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Susceptibility and specific-heat studies on the directionally anisotropic Heisenberg antiferromagnets
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The high-temperature series for the zero-field susceptibility has been studied for a directionally

anisotropic Heisenberg antiferromagnet which has different interactions along different lattice

directions (Jl in the xy plane and RJl along the z direction). With the use of high-temperature

series up to five terms, the susceptibility has been found out for 5 = —,'and 1 systems adopting a

graphical extrapolation procedure and a Fade-approximant technique. The reduced temperature

r,„=ktt T,„/
~
J,

~
S(S+ 1) at which the maximum in the susceptibility occurs has been evaluated

for different R ( —0.6&R & 1.0). The low-temperature behavior of the susceptibility and the mag-

non specific heat have been studied using the spin-wave theory. The transition temperature of the

system for various values of R has been computed using the random-phase-approximation method.

The magnetic data of Ba2NiF6 system have been compared with the high-temperature series and the

spin-wave theory predictions. The best fit is obtained for R =0.1 with Jl ———37 K.

I. INTRODUCTION

Many magnetic systems are not directionally isotropic
in the sense that the interaction strengths in all lattice
directions are not equal. ' For such anisotropic systems
the high-temperature series for the susceptibility and the
specific heat have been developed and studied for classi-
cal spins (S = ~ ) only. ' We consider a model Hamil-
tonian describing a Heisenberg system with directionally
anisotropic interaction

xy
%=—2J, g S, S, —2J2 g S, Si glj, ttHO gS—;

&ij & &ij & i

xy
= —2J, QS;S+R QS;SI

& j& & j&

gptsHo g S—

where the first summation is restricted to nearest-
neighbor pairs of spins which lie in a common xy plane
while the second summation is over nearest-neighbor
pairs of spins which lie along a common z direction. The
quantity R =J2/J, is the ratio of interplanar to intrapla-
nar coupling strengths and is referred to as the anisotro-
py parameter. We have studied the susceptibility at high
and low temperatures and the specific heat at low temper-
atures of the above model (1), with J, &0 (antiferromag-
netic interaction) and for various values of R ranging
from 1.0 to —1.0 by using the high-temperature series
(HTS) expansion method and the spin-wave theory. The
transition temperature of the system has been determined
using the random-phase-approximation (RPA) method.

Dalton derived the series expansion for the zero-field
susceptibility to order 5 for general spin and general lat-
tice structure for both Heisenberg and Ising systems in
which the first- and second-neighbor interactions were in-
cluded. The main task of the high-temperature series ex-
pansion is to calculate the trace of the term

g JlS;.S "gS
&ij &

The calculation involves determination of number of pos-
sible interaction graphs, its occurrence factor, and the
trace of each graph. The anisotropic model Hamiltonian
(1) considers two types of interactions. For this model,
determination of the trace of the term

gJ;S;S, "gS
&ij&

is identical to that of Dalton who also considered two
types of interactions. We have used the coefficients de-
rived by Dalton and calculated the series for the zero-
field susceptibility up to five terms for the model system
(1), with four nearest neighbors in the xy plane and two
along the z direction for S = —,

' and 1. The reciprocal sus-

ceptibility has been found out adopting extrapolation
procedure and Pade-approximant technique for different
values of R, hence, the reduced temperatures

r,„=ktt 7,„/i Ji i
S(S+1),

at which the maxima in susceptibility occur, have been
determined.

The low-temperature susceptibility has been found out
using Kubo's formula which relates the susceptibility of
the antiferromagnetic system with the spin-wave (mag-
non) energies. We have determined the spin-wave ener-
gies of the system (1) and calculated the zero-field suscep-
tibility and magnon specific heat for various values of R.

