependence of the

magnetic couplings. The curves do not sensitively de-
pend on the temperature. As seen from Eq. (2.2), 4 r(g)
[ —4'"r(g)] means the atomic (exchange) pair-energy con-
tribution to the adiabatic energy %(g) of a flexible central
LM g when the neighboring LM with the amplitude xr
points up. If the pair interactions follow the Gaussian
form, the g dependence of 4'" (() should be linear and
there is no anomaly in the vicinity of the ferromagnetic
instability. However, the exchange energy functional
4F",F,(g) in the fcc structure shows an S-shape curve as
seen in Fig. 5. This implies that Fe LM s, with the aver-
age amplitude ((g ) '~

) less than about 1.7)tta, couple an-
tiferromagnetically to the neighboring Fe LM's, while the
Fe LM's with the amplitude more than 1.7pz couple fer-
romagnetically to the surrounding Fe LM's. Since the
pair-energy functionals 4„,„,(g) and 4„,N;(() show the
downward and upward convex curves, respectively, the
amplitude of the central LM varies from 2.6'& to 1.5p&
with increasing the number of Fe NN. This means that
the Fe LM's with a small number of Fe NN show the fer-
romagnetic coupling to the neighboring Fe LM, while the
Fe LM with a large number of Fe NN show the antiferro-
magnetic coupling to the neighboring Fe LM. These fer-
romagnetic and antiferromagnetic couplings between Fe
LM's produce the spin-glass state (see Fig. 6.) The mech-
anism mentioned above is based on the nonlinearity of
the exchange energy 4F",„,(g) and LEE on the amplitude
of the LM. Thus the spin-glass state in Fe-Ni alloys be-
longs to a new type of itinerant-electron spin glass.

The antiferromagnetic coupling of 4F",F,(g) does not
appear in any value of g in the bcc lattice. Thus the fer-
romagnetism is recovered in the bcc lattice. The Curie
temperature in the bcc lattice decreases with increasing
Ni concentration. This is not explained by the rigid-band
model.

Fe

bcc

I

(b)

(Fe NN ~10}

P)
o

0
l&l

0

(ite)

FIG. 5. Pair-energy functionals ItI „(g) and —Ip'"~(g) for (a)

fcc and (b) bcc Fe65Ni35 alloys. They are calculated at T =900
K. The notation a) (at) [ay(ex)] means Ip „(g) [ —4'"~(g)].

(Fe NN ~10}

FIG. 6. Nonlinear coupling between Fe LM's in the fcc Fe
alloys. Fe LM's with less than ten Fe NN (see Fig. 8) have large
amplitudes ((g )'~ ) and therefore show ferromagnetic cou-

pling, but Fe LM's with more than ten Fe NN have small ampli-

tudes, thus the antiferromagnetic coupling.
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IV. LEE IN THE bcc AND fcc LATTICES

A. Concentration dependence

Figure s owF 7 hows the concentration dependence of vari-
ous LM's. The present choice of parameters s»ifts e
critica concen ra

'
l entration of the ferromagnetic insta i i y o

the Fe side, resulting in better agreement with t e experi-
mental data. The amplitudes of the LM [((m ))' ]
are enhanced by about 1.5 times for Fe and 3 times for Ni
by taking accoun ot f the quantum effect. The reduction

~ ~ ~ ~

of the amplitude of Fe LM at c' is only 7.5%, w i e it is
16% in the classical expression. '

All the average LM in bcc are on the lines extrapolated

phase are considerably different from those in fcc as seen

nctionalsIn the fcc lattice, the exchange pair-energy functiona s
Fe LM's show the ferromagnetic coupling for

the absolute field variable
~ g ~

~ 1.7p&, and the an i er-
romagnetic couplings for

~ g ~

. ps.&1.7 . The latter cou-
lings become effective when the Fe concentration in-plings ecome e ec

creases because more atomic p
' - gyair-ener functionals

. The4z,i;,( g'} act to decrease the amplitude ( ( g )
self-consistent treatment of such antiferromagnetic cou-

d LEE leads to the ferromagnetic instabi i y
at about c' =65 at. % Fe in the fcc phase, and to a broad
LM distribution near c*. The ferromagnetic insta i i y

LEE on the LM do not take place in the bccand strong on e
lattice because of no anomaly in 4„,„, . is is a
seen from a comparison of the local DOS of Fe in various
environments between the bcc and fcc phases in Fig.

