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Interfacial wetting transition in a model with competing multisyin interactions
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We show the existence of an interfacial or domain-wa11 wetting transition in the commensurate
phase of a rnode1 with competing multispin interactions known as the two- plus four-spin model.
We perform Monte Carlo simulations from which we detect the wetting transition by measuring the
length of the domain walls, the interfacial adsorption, and various standard quantities. The simula-
tions also reveal the presence of two difFerent mechanisms which cause this transition. In addition,
we determine the wetting line analytically by using the interfacial transfer matrix formalism.

I. INTRODUCTION

At any finite temperature, several domains can coexist
in the ordered phase of two-dimensional spin systems.
Such domains correspond to q physically different but
equivalent orderings, where q is the degeneracy of the
ground state. Systems with short-range competing in-
teractions may exhibit phases with q & 3. For these sys-
tems, a change of temperature T or of the parameter
which measures the competition a, may lead to a decom-
position of the interface between two domains into two or
more interfaces, i.e., one or more of the q —2 remaining
domains form a macroscopic slab between those domains.
This is the interfacial or domain-wall wetting transi-
tion. '

Among several models with competing interactions, a
great deal of work has been devoted to the axial or aniso-
tropic next-nearest-neighbor Ising (ANNNI) model,
which reproduces the essential qualitative features ob-
served in modulated structure materials, ' such as gases
adsorbed on surfaces, intercalated compounds, and mag-
netic systems. Recently, the existence of a wetting transi-
tion in the modulated (2,2) antiphase of the two-
dimensional ANNNI model has been demonstrated. In
Ref. 6, it has been argued that this wetting transition is a
first-order one, but this fact remains controversial. Simi-
lar wetting phenomena have been found in the various
commensurate phases of the two-dimensional ANNNI
model in a field. '

More recently, it was found that there is an abrupt
change in the anisotropy of growth of ordered domains
following a quench from the disordered state to a low-
ternperature nonequilibrium state as one crosses the wet-
ting line, in the ANNNI model with both Glauber and
Kawasaki dynamics ' and in the three-state chiral clock
model with Glauber dynamics. "

Another family of spin models which exhibit modulat-
ed phases has been considered. In these models, there is

a competition between multispin interactions along a
given axis of an hypercubic lattice. ' ' Models with mul-

tibody interactions are applicable in various fields, and in
particular, three- and four-spin interactions successfully
describe some magnetic systems. ' On the theoretical
side, the models with multispin interactions in one direc-
tion, introduced by Debierre and Turban, ' has been
studied with a variety of techniques including Monte
Carlo (MC) simulations, ' ' in order to determine the na-
ture of the phase transitions and the universality classes.
The phase diagram of a particular competing multispin
interactions model, known as the two- pius four-spin
model, has been found to be very similar to that of the
ANNNI model with ferromagnetic, paramagnetic, and
commensurate phases, the latter with an eightfold degen-
eracy. The main qualitative difference between both
models is the absence of an incommensurate phase in the
two- plus four-spin model, as has been suggested in a
study on its quantum analog. '

In this article we present some result of a study of wet-
ting transitions in the commensurate phase of the two-
plus four-spin model. The interest of this study, apart
from the interest in multispin interactions pointed above,
is to determine the effects on the wetting transition of a
degeneracy of the ground state higher than that of the
ANNNI model. Besides, there are probably other effects
due to the first-order phase transition which is believed to
occur when the four-spin interaction is much greater
than the competing nearest-neighbor interaction along
the same direction. '

In Sec. II we define the model, briefly review its bulk
properties, and show all the possible domain walls togeth-
er with their ground-state excess energies. In Sec. III, we
present a MC study limited to the determination of some
points of the wetting line and show some qualitative
features of the transition. Then, in Sec. IV, we obtain
some analytical results using the interfacial approxima-
tion. In Sec. V we state our conclusions and suggest
some possible extensions of this work.
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II. MODEL, PHASES, AND INTERFACES

