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Early stages of spinodal decomposition for the Cahn-Hilliard-Cook model of phase separation
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A computer simulation using discretized space and time is employed to examine the early stages
of phase separation as described by the Cahn-Hilliard-Cook equation {CHCE). The relative simpli-
city of this simulation provides a direct test of various mathematical treatments of the nonlinear
term in the CHCE. In particular, the numerical results are used to ascertain the validity of the ap-
proximations inherent in the perturbative expansions of Grant, San Miguel, Vinals, and Gunton,
and of Langer, Bar-on, and Miller. The time of validity of all approximations is shown to be loga-
rithmically related to the strength of the thermal fluctuations. In addition, the effect of the initial
state on the dynamical evolution of the order parameter is examined.

I. INTRODUCTION

When a system is quenched from a single-phase equi-
librium state to an unstable one, spatial inhomogeneities
in the order parameter grow as the system evolves to its
final two-phase equilibrium state. The widespread ap-
pearance of this phenomenon (usually referred to as spi-
nodal decomposition) has prompted many theoretical,
numerical, and experimental undertakings. ' Experi-
mental and numerical works have contributed substan-
tially to the qualitative understanding of this complex
process while theoretical progress has been hindered by
the inherent nonlinear nature of phase separation. How
these nonlinearities affect the order-parameter morpholo-
gy for a simple dynamical model of phase separation with
a conserved order parameter [i.e., the Cahn-Hilliard-
Cook equation (CHCE)] is examined through numerical
simulation.

The diSculty in solving this intricate problem is that
the appropriate dynamical equations do not fall within
the small subset of solvable nonlinear equations. A stan-
dard linearization of the equations of motion was first dis-
cussed by Cahn, Hilliard, and Cook. Although
correctly identifying the initial instability to thermal fluc-
tuations, their theory fails to account for the formation of
domain walls and subsequent cluster growth. Some ex-
periments ' and computer simulations' ' have shown
this theory to be adequate for the very early stages of
phase separation while others' ' ' exhibit no evidence
of the linear predictions. Recent work"' ' indicates
that the time of validity of this theory is related to the
effective range of interaction. A quantitative assessment
of this linear scheme is provided in this paper.

More advanced theories have been proposed in recent
years to deal with the nonlinear term in the CHCE.
Langer et al. ' developed two related schemes whereby
physical assumptions were made to simplify the CHCE.
These theories mark a considerable improvement over
the linear theory but cannot predict the observed late
stage behavior. Their major shortcoming is that the
direct coupling of Fourier modes implicit in the CHCE is
replaced with a "mean-field" type of coupling. A conse-

quence of this mean-field coupling is the inability to de-
scribe the transition from spinodal decomposition to nu-
cleation. ' Approximations similar to those of Langer
et al. ' will be compared with the numerical simulation.

In 1985 Grant et al. ' developed a systematic expan-
sion in the strength of the nonlinearity which is related to
the inverse of the range of interaction. The first term in
the expansion reproduces the linear theory of Cahn
et al. Each successive term grows exponentially in
time and progressively includes more of the direct cou-
pling needed to form sharp interfaces. Every term in the
expansion must be included to account for the long time
behavior. The improvement the first-order correction
term provides over the linear solution is examined.

In this paper the early stages of phase separation for a
conserved order parameter are studied numerically using
a discrete version of the CHCE. In addition, the approxi-
mations contained in the early time theories are used to
construct analogous theories for the discrete system.
This formulation is used so that comparisons of the nu-
merical results and the discrete theories are decoupled
from differences between the continuous and discrete sys-
tems. The regime of validity of the theories can then be
obtained by a direct comparison with the numerical solu-
tion. A nice feature of these comparisons is that only one
question is asked, i.e., are these theories a good approxi-
mation to the discrete CHCE? In contrast, when these
theories are compared with other simulations (e.g. ,
Monte Carlo and molecular dynamics) and experiments
this question cannot be unambiguously answered since
the CHCE may not exactly describe the system under
consideration.

Another interesting aspect of this problem is the effect
the initial state has on the dynamical evolution of the
order-parameter morphology. In this work the initial
(i.e., prequench) configurations were constructed to be
consistent with an Ornstein-Zer nike structure factor.
Unlike laboratory experiments, a numerical simulation
allows the precise form and magnitude of this state to be
carefully controlled and enables a systematic analysis of
the initial state.

The remainder of this paper consists of three sections.
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Section II describes the early time theories and em-
phasizes the deficiencies of these approaches. Results of
the numerical simulation are then presented to illustrate
the phenomena and examine the validity of the early time
predictions. A discussion of these results and a summary
of the findings follow.