From the magnetic behavior of Ba2NiF6 Yamaguchi
and Sakuraba inferred that it is a two-dimensional
Heisenberg antiferromagnet with large anisotropy. Na-
varro mentioned that there is a small three-dimensional
(3D) coupling in this compound. We have compared the
susceptibility data of Ba2NiF6 with the HTS and spin-
wave theory predicted results for different values of 8
and good fit is obtained for R =0.1.
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II. HIGH-TEMPERATURE SERIES EXPANSION

Following the moment method of Rushbrooke and
Wood the series for the zero-field susceptibility for our
model Hamiltonian (1) is given by

Xk, T =—,'X 1+ g a„x"
Ng JM~

' „)]
(2)

where X =S(S+1),x =
~
Ji

~
/kii T, N is the total num-

ber of spins in the system, and

a„=— (coefficients of N in (P"Q ) ),3 2"
)2 2

X n!

where

(pnQ2) Tr(pnQ2)1

(2S+ 1)"

(3)

(4)

P= g S; S, +R g S; S, , Q=QS,'.
&ij&

(5)

The calculation of the trace (P"Q ) involves deter-
mination of the number of possible interaction graphs,
each to be multiplied by its occurrence factor in the lat-
tice of N sites and the trace of each graph. Since two
types of interactions J

&
and J2 have been considered, two

types of bonds would appear in the interaction graphs
which may be conveniently denoted by a light line or a
heavy line representing interaction strength J& or RJ&.
The zero-field susceptibility coefficient a„, being deter-
mined by the nth order interaction graphs is thus a poly-
nomial of degree n in R, since each interaction line may,
in principle, be of either type. The series for the suscepti-
bility may be written in the form

tained by plotting Ng ps/X
~
J,

~

as a function of 1/n
and extrapolating graphically to n = ~. The error in-
volved in the extrapolation (with such limited nuinber of
terms) is large for temperatures below r,„at which the
maximum in the susceptibility (X,„) occurs and the ex-
trapolation becomes impossible for ~ & 0.9~,„.

A standard method in analyzing truncated high-
temperature series expansions is the Fade-approximant
technique. ' We have formed Fade approximants (PA's)
to the series of Eq. (9). Soine representative plots of near
diagonal PA's [3,2] and [2,3] along with the curve ob-
tained from graphical extrapolation procedure are shown
in Fig. 1. The PA [1,4] curve (not shown) lies in between
[3,2] and [2,3] curves. The susceptibility behavior is well
established by all the curves for ~~1.25~,„, whereas
below this we take the average of [2,3] curve and the ex-
trapolated curve as a reasonable prediction" for the re-
ciprocal susceptibility. Because of the limited number of
terms in Eq. (9}prediction of X becomes unreliable below
+max'

Some representative plots of X
~
J,

~
/Ng ps against r

are shown in Fig. 2 for S =—,'. From such plots the value
of ~,„and the maximum value of the reduced suscepti-
bility X,„=X,„~ J,

~
/Ng

pj's

have been evaluated. The
values are given in Table I for various values of R and for
S=—,

' and 1.
Limited number of terms in Eq. (9}produce an uncer-

tainty in ~,„. When our results of ~,„are compared
with those obtained by de Jongh' and Lines' for R =0
and 1.0 systems, it is found that ~,„, evaluated by us, is
within +5% of their values for S =—', and the difference is

Xk~ T
2

———,
'X 1+ g a„,(X}R'x"+'

,+»i
The coefficients a„(X),for general spin and general lat-

tice structure have been given by Dalton for r+s (5.
He denoted the coefficients by b„,(X), which are related
to the coefficients a„,(X), in Eq. (6), by

a„,(X)=b„,(X}2 '"+' .

For our model system (1), the lattice constants, in the no-
tation of Dalton, are

q, =4, q, =2, S, =1, S,=2,

32-

30-

2e-

26-

24-

Ql
Z

22-

R=1.0

R=O 4

R=O

R=-O. l,

S2 =S4——0, T, =O, P; =0. (8)
20-

Using Eqs. (7) and (8} the coefficients a„,(X} in Eq. (6)
have been determined.

The series for the reciprocal susceptibility is obtained
from the inverse of Eq. (6)

16
0

I

3

Ng p~ b„=3r lq $
n&1

(9)

where r=kitT/~ J,
~

S(S+1) and the coefficients b„'s
are determined from a„(X)'s for diff'erent R values up to
n =5. Using this series (9) best theoretical estiinates for
the reciprocal susceptibility as a function of ~ are ob-

FIG. 1. Theoretical predictions for the reciprocal susceptibil-
ity of a directionally anisotropic Heisenberg antiferromagnet
(S =

z ) for various values of R ( =J2/J] ), as obtained from the
high-temperature series, against reduced temperature
~=k~T/

~
J,

~
S(S+1). Curve A is obtained adopting extrapo-

lation procedure, B and C are [2,3] and [3,2] PA curves, respec-
tively.
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FIG. 2. Predictions for the susceptibility against reduced
temperature for S =

2 and for several values of R.