The two- plus four-spin model is defined by the Hamil-
tonian

H Jo ps&&sij'+] J] gsijsi+]j

+J2 g ij i +Ij i+2j i+3j
l, J

(2. 1)

where the sums extend over the sites of a rectangular lat-
tice with Ising spins s; =+1. The indices i and j corre-
spond to the x and y directions, respectively. We shall
only consider the region JO,J, ,J2 & 0, and we adopt the
usual parametrization of the ANNNI model: J]——(1
—a)JO and J2 ——aJO (0&a&1). The p X 1 uniaxial com-
mensurate phase, for which the competition between in-
teractions along the x axis is relevant, occurs for a& —,

'

(Fig. 1). In this model, p, the length of an elementary
structure of the superlattice in units of the underlying lat-
tice spacing, is equal to four. The commensurate phase is
a (3,1) antiphase (the structures of the ground state are
formed by the three layers of spins "up" followed by the
one layer of spins "down, "and so on). Since the up-down
symmetry is not broken, the ground state has an eightfold
degeneracy.

The 4)&1 structures that correspond to the posible
ground states may be separated into two classes as
A:+++-, B:++—+, C:+ —++, and
D:—+ + +; and A*:———+, B*:——+ —,
C*:—+ ——,and D*:+———.Within each class, a
given structure may be changed to another by a discrete
phase shift. Of course, this is not possible for structures
belonging to different classes. This is an important
difference with respect to the ground states of the
ANNNI model, and it leads to a more complicated be-
havior of the wetting transition. These two disjoint

classes of p =4 structures each lead to nine distinct types
of physically nonequivalent domain walls. These walls,
together with their ground-state excess energies —which
will be defined in Eq. (4.2)—are given in Table I. The use
of Eq. (4.2) introduces some artificial differences in this
classification. That is, the wall between B and C states,
denoted BiC ("wall 8"), should be included together with

AiB and CiD as "light" walls (wall 7), and the wall CiB
(wall 8) with BiA and Di C as "heavy" walls (walls 9). In
fact, these inclusions are performed in our MC program.

In Table I, we can distinguish three groups of domain
walls according to the number of frustrated multispin in-
teractions (f.m. i.): W] and W2 (3 f.m. i.); W3, 8'4, W5,
and W6, (2 f.m. i.); and W7, Ws and W9 (1 f.m. i.).

If we assume that the up-down symmetry is broken,
and we take, for example, the case in which the coverage
is —,

' particles per adsorption site (structures A, . . . , D),
then the nine types of walls shown in Table I reduce to
five: AiD (3 f m. i.), Ai C and CiA (2 f m. i.), and AiB and
Di C (1 f.m. i.).

Of course, there are many possible wetting transitions
which can occur by intercalating one or more domains
between two other domains. Taking into account the
wall energies depicted in Table I, it is easy to determine
all the wetting transitions that take place at zero temper-
ature. In this work, we limit ourselves to the study of the
wetting transition 8'7~3 W9. The reason for this choice
is that this transition involves those walls which cost the
least energy at T =0 (one frustrated multispin interac-
tion), which are therefore the tnost abundant. In fact,
our MC simulations with full periodic boundary condi-
tions show that the walls 7 and 9 are the most numerous
ones.

If one takes the case of coverage —,', this wetting transi-
tion would be described as AiB~3DiC (see Sec. III,
second case). This transition corresponds, taking into ac-
count the usual classification of walls in adsorbate sys-
tems, to a decomposition of a light (AiB) wall into three
heavy (DiC) walls.

2.5-

2.0

III. MONTE CARLO STUDY

We have performed MC simulations with the standard
Metropolis algorithm in order to determine the wetting
line and to study the domain-wall process that produce

TABLE I. Domian walls in the commensurate phase. The
domain walls obtained by inverting the spins of both phases are
not shown.