II. EARLY-TIME THEORIES

The prototype model of phase separation considered in
this paper was developed by Cahn, Hilliard, and
Cook. Although initially derived for binary alloys
(with a conserved order parameter), it is also appropriate
in other situations such as in polymer mixtures and some
magnetic systems. In this formulation the time derivative
of the fluctuations in the order parameter (P) is related to
the coarse-grained free energy (F) in the following
manner,

and

(p(x, r)p(x', r') ) = —V 5(x —x'}5(r—r')

"ne Teq
N

~eq Tne

The stationary or equilibrium solution of Eq. (2.7) for the
structure factor S(k, ~ ) has the usual Ornstein-Zernike
form:

Equation (2.6) restricts the prequench state to be a func-
tion of only one parameter. In this notation the equation
of motion in the single phase is

r)f(x, r) V

a7. 2
[g(x, r) V—P(x, 7.)]+Qetp(x, r), (2.7)

where
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F[P]=f d r f(P)+ —(VP} (2.2)

(g(r, t)g(r', t') ) = —2k~ TMV 5(r —r')5(t —t') . (2.3)

In Eqs. (2.1), (2.2}, and (2.3), M is the mobility, ks is
Boltzrnann's constant, T is the temperature, and K is a
positive phenornenological constant that is related to the
range of interaction. f(P) is the free-energy density of
the bulk. In single-phase equilibrium, f (P} has a stable
single-well structure and can be approximated as

f,q((( ) = (2.4)

In the two-phase region, f (P) has a double-well structure
and in this model has the form

f.,(4)= —
2
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It is theoretically convenient to restrict the parameters of
the single-phase system in the following manner:

~ne
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(2.6)

peq one &
and u „, are also positive phenomenological con-

stants. Following the work of Grant et al. ,
' it is con-

venient to convert Eqs. (2.1), (2.2), (2.3), and (2.5} to a di-
mensionless form by making the following transforma-
tion of variables:
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Equation (2.8) will be used as the initial S(k, r=o) for
both the numerical and theoretical work. In this frame-
work the problem contains two dimensionless parame-
ters, eI and E'N. E'I is related to the strength of the pre-
quench fluctuations and eN is related to the strength of
the thermal fluctuations after the quench. eN is also pro-
portional to the inverse of the range of interaction. For
most of the simulations performed in this work eI ——eN.
The reason for this will become apparent when studying
the linear expansion theory.

The theories considered in this paper will be classified
as linear (LT) or nonlinear (NLT) types. LT are based on
an expansion in the linear operator as derived by Grant
et al. ' In contrast, NLT do not rely on the linear solu-
tion but use physical assumptions to simplify the prob-
lem. To evaluate the validity of these theories a numeri-
cal simulation of Eq. (2.9) was performed.

In the simulation a finite difference scheme (i.e., Euler's
method) is employed to account for both the temporal
and spatial derivatives as discussed in Refs. 18, 21, 22, 23,
26, and 27. This discretization scheme introduces two di-
mensionless parameters, the mesh size (b,x) and the time
step (b,r). As noted in Ref. 27, these parameters must be
chosen carefully to avoid unphysical solutions (e.g. ,
subharmonic bifurcations}. To facilitate comparison of
theory and simulation it is useful to consider Eq. (2.9) in

S(k, r) = (1(~g~ ) .

In the two-phase region the dimensionless equation of
motion for P is
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where

I (k) = [cos(k„M)+cos(k hx) —2],2

Lx

a (k) = 1 —

baal

(k)[1+I'(k)]/2,

and

b(k)= I (k),
2

(p(k, r)p(k', r') ) = — r(k)5$ g5, y .
(hx)

gz is the discrete Fourier transform of P, i.e.,

discrete Fourier space,

g„(n + 1)=a (k)g„(n)+ Qenp(k, n)

+b(k) yy tPg(n}lyg-(n}yg g g-(n},
I

pit

(2.10)

I, m E(1,N)] of an N&&N system. The function F(k) is
the Fourier transform of V . In the continuum limit (i.e.,
in the limit Ex~0), I (k)= —(k„+k„2)'~ . In the fol-
lowing sections it will become apparent that all the
theoretical structure factors are in fact functionals of
I (k). Thus when "k" is used it will refer to &—I (k).

One advantage of using a simple finite difference algo-
rithm is that the discrete analog of the continuous early-
time theories ' can be easily determined. It should be
made clear that the simulations are only compared with
the discrete versions of the early-time theories. The fol-
lowing sections describe the discrete formulation of the
LT and NLT theories.