FIG. 3. Plot of XGMF/C vs T!eMF for S = —,', where C is Cu-

rie constant and eMF is the molecular field Curie-Weiss temper-
ature.

less than 2% for S =1. The error in estimating X,„ is
much smaller ( —1%) since the value of X,„can be
determined with a greater accuracy from the finite num-
ber of terms known in the series.

In Fig. 3 we have plotted the reduced susceptibility
XBM„/C against T/BM„ for S =—'„where BM„ is the
molecular field Curie-Weiss temperature,

8 „=2(4+2R)S(S+1)
~
J,

~

/3k

Using these reduced units, the variation of the effective
number of magnetic neighbors with the anisotropy pa-
rameter (R ) is accounted for and these plots appear to be
more useful for comparison for R )0." Inspection of
these curves (Fig. 3) shows that for T/BMF & 1.2 the sus-
ceptibility of R =0.4 system differs by less than 1% from
the corresponding value for R =1.0 and even at T,„ the
difference is about 1.5%.

We have also determined the reduced Curie-Weiss tem-

TABLE I. Estimated values for r,„=ks T,„/
~
J,

~

S(S+ 1), X»——Xm»
~
I,

~

/Ng 'ps, X,„T,„/C
[C =Ng ps S(S + I ) /3ks ], rc~ =kq Tz~ /

~
J~

~
S (S + I ) (obtained from linear fit of the HTS results of

X in the 5v,„—6v,„region), and the ratio of rcw/~, „(= Tcw/T, „). Errors involved in the pre-
dictions are discussed in the text.

1.0
0.8
0.6
0.4
0.2
0.0

—0.2
—0.4
—0.6

1.0
0.8
0.6
0.4
0.2
0.0

—0.2
—0.4

max

2.95
2.75
2.55
2.40
2.25
2.14
2.25
2.30
2.45

3.0
2.8
2.6
2.45
2.32
2.22
2.32
2.42

+max

0.0398
0.0427
0.0458
0.0487
0.0518
0.0545
0.0564
0.0582
0.0595

0.0383
0.0410
0.0441
0.0468
0.0494
0.0517
0.0535
0.0549

+max max ~

s=-'
0.352
0.352
0.351
0.351
0.350
0.349
0.381
0.401
0.437

S=1
0.345
0.344
0.344
0.344
0.344
0.344
0.372
0.398

+CW

4.453
4.163
3.884
3.599
3.324
3.046
2.784
2.517
2.259

4.559
4.263
3.981
3.687
3.416
3.134
2.872
2.602

TCW ~Tmax

1.51
1.51
1.52
1.50
1.47
1.42
1.24
1.09
0.92

1.52
1.52
1.53
1.51
1.47
1.41
1.24
1.08
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perature rcw =k~ Tcw /
~
J,

~

S(S + 1) from a linear fit of
the X ' values (HTS predicted) in the high-temperature
region. The value of ~cw depends on the temperature
range used and decreases at a higher-temperature range
[for example, for R =0 and S =—,

' system sew determined

from (3r,„4—r,„), (4r,„5—r,„), and (5r,„6—r,„)
regions are 3.345, 3.154, and 3.046, respectively]. The
values of v.cw, determined from 5~,„—6~,„region, and
the ratio (rcwlr, „) for various values of R are also
given in Table I.

The values of w,„and X,„T,„/C are minimum for
R =0 and increase as

~

R
~

increases. For R & 0 (when
the ferromagnetic interaction is introduced along the z
direction) the value of X,„T,„/C shows a rapid in-

crease while Tcw/T, „shows a rapid fall with increase
of

~

R
~

. Puertolas er a!. studied a similar anisotropic
Heisenberg system for S =00 using a longer series and
obtained similar behavior. Apart from some quantitative
difference our results for S=—,

' are in agreement with

those of Puertolas et al. for S = oo (after necessary scal-
ing).

and

B) = —Jk ~

(12)

H„ is the anisotropic field which exists in real antiferro-
magnetic systems:

Jf;=2SQ JII exp(ik ru )'
I'