03 05 Q7 Q9

FIG. 1. Phase diagram of the two- plus four-spin model.
Light solid curves are the phase boundaries of the ferromagnet-
ic (E), the paramagnetic (P), and the commensurate (C} phases.
The heavy solid line indicates the wetting transition. All these
curves were obtained from the interfacial approximation (see
Sec. IV). The crosses are our MC results. Their approximate
error bars are also shown.
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—Ji + 2Jq



38 INTERFACIAL WETTING TRANSITION IN A MODEL WITH. . . 4707

this wetting transition. Lattices of sizes N XM, where N
refers to the direction x in which there are competing in-

teractions, were used. In general we have taken N =64
and M =16, and in order to study finite-size effects, we
also considered N =64, M =8 and N =72, M=20. The
averages were typically computed over runs which
ranged from 6 to 10)&10 MC steps per spin with sam-

pling every 60 to 100 MC steps per spin. For the N =64
lattices, and near the wetting line, we take from 12 to
16)(10 MC steps per spin, sampling every 100 MC
steps. The boundaries in the x direction were pinned to
the A (left boundary) and B (right boundary) structures in
order to study the wetting of the A ~B light wall (W7), and

periodic boundary conditions were imposed in the y
direction.

We computed the length I; (i =1, . . . , 9) for each of
the nine walls shown in Table I. More complicated walls,
which we considered as disordered structures, were also
computed. We also calculated the number of spins be-

longing to each of the eight phases A, . . . , D' and the in-
terfacial width or interfacial adsorption of the wall A B
(for a precise definition of this quantity, see Ref. 1).

In addition, we have recorded standard quantities such
as the nearest-neighbor energies along both the x and y
directions, the energy associated with the multispin in-

teraction, and the total energy, and we have calculated
their averages and fluctuations. The order parameter
computed is

1
$&j S& Pj $& fj Sl + Jj

l,J

(3.1)

where ( ) denotes the usual MC average. Each group of
four consecutive spins along the x axis contributes +4 to
4 if it belongs to the phases A, . . . , D, —4 if it belongs
to phases A*, . . . , D*, or zero for disordered structures.
4 is a "good" global order parameter in the sense that
the melting transition is detected by the vanishing of %'

with a corresponding peak in its fluctuations.
The value of a at the wetting transition a ~, for a given

temperature, is mainly determined by the vanishing of l7,
the length of the wall A~B, as the value of the parameter
a is lowered from its maximum value a=1 to its value at
the melting transition. Simultaneously, . /9 jumps from
zero to a value that is near 3M. These changes in l7 and
l9 also appear as a peak in the corresponding fluctua-
tions. This picture clearly appears for temperatures
T (1 (in units of Jo /kit) and is shown in Fig. 2 (see also
Fig. 6). For higher temperatures, we see that 19 increases
and l7 decreases as a is lowered, but l7 and 19 take
nonzero values throughout [Fig. 2(b)]. In this case, we
determine the wetting transition mainly by the fluctua-
tions of the wall lengths.

Alternatively, we can detect the wetting line from the
interfacial absorption which jumps from a nearly zero
value in the dry region to a nonzero value in the wet re-
gion (Fig. 3). We see that the interfacial adsorption has
two contributions provided by the two mechanisms
present at the transition (see the following).

The wetting transition also appears through the global
quantities as a slight rninirnum in the order parameter 0'
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FIG. 2. Behavior of the length of the walls 7 and 9, I7 and l9

(solid curves), and of their fluctuations f, and f9 (broken

curves), showing the wetting transition (a) at T =Q. s and (b) at
T=1.5 (in units of Jo/k&). In this figure and in the following

figures, the full curves must be considered as a guide to the eye.

caused by the intrusion of the A* and B* phases, and as
peaks in the fluctuations of 4, of the energy associated
with the two-spin interaction along the x axis and the en-

ergy associated with the multispin interactions (Fig. 4).
The wetting transition occurs in the following way.

For a-=1, the wall A~B is almost a straight line. As a is
lowered, this interface begins to meander with kinks of
one or two lattice spacings to the right. Near the transi-
tion, the kinks have three lattice spacings to the right or
one to the left, i.e., the W7 becomes a Wi (see Fig. 5).
For example, at T=0.8 and for a=0.505, slightly on the
dry side of the transition line, we have that lz+li=M,
I =0 (j&2 or 7). We see two possible mechanisms for
the wetting transition. In the first of them, the W7 (or
Wz) splits into a Ws and a W9 by inverting three con-
secutive spins [Figs. 5(a)]. Then, by inverting new groups
of spins, that is, intruding A* and B* structures, the W6
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FIG. 5. Possible mechanisms of the wetting transition. In
each case, we show, from top to bottom, different stages of the
wetting transition that appear as a is lowered. In (a), the in-

truding phases are A* and B, and in (b) the intruding phases
are C and D.
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FIG. 3. Interfacial adsorption corresponding to the intruding
phases C and D (crosses) and A* and B* (triangles), (a) at
T =0.8 and (b) at T = 1.5 (in units of Jp/kg).