A. Linear-type theory

In a manner similar to Ref. 12, a perturbative expan-
sion for Eq. (2.10) can be developed using the linear
operator to account for the nonlinearity. For pedogogi-
cal reasons it is useful to consider the case ez —0. In this
simplified example the formal solution to Eq. (2.10) is

fz(n)=[a(k)+b(k)Q]"Pz(n =0) . (2.11)

where

k= (Ix+my) .

n is the number of time steps covered in time w for step
size b,r. The indices I and m cover the entire lattice [e.g.,

Q is a nonlinear operator that acts on an arbitrary func-
tion (hz }of k in the following manner:

Qhq ——g g hg hq-h„
~ gtl

An expansion in terms of Pz(0) and a(k)" can be ob-
tained by using the identity

n

[a (k)+b (k)Q]"fz(0)=a (k)"1bz(0)+a (k)" g a (k)™b(k)Q[a (k)+bQ] 'pz(0) .
m=1

(2.12)

Equation (2.12) can be proved by induction. The first term [i.e., a fz(0)] in the series is not influenced by any other Pz,
(k'&k) and in this sense does not include any mode coupling. The next term in the expansion is

a(k)"b(k} g a(k)™gg [a(k k' k")a(k'—}a(k—")] 'P&(0)g&-(0)gz & &. (0) .
m=1

(2.13)

The summation over m can be easily performed by noting
that Eq. (2.13) is a geometric series. The above term has
the effect of coupling in more of the Fourier modes. For
example, if g&(0)-5k k, then Eq. (2.13) gives a nonzero

contribution to g& and g3z . The next term in the expan-
0

sion would influence fz, P3z, and P~z, and so on. Thus
0 0 0

each term in the expansion has the effect of stimulating
higher order Fourier modes.

An interesting feature of this expansion is that it
possesses the structure

g(n)-a "g(0)+a "P (0}+a "g (0)+ .

The expansion parameter is thus a "Pz(0), where a" is
equivalent to e " ' in continuous space. If the ini-
tial condition is of the form described in Eq. (2.8) [i.e.,

P&(0)-+el] then the expansion parameter is of the
form ere ' in continuous space. For some modes w is
positive so that the expansion parameter diverges with
time. This is a common result when a linear expansion is
performed on a nonlinear equation. The breakdown of
the perturbation theory stems from the instabilities in the
nonlinear equation. The expansion will only be valid at
early times when @ate

' is small.
When the thermal noise is nonzero (i.e., EN&0) the sit-

uation is more complicated but the above comments still
apply. In this case, each term in the expansion will be
multiplied by combinations of ei and eN. A perturbative
expansion in one variable is obtained by setting
@=el——eN. Under these conditions S(k, r) can be real-
ized in terms of a power series expansion in e, i.e.,

S(k, r}=eS,(k, r}+eS3(k,r)+e S5(k,~)+. . . . (2.14)
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(The terms proportional to e to the half-integer power are
zero. ) The linear solution [i.e. , S,(k, r)] will be denoted
as LT I, the solution to order e as LT II and so on.

When the discrete version of Eq. (2.7) is used to gen-
erate the initial state the linear solution is

a 2n( k) 1 —a ~n( k)
S, (k n)= A—rl (k} er +a~

1 —d (k) 1 —a (k)

this formally exact solution should not be underestimat-
ed. For example, it may be possible to sum an infinite
class of terms in some limiting cases as was done for the
late-stage limit in the nonconserved case. A quantita-
tive assessment of the validity of LT I and LT II will be
provided later on in this paper.

B. Nonlinear-type theories

where

(2.15) A relatively simple approximation to Eq. (2.10) can be
made by assuming the dominant contributions to fi, from
the double sum,

d(k)=1+hei (k)I 1 —I (k) I /2 .

In the n=0 limit, Eq. (2.15) reduces to the discrete ver-
sion of Eq. (2.8). The first term in Eq. (2.15) is due to the
initial state and the second is due to thermal fluctuations.
Originally Cahn and Hilliard derived the continuous
version of this equation without fluctuations and several
years later Cook ' included the term due to fluctuations.
Equation (2.15) correctly identifies the initial instability
and predicts an exponential growth for wave vectors less
than 1. The instability corresponds to the tangential bi-
furcation arising in a linear stability analysis of Eq.
(2.10}. Competition between the initial state and thermal
fiuctuations causes the maximum in S(k, r) to move from
around 1 to 1/&2, after which it remains time indepen-
dent (for Ez

——ez). The linear predictions for S(k, r)
clearly disagree with the late-stage power-law growth and
coarsening observed in experiments and simula-
tions. '

Recently Binder"' has shown that the time of validi-
ty of LT I (r,„) can be related to the logarithm of e.
Specifically the relationship was shown to bei,„(—4 ln( 3e ) (for er ——e~ =e ). The logarithmic
dependence of ~,„on e can be understood by realizing
that the linear approximation is equivalent to assuming

f (g) = —g /2 [see Eq. (2.5)]. Thus the linear theory will
only be valid if the distribution of P's is such that
f »g /2. If one assumes this inequality is violated
when {tP } is approximately equal to some constant (C)
then the time of validity (r,„)of linear theory must be
related to C in the following fashion:

~ +max(since in this scheme {g )-ee '" for @=El=EN). In
an experiment, the initial state may have an el is such
that the inequality g »g /2 is already violated and
hence LT I will never work. For this reason it is not
surprising that some experiments agree with LT I while
others do not.