(13)

&=C~ —g A q+ g (aqaq+ —,
'

)
k k

X [( A „' —
~
&„~ ')'"+a„]

+ g (PqPq+ —,
' )[( A q

—
~
Bq

~

')' ' —H„], (10)
k

where

C2 —— 2Ng—@ASH„NS—(JO'+ Jo —2JO ),
Hk PBHO

A k
——gP~H~ +Jo' —Jo —Jk',

III. ORDERED PHASE: SPIN-WAVE THEORY
Jz —2S g J ~ exp(ik r ),

m'
(14)

The Hamiltonian (1), describing antiferromagnetic in-
teractions among the spins on the xy plane and either an-
tiferrornagnetic (R &0) or ferromagnetic (R &0) interac-
tions along the z direction, has two ordered antiferromag-
netic solutions. For R &0, a spin belonging to sublattice
a has six neighbors with antiparallel spin which form sub-
lattice b and vice versa. For R g0, a spin on sublattice a
has four neighbors on the xy plane with antiparallel spin
which belong to sublattice b and two neighbors along the
z direction with parallel spin, belonging to sublattice a.
The spin arrangements are shown in Fig. 4.

Using the Holstein-Primakoff transformation to map
the spin deviations to the bosonic space (free magnon)
and applying the usual Fourier transformation to the
momentum (k) space, the Hamiltonian (1) may be ex-
pressed in terms of creation and annihilation operators
for both sublattices, which after diagonalization' reduces
to

Jk =2S g Jl~ exp(ik rl~ ), (15)

where l, l' denote lattice sites of a sublattice and m, m'
those of b sublattice.

Case A: R y 0. The ordered state spin arrangement is
shown in Fig. 4(a) and for this case

and

Jk' ——Jk ——0, (16)

=8S
~
J,

~
[(1+R/2) (1+a)
——,'(cosk„a +cosk a +R cosk, c) ]' ~

(18)

Jf, = —4S
~
J,

~
(cosk„a+cosk a+R cosk, c} . (17)

The magnon energy, in absence of any external field, is
obtained as

where

a=gp~H„/8S
~
J,

~
(1+R/2) .

Case B: R & 0. For this case, the ordered state spin ar-
rangement is shown in Fig. 4(b) and

Jk
—Jk

—4SJ~ cosk g,
Jf, = —4S

~
J,

~
(cosk„a +cosk a ) .

The magnon energy is given by

k c
1+~R

~

sin' ' +a
2

2

(21)

FIG. 4. Spin arrangement of the ordered state: (a) R & 0 and
(b) ~ &0.

1/2——,'(cosk a+cosk a), (22)
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FIG. 5. Susceptibility, calculated from the spin-wave theory, against reduced temperature for S = —'. (a) R & 0; (b) R & 0.

where

a=gPBH„/8S
I
Jt

I

(23)

cia)~/k~ T
2 1 e

2 2 k T N ~ Bra&/k&T
g IB B k (e

(24)

where the summation is taken over N/2 points in the
Brillouin zone.

Using Eqs. (18), (22), and (24) we have calculated the
reduced susceptibility X~~ ~

J,
~

/Ng pB in terms of re-
duced temperature v for S =—,', a=1)(10,and R rang-

ing from —1.0 to + 1.0. The plots of the reduced sus-
ceptibility versus ~ are shown in Fig. 5. In Fig. 6 we have
shown the corresponding plots for S = 1 and a =0.03.

The zero-field parallel susceptibility in terms of magnon
energy is given by

The magnon specific heat in absence of any external
field is given by the relation

c e
(25)

R N~ kTk B . (e —1)

The summation is taken over N/2 points in the Brillouin
zone. The specific heat for different R values has been
calculated using Eqs. (18), (22), and (25) for S =—,

' only.
The plots of the specific heat versus ~ for various values
of R are shown in Fig. 7.

In Fig. 8 we have plotted XBM„/C against T/BM„at
low temperatures for different positive values of R. As
mentioned earlier these plots for R p 0 would be more
useful for comparison.