The local-moment distributions for Fe are shown in
Fig. 9. The main difference between the previous an
present results is that the width of the distribution in the
present calculations remains in a small concentration re-

ime after disappearance of the ferromagnetism because
of the existence of the spin-glass state. The correspond-
ing internal field distributions seen by Fe are shown in
Fig. 10. They are consistent with the experimenta re-
sults by in ow.b W d " The negative internal fields which

1 th
'

t nce of the LM antiparallel to the magne-
11 btization has recently been verified experimenta y y

Ullrich and Hesse. 14

T eampiu eh litude distributions for Fe have been calcu at-
ed by using the new expression (2.17) (see Fig. . e
widths of the distributions shrink by 50% as compared
with the classical results (see Fig. 5(b) in I).

0 ~ 0 ~ ~ ~ ~ ~ ~ ~

% ~ ~ ~ ~ y ~ ~ ~ ~ &

n=p

10

8. Temperature variation

The temperature change of the amplitude of LM is
shown in Fig. 12. The amplitudes of Fe are enhanced by

h =0 n=p

e ~

3
d

d d

~%,% ~ 0A%% 4 a s I'% ~ I' ~

n=Qsoeeo

40
0

Q

0
Fe

I

0.8

k
k

0.4 0.2

0

Ni Fe o.e 0.6 0.4 0.2

Concent rat ion Concent ration

FIG. 7. Concentration dependence of vanous local moments
(LM) in the bcc (c )0.65) and fcc {0& c & 1) structures at

[(m )]ei ( )' [(ma)]ci
m ) '

( ——.—): [(m ) ],'~ . Experimental LM
(m )], at T=4.2 K are shown by 5 (a=Fe,fcc),

(a=Ni, fcc) (Refs. 8, 35, and 36), 0 (a=Fe,bcc), and 0 (a=Ni,
bcc) (Ref. 37). 0 show the experimental data for the magnetiza-
tion (Refs. 7—9).

FIG. 8. Average LM ([(m )„],) and the amplitude of LM
( (m ) ]' ) for Fe (solid curves) and Ni (dashed curves) in
various environments av t t T =150 K. The curves for even num-

bers of n (the Fe nearest neighbors) are plotted for Fe atoms.
For Ni the curves only for n =0 and 8 (or 12 are shown be-
cause of weak local environment effects. The amplitude of Fe
LM in the bcc phase are drawn by dotted curves to avoid t e
confusion.
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FIG. 9. Distribution functions of Fe LM on the fcc lattice at
T =150 K.

FIG. 11. Calculated distribution functions for the amplitude

of Fe LM in various fcc Fe-Ni alloys.

PF (H) C =0.625

the quantum effect but the temperature dependence is
similar to the previous results. ' Note that a large change
of the amplitude of Fe LM at 60 at. %%uoFe isresponsibl e
for the Invar effect. ' The Ni LM hardly change the am-
plitude with increasing temperature in the whole concen-
trations because of the strong quantum effect.

The temperature change of Fe LM in each environ-

C =0.65 C =0.0

C = 0.70

0.4
0.6
Q.R
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1.0

H (Pe)

FIG. 10. Internal-field distribution functions relative to "Fe
on the fcc lattice at T =150 K. The inset shows Window's ex-
perimental results (Ref. 11) for 67.2 and 69.1 at. % Fe alloys at
300 K.

0
0

I
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I

1000
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FIG. 12. Amplitude of LM vs temperature curves for Fe
(solid curves) and Ni (dashed curves).
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FIG. 16. Temperature variation of the distributions of the
amplitude of Fe LM at 62.5 at. % Fe.