The first-order correction term [S3(k,r)] given in Ap-
pendix A reduces to the analogous continuum term found
in Ref. 12. The complexity of this expression [see Eq.
(Al)] illustrates the practical difficulty in evaluating
higher-order terms. Unfortunate as this is, the value of

y y yl, (n)qi,, (n)qi, 1, i, (n),
k' k"

contain at least one gl, (n). Mathematically this amounts
to keeping only the terms for which k' = —k", k' =k, and
k"=k. The equation of motion (EOM) for S(k, r) is then

S(k, n +1}=[a (k)+b(k)f (n)] S(k, n)+e&I (k),
(2.16)

where

f( )=3{/'( )} .

Although this approximation does not produce an analyt-
ic solution (as the linear type theories do), it does simplify
the nonlinearity by decoupling S(k, w) from the infinite
hierarchy of h&gher-order correlation functions. This ap-
proximation will be denoted as NLT I (Gaussian) and in
the continuous limit is identical to the Gaussian approxi-
mation discussed in Ref. 6.

One drawback to this scheme is that S(k, r) is no
longer directly coupled to 1{l,, for k'&k. This direct cou-
pling is replaced by a "mean-field" approximation in
which all the other Fourier modes combine to produce an
effective coupling coefficient, 3{f ). In addition, NLT I
(Gaussian) predicts a single-peaked, one-point distribu-
tion function [pi(g(x))], centered at /=0 for a critical
quench. Since the final distribution is bimodal, NLT I
(Gaussian) must break down before clusters are formed.

In 1975, Langer, Bar-on, and Miller (LBM) intro-
duced a more advanced scheme that allowed p, (tr'j(x) } to
form a bimodal shape. In brief, this theory makes two
fundamental approximations, one for the two-point dis-
tribution function [p2(g(x, },g(x2)}] and the other for
pi(g(x)). The first approximation serves to truncate the
infinite hierarchy of coupled EOM's for the correlation
functions while the latter truncates the infinite hierarchy
of coupled EOM's for the moinents (where (g") is the
nth moment). The first approximation is obtained by as-
suming p2(f(xi), f(x2) }/pi(P(x, ) }p,(P(xz)) can be writ-
ten as a series expansion in P(xi) and f(xz). Using the
usual normalization conditions for p, (f(x) ) and

p2(f(x, ),g(x2)) to solve for the unknown coefficients in
this series one obtains

p2(f(x, , n), g(x2, n))=p, (g(x„n))p, (g(x2, n))[l+g(
~
x, —xz in)g( ,x, )nf( zx, n)], (2.17)
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+b'(k) (y'( ))— (2.18)

where

f()(q(n))

Before discussing the moment EOM's it is interesting to
note that Eq. (2.18) contains a structure similar to NLT I
(Gaussian). Once again, the direct coupling of Fourier
components of the order parameter is approximated by a
"mean-field" type coupling. This approach has serious
implications for the prediction of the late-stage growth
law of the average domain size [R(r}]. The full non-
linear equation is believed ' to predict that R (r)-r'
while Eq. (2.18) leads to a growth exponent that is much
closer to —,'. Thus equations of the form (2.18) should

only be valid in the early stages of phase separation.
In order to obtain an equation of motion for the mo-

ments, LBM approximated p, (g(x}) as the sum of two
Gaussians, i.e.,

p, (g) = [2cr(2n. ) ] expin i (0 b)—
20'

(f+b)'
+exp

20'
(2.19)

The time-dependent parameters cr and b are then related
to the second and fourth moments. 0. describes the width
of each peak while b indicates the distance that the peaks
are displaced from zero. In the continuous formulation,
Eqs. (2.17) and (2.19) are sufficient to close the set of mo-
ment EOM's at two.

In discrete time (P„+,) is a function of four-body
correlations and thus Eq. (2.19) is not enough to close the
set of equations. In this work the one- and two-point
correlations are assumed to be much greater than the
higher-order correlations. The resulting EOM (tt ) is
given in Appendix B. This theory will be denoted NLT
II (LBM) and in the continuous limit the EOM's for
S (k, ~}and ( f ) are identical to those used by LBM.