IV. RANDOM-PHASE GREEN'S
FUNCTION APPROXIMATION

0 02-

earn

—0 01-

ot'. =0 03

R=Q

R=0-05

R=0. 1

R=O 2

The high-temperature series that we have considered
has only five terms and can describe the susceptibility
down to v. ,„. Exact prediction of 7 below r,„and
determination of the transition temperature ( T, ) requires
a much longer series. The spin-wave theory can describe
the system in the temperature range 0(T(T, /2. So for
determination of the transition temperature of the aniso-
tropic system we take recourse to the random-phase ap-
proximation.

The double-time Green's function of Heisenberg opera-
tors 3 (t) and 8 (t') is defined as

(( & (t);&(t'))) = —~'B(t —t')([& (t),&(t')] ) .

0.5
T

I

1.P

The Fourier transform of (26)

(26)

FIG. 6. Susceptibility, calculated from the spin-wave theory,
against reduced temperature for S = 1. ((A;8))' '= f ((A(t);8(t')))e' " ''d(t —t')
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FIG. 7. Magnon speci6c heat, obtained from the spin-wave theory, against reduced temperature: (a) R & 0 and (b) R & 0 (S =—').

satisfies the equation of motion

«& B)&'"'=&[&B] &+«[& ] (27)

where cr =1(—1}for site i is occupied by up (down) spin.
In the random-phase approximation the higher-order
Green's function is decoupled in the form

The Hamiltonian of the Heisenberg system in the pres-
ence of a small anisotropy field H~ is given by

4'= —2 g JJS; SJ —g gpsH„S + g gpsH„SJ'.
j=l

«s,+s;;B))=(s;&((s,',B)) . (30)

—g 2J;, (((S,+S'—S+S'. ) B))' '

J —I

+go H ((S,+ B))' ' (29)

(28)

Choosing the operators A =S;+ and B =f(SI, )S& the
equation of motion of the Green's function is

~(&s,.'B»'"'=&[s+ B] )

At low temperatures the ordered spin structure (Fig. 4)
is such that the lattice can be subdivided into two transla-
tionally invariant sublattices, the "up" and the "down"
with average value of spin per site S and —S, respective-
ly. Choosing h to be a site occupied by an up spin, when i
and h are on the same sublattice one can define the
Fourier transform with respect to the reciprocal sublat-
tice

G,„(co}=g ((S;+;B))' 'exp[ —ik (i—h)],
i —h

(31)

0.2

02
R =0.4

((S;+;B))' '= —g G,q(a)) exp[ik (i h)]-,
k

(32)

D

x 0-1

01 0.2 0-3

1-0

I

0.4

where N is the total number of spins in the lattice and k
is a reciprocal lattice vector which runs over N/2 points
in the first Brillouin zone of the reciprocal sublattice. In
an exact way 62k is defined for the case where i and h are
on the opposite sublattice.

To find out the transition temperature of the system
(28) for general S, it is sufficient to choose f (Sz ) = 1, i.e.,
B =S& . Following Lines' the equation of motion of the
two Green's functions are derived as

FIG. 8. Plot of XBMF/C against T/6MF in the low-

temperature region for S = —,. (ro gpsHq + Sp)G—)~(co }=2S —SA G2~(co), (33)
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(co+g @~HE —S}u)G2~(co)=SR G (~(co),

where

(34) d

A, =2 g J, exp[ —ik (i —j)] . (36)

JM= g 2J,, [exp[ —ik (i —j)]—1 I+ g 2J;, , (35)
Solving G, z from Eqs. (33) and (34) the associated corre-
lation function (S (t'}S +(t)) is determined using the
relation

=2 G, k(co+ 1 6) —G)g(~ —iE)
(,Sz (t')S,+( ))=—gexp[ik (i —h}]. lim i f

k 0+ B
(37)

For the case t =t'andi =h

(St, Si+, ) =S — coth(EOS/2k' T) —1
Eo

where

& =IJ gpaHa/S,
E ( g 2 g2)1/2

(38)

(39)

ks T.
S(S+1) 3 (1+a)(1+R/2) I&

where

I& ——( I(1+R /2) (1+a)
——,'[cos(k„a)+cos(k a)+R cos(k, c)] I ')z,

(43)

(44)

( )& indicates an average of k over N/2 values in the
first Brillouin zone of the reciprocal sublattice.