V. SUSCEPTIBILITY

The effective Bohr magneton numbers and the Weiss
constants are presented for both bcc and fcc lattices in

Fig. 18. The results are in good agreement with the ex-

periments and previous results of the CPA calcula-
tions. ' The difference of the effective Bohr magneton
number m, & between fcc and bcc alloys arises at more
than 70 at. %%uoFewher e th e fcc ferromagnetis mdisap-
pears. The calculated m, z of a Fe is 2.8p~, while it is

4.6p& for y Fe. This indicates a weak magnetism of y-
Fe."

The susceptibility for the 65 at. % Fe alloys with the
atomic short-range order ~= —0.436 which leads to the
lowest probability p, ' ' on the fcc lattice is also shown in

Fig. 17 by a dotted curve. Since PF,N; & 8„,„, and

8N;F, & 8N;N;, the Curie temperature is larger than that in

the complete random alloys. The effective Bohr magne-
ton number for ~= —0.436 is larger than that in the com-
plete random alloys because the Fe LM are more local-
ized in the environment with the larger number of Ni
NN.

A typical example of LEE on the susceptibilities near
the ferromagnetic instability is depicted in Fig. 19. The
Fe LM with more than ten Fe NN do not follow the
Curie-Weiss law. The negative divergence of these Fe
LM is due to the antiferromagnetic couplings with sur-
rounding Fe LM's.

The inverse paramagnetic susceptibility versus temper-
ature curves are presented in Fig. 17. The susceptibilities
follow the Curie-Weiss law at high temperatures. The
curve for y-Fe deviates from the Curie-gneiss law at low
temperatures, and shows a bending at about 300 K. This
is related to a minimum in the amplitude (( ) versus
temperature curve where the sign of the slope changes.
Note that the Curie constant in the weak ferromagnetic
case is given by C =(g )(1+aB(g )/dT) (see Ref. 42).
The constant a is determined by a given band structure.
The cusp for 75 and 80 at. % Fe curves shows the spin-
glass phase transition.

0 0
—1000

Cl

E0
cl

4
0

PI)

C)

2 0.8 0.6 0.4 0.2 Ni

Concentration

0 500 &000 1500

FIG. 17. Paramagnetic susceptibility vs temperature curves
in the fcc (solid curves) and bcc (dashed curves) structures.
Numerals in the figure show the Fe concentration. Dotted
curve shows the result for Fe~,Ni35 with the atomic short-range
order ~= —0.436.

FIG. 18. Concentration dependence of the effective Bohr
magneton number m, & (dotted and dashed curves) and the
gneiss constant (solid curves) for the bcc (c &0.65) and fcc
structures. The results are obtained at about 1300 K. Open
(closed) triangles and circles show the experimental m, ~ and
gneiss constants, respectively, for the fcc (Refs. 43 and 44) (bcc)
(Refs. 45 and 46) structure.
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The calculated high-field susceptibilities at low temper-
atures are shown in Fig. 19 as a function of the concen-
tration. When we approach to the critical concentration
from the lower Fe concentration the calculated suscepti-
bilities rapidly increase. But the rate of the increment is
too large as compared with the experiments. ' One has
to take into account more seriously the electron correla-
tions there. When the ferromagnetism disappears, the
amplitude of Fe LM shrink considerably as has been
shown in Fig. 8. The Fe LM with eight and nine Fe NN
hardly feel the molecular fields from the surrounding Fe
LM via the exchange coupling 4F",„,(g) because of the

0
IX

2
tp
C)

0
Fe 0.8 0.6 0.4

(.oncent rgt j on

0.2 Nj

FIG. 20. High-field susceptibility as a function of the Fe con-
centration at T =150 K. Open circles show the experimental
results at 4.2 K (Refs. 50 and 51).