A nice critique of these nonlinear schemes can be
found in papers by Binder et al. ' The major criticism
surrounding the NLT theories is that they predict infinite
lifetimes of metastable states since mean-field coupling
cannot predict the nucleating clusters which initiate
phase separation. Although a nucleating cluster is not
needed to start phase separation in spinodal decomposi-
tion (where the postquench states are unstable), the ina-
bility to generate such clusters with well-defined domain
walls restricts the validity of the nonlinear theories to the
early stages.

where g (x, n) is the pair correlation function. It is the in-
verse Fourier transform of S(k, n), i.e.,

g(x, n)= QS(k, n)e
k

Equation (2.17) leads directly to the following EOM for
S(k, n):

S(k, n +1)=[a (k)+b (k)f (n)] S(k, n)+EN I (k)

III. RESULTS

All simulations were performed on a 30X30 two-
dimensional lattice with periodic boundary conditions,
Two-hundred and fifty trials were executed for a given
run. Each trial started from an equilibrium state created
by simulating the discrete analog of Eq. (2.7). Two
thousand time steps (v=600) were run for each equilibri-
um state to ensure the structure factor was well within
statistical error of the exact stationary solution [i.e., Eq.
(2.15) with n=0] Only one set of equilibrium states was
needed since the equilibrium state scales with ei. The
statistics for these runs was such that the standard devia-
tion for each mode of S (k, r) was 3—4%

To examine the regime of validity of all theories,
several runs were performed for the case @=el——e&.
Since r,„ is expected to vary with In(e), six decades of e
were examined (see Table I). The effect of the initial con-
dition was studied for the case of ez ——10 . In these
runs ez was varied from 10 to 10 ' (see Table II).

The circularly averaged structure factor S(k, r) was
computed in the following manner:

g'S(l, m, r)
S(k, r)= (3.1)

g, is a sum over all trials for a given run. Asymmetry of
S(l,m, r} was examined by comparing its value along the
diagonals with the average of its vertical and horizontal
components (in addition all other directions were exam-
ined in a grey-scale plot ). For the statistics of this
simulation, asymmetry effects were not observed for any
of the runs described in Tables I and II, unlike recent
Monte Carlo simulations.

To determine the average domain size R (r), the pair-
correlation function g(x, ~) was calculated by taking the
inverse Fourier transform of S ( I, m, r) R(r) was .then

TABLE I. Runs for @=el——e&. In each run 250 trials were
performed with Ex=1.7 and Dr=0.3.

Run

B
C
D

F
G
H
I
J
K

1X 10-'
3x10 '
1X10 '
3 x 10-'
1x 10-'
3 x 10-4
1x 10-4
3 x 10-'
1x 10-'
3 x 10-'
1x10-'

+final

80
33
80
45

180
60
80
72
80
80
80

l, m

Here g'I, is a sum over all l and m such that
v' —I'(l, m)=k, and

g, P(l, m, r)g'(I, m, r)
S(l,m, r)=

1
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TABLE II. Runs for eN ——0.001. In each run 250 trials were

performed with hx= 1.7 and 6~=0.3.

Run

1X 10-'
1x 10-'
1X 10-4

+final

80
80
80

defined as the first zero of the spherically averaged pair-
correlation function as in Ref. 27. This method of deter-
mining g (x,r) is considerably faster than the usual direct
calculation (from the real-space configuration) due to the
speed and availability of fast Fourier transform rou-
tines.

A. Qualitative picture

To illustrate the phenomena, run E was chosen
(a=10 ) as a typical example. Figures l(a) —(d) detnon-
strate the order parameter morphology at four different
times. In Figs. 1(a) and 1(b) small inhomogeneities devel-

op which grow in height but not in size. Gradually,
domain walls form between the competing phases as is
demonstrated in Fig. 1(c). Figure 1(d) shows a late-stage
configuration which is dominated by interfacial dynamics
(a detailed analysis of the late stages is discussed in a pre-
vious paper ).

In Fig. 2, the one-point distribution function pt(f) is
plotted for various times for run E. Initially pt(g) has a
single peak which broadens in time and gradually devel-

ops into a bimodal distribution. At this stage the bimo-
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FIG. 1. Time evolution of the order-parameter field during phase separation in run E. The size of the symbol is proportional to
the magnitude of ((. (a), (b), (c), and (d) correspond to r=6, 18, 30, and 48.
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70

all theories but B changes in accordance with individual
theories, such that B [NLT II (LBM)] & B[NLT I
(Gaussian}] & B(LT II}& B(LT I).
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IV. DISCUSSION AND SUMMARY