At and above the transition temperature ( T, ),

(S„)=(S» ) =(S, ) =S(S+1)/3 and as T~T, from
below, S~O and it follows

a=gp&H„/8 J,
l
S(1+R/2) . (45)

Case II: R & 0, the ordered spin arrangement is shown
in Fig. 4(b) and for this case

(40)

Case I: R & 0, the ordered spin arrangement is shown
in Fig. 4(a) and for this case

p= —8
l J, l [1+

l
R

l

sin'(k, c/2)],
A, = —4

l J, l
[cos(k„a)+cos(k»a)] .

The transition temperature is

(46)

(47)

q= —4l J, l(2+R), (41)

A, = —4
l J,

l
[cos(k„a)+cos(k a)+R cos(k, c)] . (42)

The expression for T, comes out as

S(S+1) 3 I2

where

(48)

1 +
l

R
l

sin (k,c/2)+a
I[1+ l

R
l

sin (k,c/2)+a] ——,'[cos(k„a)+cos(k a}] }

(49)

a =WaH~ /8
I
Ji

I
S . (50)

Within the Green s function approximation the anisotro-

py H„ is assumed as if proportional to S so that a is tem-
perature independent. ' Using Eqs. (43), (44), (48), and
(49) the transition temperature ( T, ) has been computed
for different values of R; the curves for T, are shown in

Fig. 9 for positive values of R. For negative values of R,
the RPA predicted T, is less than the corresponding
value for positive R. The difference is very small for
small anisotropic field (a) and it increases with increasing
a and

l
R

l
. In Table II we have presented the values of

r, [=ksT, /
l
J, l

S(S+1)]for positive and negative R
values for a=4)& 10 and 2X 10 ' for comparison.

V. ANALYSIS OF THE SUSCEPTIBILITY OF Ba2NiF6

The magnetic susceptibility of Ba2NiF6 was measured
by Yamaguchi and Sakuraba. According to them the

system is an example of two-dimensional Heisenberg anti-
ferromagnet with large anisotropy (a=0.03), the transi-
tion temperature is 93.0+0.5 K and T,„—165 K. Na-
varro mentioned that the susceptibility data of Ba2NiF6
fit with the high-temperature-series predictions for a
two-dimensional system, with the values

l J,
l

=38 K,
g~l

——2.23, gj =2. 10, and the temperature independent
susceptibility +„=1.2)&10 emu/g. He has also sug-
gested that there is a small 3D coupling in the system.
We have compared the susceptibility data of Ba2NiF6 in
the paramagnetic region with the HTS predictions and at
low temperatures with the spin-wave theory values
(S =1, a=0.03) for R =0, 0.1, and 0.2. The susceptibili-
ty (X~~~) of Ba2NiF6 shows maximum in the temperature
range 165—170 K and we have taken T,„=167 K and
determined the corresponding values of

l
J,

l

for R =0,
0.1, and 0.2, using the values of ~,„, theoretically pre-
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TABLE II. Values of transition temperatures ~, =k&T, /
S(S+1)

~
J, ~, for positive and negative values of R and for

a =4& 10 and 2)& 10

a =4)( 10
R&0 R&0

a=2)& 10
R &0 R &0

iR
i ic C C 7c

3 0-

+
nfl

th

~ 2.0-

~CD

Cl

R=10
R=08

R=os

R= 04

R=o.2

1.0—
R=O

I

10

I

1O'
I

10'
1

10

3250-

F1G. 9. The transition temperature [kq T, /
~ J~J S(S+ 1)) as

a function of anisotropy a [=gpsH„/2 I Ji I
S(4+2R)] for

several values of R of a directionally anisotropic Heisenberg an-

tiferromagnet calculated in the RPA Green's function approxi-

mation.

0.0
0.2
0.4
0.6
0.8
1.0

0.845
1.732
2.042
2.284
2.492
2.679

0.845
1.730
2.039
2.796
2.486

2.431
2.848
3.196
3.511
3.804
4.082

2.431
2.775
3.055
3.300
3.523

dieted. The susceptibility (X~~) of Ba2NiFs and the HTS
predictions in the paramagnetic region are shown in Fig.
10 and the spin-wave theory values at low temperatures
in Fig. 11. From these plots it is seen that the I data of
BazNiF6 fit much better with the predictions for R =0. 1

than those for R =0. For this fit we have taken
X„&=1.2 X 10 emu/g= 536.9X 10 emu/mole, as
mentioned by Navarro.