FIG. 19. Paramagnetic susceptibilities of Fe (solid curves)
and Ni (dashed curves) atoms in various environments for 65
at. % Fe fcc alloys.

reduction of the amplitude [see Fig. 3(a)]. This causes
relatively large susceptibilities in the paramagnetic and
spin-glass phase as seen in Fig. 20. Therefore, an asym-
metric divergence of susceptibility arises around the criti-
cal concentration in the fcc phase. Unfortunately there is
no experimental data available at more than 70 at. % Fe.

VI. SUMMARY

In the present paper we have investigated the finite-
temperature magnetism of Fe-Ni alloys in both bcc and
fcc structures on the basis of the theory of LEE.

The bcc and fcc magnetic phase diagrams explain well
the experimental ones. The decrease of the Curie temper-
ature with increasing average electron numbers in the bcc
phase has been shown to be due to the alloying effect.
In the fcc structure we have given theoretical support to
the spin-glass state which has quite recently been found
experimentally by Takahashi et al. ' ' Calculated sus-
ceptibilities show a cusp at the transition temperatures.
This spin-glass state is purely itinerant in the sense that it
does not occur unless we take account of the nonlinearity
of the magnetic coupling between Fe LM and LEE on the
amplitude of Fe LM. These characteristics seem to be
quite general in the close-packed Fe alloys. We speculate
therefore that the spin-glass states in amorphous Fe-Zr
and Fe-La alloys, ' which have recently been found,
might be explained by the same mechanism. It is quite
interesting to clarify in experimental and theoretical in-
vestigations what are the characteristics which distin-
guish itinerant-electron spin glasses from insulator spin
glasses.

As we have shown in the previous paper (I), the key to
understanding the magnetism of Fe-Ni alloys is the non-
linearity with respect to the atomic configuration of the
couplings between Fe LM's via the amplitude fluctua-
tions. This explains the rapid decrease of the magnetiza-
tion near c*, and the temperature and concentration
dependence of the infernal-field distributions acting on

Fe. In the present calculations we have checked our
previous conclusions, ' and have obtained better agree-
ment with experiments by using more reasonable input
parameters.

We have taken into account the quantum effect on the
amplitude of LM by using a new expression' consistent
with the free energy. The amplitudes of LM are
enhanced by a factor of 1.5 for Fe and 3.0 for Ni as com-
pared with the previous results. The temperature and
concentration dependencies of the amplitude are
suppressed by the quantum effect; the amplitude reduc-
tion at T, is only 4.5% at 60 at. % Fe and the amplitude
change at c' is only 6.5% at low temperatures.

The effective Bohr magneton numbers m, z and the
Weiss constants 0 in the paramagnetic susceptibilities
were shown to be consistent with the experiment; the cal-
culated m, & in the fcc structure increase rapidly near c*
while those in the bcc hardly change in the Fe-rich con-
centrations. One of our predictions is that the high-field
susceptibility shows an asymmetric divergence around c *

in the fcc structure. This asymmetry is caused by the Fe
LM's with eight Fe NN, which have very small exchange



38 FINITE- TEMPERATURE THEORY OF LOCAL-ENVIRONMENT. . . 485

coupling in the paramagnetic state. It might be possible
to verify the asymmetric dependence by investigating
(Fe,Ni, , )9zCs, (Fe06,Nio35), ,Mn, alloys, ' and Fe-
Zr ' Fe-La, and (Fe&,Ni, )75P]6B6A13 amorphous al-
loys. '

Finally we note that we did not discuss the so-called
Invar problems. The static approximation with reduced
Coulomb and exchange-energy parameters, which has
been used in the present calculations, describes qualita-
tively well (m ) and x . It also explains the large neg-
ative thermal-expansion coefficient' and large forced
volume magnetostriction near c*, but it does not de-
scribe the change of sign as a function of concentration in
these quantities. ' ' Furthermore, one has to assume a

volume dependence of the effective exchange energy pa-
rameter in order to explain the pressure dependence of T,
(BT, /r)P) versus concentration curves. One has to take
account of the electron correlations at finite temperatures
to consistently discuss the Invar phenomena on the basis
of a microscopic theory. This is one of the important
problems in Fe-Ni alloys, which needs to be addressed in
the future.
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