A. Qualitative picture

A comparison of Figs. 1 and 3 indicate that the main
features of the phase separation process are adequately
described by S(k, r). At early times S(k, r) increases ex-
ponentially for small k's as small inhomogeneities begin
to develop. This growth slows down gradually as P
reaches its two-phase equilibrium values. In this time re-
gime, small domains are formed which increase in size as
interfaces begin to sharpen. The coarsening of domains
moves the peak in S(k, r} to smaller wave numbers since
the peak position can roughly be correlated with the in-
verse of the average domain size. When interfaces are
well established, the driving mechanism for further
growth is the lowering of the surface curvature which
amounts to lowering the surface energy. At late stages
when the width of the interface is much less than the
average size of the domains, R (r}-r'

FIG. 14. The dependence of ~,„as a function of ln(e). The
circle, star, triangle, and cross symbols correspond to NLT II,
NLT I, LT II, and LT I, respectively.

TABLE III. Value of the slope and intercept of ~,„versus
ln(e) graphs, for NLT II, NLT I, LT II, and LT I.

Theory

LT I
LT II
NLT I (Gaussian)
NLT II (LBM)

Slope'

—4.6+0.1

—4.5+0.1

—4.4+0.1

—4.6+0.1

Intercept'

—15+1
—9+1
—3+1

+13+1
'The slope ( A ) and intercept (B) are defined such that
~,„=A 1n(e)+B.

way in which the theories deviate from the exact solution
(i.e., the simulation). LT always break down very quickly
in an exponential fashion. This is not surprising because
each order term in the expansion grows exponentially
whereas the exact solution grows akin to a power law. In
contrast, NLT diverge from the simulation in a slower
manner since they also grow in a power-law fashion (al-
beit the wrong power law).

To test Binder's hypothesis that the time of validity of
LT I is proportional to the logarithm of e, the quantity

,r„h stao be defined. If r,„ is defined such that when

0(r,„)=x, then r,„(x)=A ln(e)+B. Varying x only
has effect on B and not A. ~,„for all theories is plotted
in Fig. 14 using x 20eq The values of A and B are
given in Table III. It should be noted that when e is large
(i.e., e & 0.01) LT I immediately diverges from the simula-
tion and thus a value of ~,„cannot be obtained. The re-
sults shown in Table III indicate that A is the same for

B. E8'ect of initial state

When ez is small (10 ), the initial condition plays a
crucial role in the early time development of S(k, r) (see
Figs. 6 and 7}. This is associated with the fact that the
system behaves qualitatively different in the linear (i.e.,
f »P l2) and nonlinear (i.e., g -g i2) regimes. For
example, when the ratio el le~ is one the system acts in a
linear fashion for r & 12 (see Fig. 9), but when er/e~ is
100 the system immediately enters the nonlinear regime
(see Fig. 11). Clearly, the effect of the initial state de-
pends on the relative magnitudes of el and e~. When E'I

is much smaller than eN, the thermal noise quickly erases
the structure of the initial state and the system is relative-
ly insensitive to ez. However, when el is large compared
to ez the former dictates when nonlinear effects will
occur.

Generally, increasing the magnitude of the fluctuations
of the initial state promotes coarsening at early times,
slows down exponential growth of S(k, r) at early times,
and shortens the time in which the asymptotic growth
law is reached. This is especially important when the ini-
tial state is just above the critical point where el is large.
It has been clearly demonstrated that the initial state can
play an important role in the early time development of
S(k, r).

C. Validity of linear theory (LT I)

When GI=E~=E, the time of validity of the linear
solution is directly proportional to ln(e') which confirms
Binder's"'3 predictions. In this time regime, f(g) is
well approximated by an inverted parabola and the sys-
tem grows in an exponential manner. When e is large
(i.e., e & 0.01), many P's are already large enough that the
parabolic approximation for f (f) is invalid.

When el&eN the situation is somewhat different. In
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this case linear theory will be valid only if both el and ez
are small. For example, Figs. 11 and 12 show that linear
theory is never valid if el ——10 ' and e& ——10 even

though it is valid for er ——eN ——10 . This has interesting
consequences for real experiments where the initial state
depends on the quench rate. ' In the case of two compa-
rable experiments using different quench rates it is quite
possible that one would agree with LT I and the other
(i.e., the one with the slower quenched rate) would not.

It should be noted that the time independence of R (r)
is not a good criterion for assessing the validity of LT I.
This is demonstrated in Figs. 9 and 11. In runs C-E,
R (r) changes with time and is in agreement with LT I
(see Fig. 4). In contrast, during run L, R (r) is relatively
constant in time and linear theory is not valid (see Fig.
11). This emphasizes that care must be taken to deter-
mine when LT I is working. In an experiment where ei
and ez [or S(k, r=O)] are difficult to resolve, it would be
erroneous to use a time independent R (r) as an indicator
of linearity.