The transition temperature of Ba2NiF6 is 93 K.
values from the RPA for R =0 and 0.1 (a=0.03) are
1.52 and 1.80, respectively. For S =1, the RPA value for
the transition temperature is very close to T, observed
experimentally for a=2)& 10 and for higher values of a
the RPA values are lower than those observed experi-
mentally for two-dimensional systems. ' From the curves
given by de Jongh and Miedema' it appears that the ra-
tio ( T, ),„~,/( T, )z ~pfor a =0.03 is 0.73. When this fac-
tor is multiplied with the corresponding RPA results
(Fig. 9), the transition temperatures for R =0, 0.1, and
0.2 systems are 84.3, 97.2, and 107.2 K, respectively. The
transition temperature of Ba2NiFs (93 K) is closer to T,

—3000-
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E

I
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2&50-

1ZOO-

1100-

E
~10OO-

E SO0-

CD

800—

R=O

R= 0.1

=0-2

2500
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FIG. 10. Comparison of the experimental susceptibility (X~~)

of Ba2NiF6 (S =1) with theoretical HTS predictions for R =0,
0.1, and 0.2, corresponding values of

~
J,

~
are 38, 37, and 36 K,

respectively. gI~
——2.23 and the temperature independent suscep-

tibility X„-„=536.9)(10 emu/mole. Experimental curve is
shown by the solid line.

500
10 20 30 I 0

T tK)
50 60

FIG. 11. Comparison of the susceptibility (X~~) of Ba,NiF6
with the spin-wave theory predictions at low temperatures
(S =1, a=0.03). g~~

and X„~ values are given in Fig. 10 (0, ex-
perimental points).
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of R =0.1. So analysis of high- and low-temperature sus-

ceptibilities and the transition temperature reveals that
Ba2NiF6 has a 3D coupling with R =0.1.

VI. DISCUSSION

From the values of +max max ~c~ Tcw ~Tmax and plots
of reduced susceptibility for T & T,„(Fig. 3) it is seen
the 7 behavior does not differ by more than 1.5% for
0.4&R &1.0. We have evaluated the ratio T,„/T„
determined by the RPA, for various values of R. For
a =2 X 10 (for which the RPA results of T, are close to
those observed experimentally for S =1 and —,

' systems' )

T,„/T, for S =1 are 1.10, 1.13, and 1.17 for R =1.0,
0.5, and 0.4, respectively, and for R &0.4 the ratio in-
creases at a faster rate. A 3—4% change in ( T,„/T, ) as
R varies from 1.0 to 0.5 is observed for other values of
the anisotropy also and for S =—,

' the change is even

smaller. Puertolas et al. derived ~,„and v, values for
classical Heisenberg directionally anisotropic model us-
ing a longer series. The ratio of T,„/T„ in their case,
remains almost constant as long as 0.5 (R ( 1.0.

Figure 8 shows that the susceptibility data at low tern-
peratures for R =0.4 and 1.0 do not differ by more than
8% while for low values of R the difference in susceptibil-
ity for different R values is much more. Therefore, it
would be difficult to determine the value of R from the
susceptibility study alone if it lies between 0.5 and 1.0.

Neutron diffraction, which directly measures the disper-
sion of magnon energy, would obviously be the most use-
ful tool to determine R in the above case. In the case R
lies between 0 and 0.5, fit to the low-temperature suscep-
tibility results would be useful to determine the value of
R. This has been manifested when we compare the re-
sults of Ba2NiF~ with the HTS and spin-wave theory pre-
dictions. In the paramagnetic region points for different
R values are very close (e.g., the difference in susceptibili-
ty for R =0. 1 and 0.2 is within 0.3%), while in the low
temperature (Fig. 11) the difference is much larger.

For R &0, the value of X,„Tm,„/C increases rapidly
and Tcw /T, „decreases with increase of

~

R
~

. So for
R & 0, the high-temperature susceptibility results are
sufficient to determine the value of R.

Finally, from comparison of the susceptibility data of
Ba2NiF6 with the HTS and the spin-wave theory predict-
ed values it is concluded that this system has a three-
dimensional coupling (J2 ) and the values of J, and J2 are
about 37 and 3.7 K, respectively.
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