).0

splits into two new 8'9's and the wet order is reached.
There is also an increasing number of disordered struc-
tures at this point. This is the mechanism expected from
naive combinatorics taking into account Table I, and can
be described as AiB —+AiB'iA'iB. However, we have
found that, for all the tempertures studied (0.8 (T & 2.0),
this wet structure is only abundant slightly below the
transition point (see Fig. 3). At this point, and for lower
values of a, other structures, which appear from the
second mechanism, prevail. This mechanism, shown in
Fig. 5(b), can be described as

A
i
B~A=D

i
C D

i
B (two-wall state)

and

Q6-

g0
04-

02-

0.48 0.50 0.52 0.54

FIG. 4. Fluctuations of the order parameter 4' (crosses) and
of the energy associated with the multispin interactions (trian-
gles), at T =0.8.

AiB~A DiC DiC DiC B

(three-wall state),

where the double arrows mean that a phase which begins
at the left wall as, say C reaches the right wall as D. One
can see that the wall D

i
B (W~) is the result of the interac-

tions between two neighboring heavy walls D
i
C ( W9).

For example, at T=0.8 and a=0.495, slightly on the
wet side of the transition line, we have that I2 ——17=0,
and the system jumps back and forth between two states,
the first with /~=19=M (two-wall state) and the other
with l5 =0 and l9 =3M (three-wall state). At this point,
the system spends approximately equal amounts of time
in each state. As a is lowered, the time that the system
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stays in the three-wall state increases. Finally, at
a-=0.47, the walls D~C are too far apart to interact and
the system reaches a pure three-8'& state.

Taking into account the important finite-size effects
which are present in MC simulations of modulated spin
models, ' ' we have analyzed the behavior of a at
T=1.0 for lattices with %=64, M=8 and 16 and
X =72, M =20. The results, depicted in Fig. 6, show a
reasonable convergence to the value predicted by the in-
terfacial approximation.

Starting from various initial configurations, we found
important differences in the results due to the presence of
metastable states during all the MC runs, especially when
the simulation starts with a disordered (high-
temperature) configuration. We have preferred to consid-
er dry and wet ordered (low-temperature) starts. At a
given temperature, and for each value of a, we start the
simulation from the last configuration generated in the
run of for the previous value of a. For the wet ordered
start, we began with a=0.485 and raised a up to 0.600 in
steps of 0.005. For the dry start, we followed the inverse
sequence.

The possibility of first-order wetting transitions in
two-dimensional systems with p &4 has been predicted
(for a review see Ref. 2). To determine the order of the
wetting transition in MC simulations, one may determine
the finite-size behavior of the fluctuations in the interfa-
cial adsorption. Our data at T =1.0 with 64X16 lat-
tices show a very peaked behavior in the fluctuations as-
sociated with both mechanisms studied above. As it was
pointed out in Ref. 7, this implies that extremely long
runs and a very fine mesh in the temperatures to be
scanned are necessary to get reliable data close to the
wetting line. In addition, we should consider other lat-
tice sizes. However, such a systematic finite-size analysis
is beyond our present computational possibilities.

IV. INTERFACIAL TRANSFER MATRIX
APPROXIMATION

We have also performed a transfer matrix calculation
of the excess free energy ("surface tension"} of the vari-
ous interfaces in the solid-on-solid (SOS) approximation
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FIG. 6. Finite-size study of the wetting transition at T =1.0.
The lattice sizes considered are 64X8 (circles), 64X16 (trian-

gles), and 72X20 (diamonds). In all cases, the empty (solid)

symbols correspond to the length of the wall 9 (7). The arrow
shows the value predicted by the MHZ approximation.