One final note concerning the comparison of linear
theory with experiment is worth discussing. The finite
time needed to measure S(k, r) should be taken into ac-
count in an experiment. If an experimental structure fac-
tor is measured from ~=a to ~=b then it should be com-
pared with

J Si(k, r')dr'

and not simply S 1(k,r). This correction assumes particu-
lar importance during early times when (b —a)-r. This
problem is irrelevant in the case of a simulation because
S (k, r) can be measured instantaneously.

D. Comparison of theory and simulation

As expected, the inclusion of S3(k, r} in Eq. (2.14}pro-
vides an improvement over the linear theory. One in-
teresting feature is that the slope of r,„versus ln(e) is
virtually identical for both LT I and LT II. It is likely
that the linear expansion [Eq. (2.14)] to order ej (for all j)
will always break down in the same fashion (i.e., the slope
of r,„versus ln(e) is constant for all j). This is due to
the fact that the expansion parameter is of the form ee

The region of validity of the nonlinear theories also ap-
pears to be logarithmically related to e. In fact, the slope
of r,„versus ln(e) is very close to that of the LT
theories, the only difference being in the intercept which
is greater for the nonlinear theories. The improvement
NLT II (LBM) provides over NLT I (Gaussian) is mainly
in the prediction of S,„(r). Unfortunately, NLT II
(LBM) fails to properly account for the tail portion of
S(k, r). In fact, as NLT II (LBM) S(k, r) deviates from
the "exact" solution it becomes much too narrow. A
similar discrepancy is apparent in the comparison provid-
ed in Ref. 7 of LBM theory with a three-dimensional
Monte Carlo study. This deficiency is linked to the lack
of direct coupling of Fourier modes. In both NLT
theories the coupling (due to the nonlinear term) of the
maximum Fourier component of the order parameter to
the higher-order Fourier modes is not adequately de-

The validity of the current early time theories of spino-
dal decomposition have been quantitatively assessed. A
linear regime has been clearly identified which is marked
by the exponential growth of the structure factor. Tran-
sition from this linear domain to the asymptotic scaling
regime is a complex phenomenon. A very intricate cou-
pling of all modes is needed to properly describe the for-
mation of sharp domain walls. Unfortunately, use of a
"mean-field" coupling in the nonlinear type theories is
insufficient to properly describe these late stage effects.
Although the linear expansion correctly incorporates this
subtle coupling it is difficult to implement due to the in-
creasing complexity of each successive term in the expan-
sion. At present a first principles understanding of
domain-wall formation does not exist.

In summary, the numerical simulation used has provid-
ed detailed insight into the inadequacies of the current
early time theories and the effects of the initial state on
the time development of S (k, r)

APPENDIX A

In Eq. (2.14) E=el=e~. In the general case, when Ei
and ez are different, the second term in expansion [i.e.,
e S3(k, n }]will be denoted S3(k, n) S3(k, n) is t.hen

3a " '(k)[I(k)b, r]S3k, n =
2

elH ( 1 }+ei a~H ( 2 }

1 —d (k)

@ieNH (3)+civ H (4)

1 —a (k)
(A 1)

scribed by the mean-field approximation.
The width of the structure factor is affected by the in-

terfacial structure. For example, a system of well-defined
interfaces will produce a much broader structure factor
than a system containing very diffuse interfaces. The nar-
rowness of the NLT II (LBM) S (k, r } is therefore con-
sistent with a system of broad interfaces.

In contrast, the linear expansion does have the neces-
sary ingredients to describe sharp interfaces. However,
the difficulty here is that all terms in the expansion must
be taken into account to properly describe well-defined
interfaces. Although the second term in the expansion
will help sharpen the interfaces, it quickly becomes inade-
quate as domain walls between competing phases devel-

op.
Another interesting difference between the theories is

the manner in which they slow down the initial exponen-
tial growth. In the perturbative expansion each term
grows exponentially faster than the previous term so that
the solution will always diverge. Since the series alter-
nates the solution will diverge to +00 depending on
whether the number of terms included is even or odd. As
a result theories based on a linear propagator will always
break down in an exponential fashion if only a finite num-
ber of terms are included. In contrast the NLT theories
grow as a power law.

E. Summary
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where

b, l k'
H(1)=(bxN) g z

1 —d (k')

I

H(2}=(hxN)
1 —a (k')

a (k) —heal (k')
(hxN) g 1 —d (k')

a2n(k

1 —a3(k')

1 —a "(k'}
1 —a (k')

f(r, n+1)= g [y, ;p(r, n)+p, ;p (r, n)], (B1)

APPENDIX B

To minimize the effect of roundoff error, an equation
of motion for the cumulant,

&g ( )),=&/ ( )) —3&lit'( ))'
will be described instead of the EOM for & g (n) ) itself.
To facilitate the following derivation it is useful to write
Eq. (2.9) in the following notation:

X
[a (k'}/a (k)] "—1

a (k') —a (k}

—a (k) —

baal

(k')
(bxN)3 g 1 —a (k')

X [a (k')/a (k)] "—1

a (k') —a (k)

H(1—) where

y„.=5„.— r„.+ y I'„,r.., .
p r=

r„,=(~x) '(5„-.5. , .+5. ..5, , „
1 —a "(k)

1 —a (k)
—H(2) ~

+5;. ,5, J +5;; +,5J,' 45;; 5—, ,'),
r=hx(ix+jy) .

H (1) is due strictly to the initial state, H(2} and H(3) are
due to combinations of the initial state and the thermal
fluctuations, and H(4) is only influenced by the thermal
fluctuations.

The noise term cancels out in the cumulant EOM for the
fourth moment, and thus is not included in Eq. (Bl). In
this notation the EOM for & f (n })„is

& 0'(n +1)&, = [ & [ye(n +1)]'&—3& [yo(n +1)]'&']+4[& (yy)'(py') ) —3& (ylp)(py3) & & (yy)') ]

+6[&(yy)'(Py')'& —2& (yy)(Py') &
—

& (yy)'& & (P1/3)'& ]

+4[&(yg)(pg')'& —3&(yp)(pg')&&(pg ) )]+[&(pf') ) —3&(pg ) &'],

where

ye= yy„;e(—r, n),

(B2}

pp —= g p, ;p (r, n) .

The first terin ( Tl) on the right-hand side of Eq. (B2), i.e.,

ri r2 r3 r4

can be split into four pieces in the following manner,

»= y„y'. (&q') —3&y')')+4y y y.'y. (&y,', y,, ) —3&y'&&y,
,y, &)

+3 / y y,', ,y,',,(&y,',y,', ) —2&/')' —&y, lit, &')
rl r2+r I

+ X yr, riyr, r2yr, r31 r, r4 4ri Pr& Pr3 Pr4 4ri4r& litr34r4
rl, r2, r3, r4

where g* is a sum over all ri, r3, r3, and r4 except for the following situations:

(i) (r, =r3——r3 ——r4),

(ii) (r, =rz ——r3 I4} (ii I2 14 r3) (li I3 I4 IQ), (r2 ——r3 r4 r, )

(iii} (r, =r2, r3 I4), (r, =r3 I2 —I4} (I] I4 r3 r3)
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The first three terms in Tl contain only one- and two-point correlations and can be determined by Eqs. (2.17) and (2.19).
The last term has three-point and higher correlations. These higher-order correlations should be considerably smaller
than the one- and two-point correlations and thus will be neglected. This term is also small because it is —(b,r) and
would not appear in the continuous case. With these approximations Tl becomes

T

Tl=($4(n)), 4 g y, , y, , —3+y, , —6 g y, , y, , g (r, r—zn) —(g (n)) gy, ,

In a similar fashion all terms on the right-hand side of Eq. (B2) can be determined. The final result is

(g (n)) [3(S'r'r pr+RSr r pp) 2S r p 3RS pp]

+(g (n))'[2(S&'p pr +RSVP'p p p) —1S~&
'

p p 2RS—'
pp p]

+(&"(n))"['(Sp'pp, + Sp'ppp) p—'ppp]+(&"(n))'[+'Sp'ppp]

6[S'r 'r r r+4RS'r 'r r p+2R (S'r 'r pp+S'r p'r p)+4R Sr p p p+R Spp p p]

+6[S +4RS p+6R S pp+4R S ppp+R Spppp] (B3)

where

(g (n))
(f'(n) )

(P (n))'—:(g (n)) —3(g (n))(g (n)),
(P (n))'=(P (n)) —2(ij'j (n)) —(g (n))(P (n)),
(g' (n))" —= (1t' (n)) —3(g (n))(g (n)),
($12(n))e ($12(n)) 3($6(n))2
~(0)

w, x,y, z = ~ «, «&+«, r&~«, r& r, r~

«)

g (r, r2, n)—
«& '2

(2)
Sw, x,y, r g wr, r +r, r yr, r zr, r g

«&, «2

and w, x, y, and z are y or p. It should be noted that it is
much more efficient to evaluate the functions S"'„~,(n )

(for i = 1 and 2) in k space due to the speed of packaged
Fourier transform routines.

The two parameters cr and b that completely specify

p2(g„gz) are determined by the following relationships,

o =(1( ) b—
and

b = —(f),I2.
All the higher-order moments can be described in terms
of cr and b through Eq. (2.19).
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