(overhangs and islands excluded) following the procedure
developed by Muller-Hartmann and Zittartz (MHZ).
This method, in principle valid only at low temperatures,
has been successfully used to determine the phase boun-
daries of several two-dimensional models, ' and in
some cases, it reproduces the exact value of the critical
temperature. Moreover, this method has been
modified to describe the intrusion of a third phase be-
tween two other phases in a wetting transition. However,
to study the case of two intruding phases, we have fol-
io~ed the original approach, as it was used in Ref. 6 to
determine the wetting line in the ANNNI model.

In the interfacial or SOS transfer matrix calculation,
the surface tension of a given wall, say A~B, is calculated
from the expression

1
=EAIB lim

M in+exp —
k bHAlBts~jIM-~ M Bl,J

(4.1)

1
Als im ~HAIB HAlA+HBlB)1M

(4.2)

is the ground-state excess energy of this wall (see Table I),
and

AHA
~
B H HA (4.3)

with H g~~~~ by Eq. (2.1). HA
l
B, H„"l„,»d HB'l'B a«

where, as before, M is the length of the lattice in the
direction parallel to the interface,

the ground-state energies of the system with boundary
conditions in the x direction pinned at (A,B) (the interfa-
cial reference configuration), (A,A), and (B,B}respective-
ly. The sum in (4.10) runs over the SOS configurations
and can be evaluated by transfer matrix methods.

Following the usual interfacial or MHZ approxirna-
tion, the melting line, phase boundary of the 4X1 phase
is determined by the vanishing of the surface tension of
the wall with least energy at T =0, in our case 8'9. The
vanishing of the surface tension occurs in second-order
phase transition, which is assumed in the present calcula-
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tion.
In order to construct the SOS transfer matrix, we con-

sider the configuration with a W7 wall, B~A, for example,
as the reference configuration. A kink in this wall leads
to a W2 (A~D) configuration which is also included.
These are the basic configurations. Then we take all the
configurations obtained by shifting the basic
configurations in 4n lattice spacings, with
—~ &n &+ (x}. After performing the usual Fourier
transformation of the transfer matrix and taking into ac-
count the Perron-Frobenius theorem, we reduce the
problem to the diagonalization of the following 2)&2 ma-
trix:

sketched for the 0.
9 we obtain

ka ~ 1+x'o.
7 ——1+a — ln

Jo 1+x' (4.8)

07=3CT9 . (4.9)

The estimate of 0.
9

' is somewhat more involved, be-
cause in addition to the three noninteracting W9
configurations, one should consider configurations in
which two out of the three W9's are interacting (see Fig.
5). However, the leading eigenvalue of the SOS transfer
matrix corresponds to the configurations with three
noninteracting W9's. Equation (4.7) then reduces to

1+x 2x&

2xb (1+x )b
(4.4)

Finally, taking into account (4.5), (4.6), (4.8), and (4.9),
one obtains the results shown in Fig. 1.

where

2a~o
b =exp

B

and

—2Jo
x =exp

k~T

In this expression of ~ we have already extracted the en-

ergy of the reference configuration. Finally, we obtain
the W9 surface tension

k~T
e9 ——3a —1 — ink, ,

Jo
where A, , the largest eigenvalue of ~, is

(4.5)

[(1+x )(1+b )+[(1+x~)2(1 b)—1

2(1 —x )

+16x b ]' ) (4.6)

The result obtained by setting o9 equal to zero is de-
picted in Fig. 1. These values compare satisfactorily well
with MC results at low temperatures. At a=1, the pure
multispin model, we obtain the value T=2.923 for the
transition point, considerably higher than the exact one
T =2.296. Similar behavior of the interfacial approxima-
tion has been found in previous calculations for Ising
models with three-spin interactions and second- and
third-nearest neighbor interaction. ' Moreover, one
should recall that some authors' ' have found that the
transition at a=1, T=—2.269 is a first-order one.

In Fig. 1, we have also included, for completeness, the
phase boundary of the ferromagnetic phase, obtained
with the MHZ approximation. In this case, this approxi-
mation exactly reproduces the Ising critical point
T, =-2.296, which corresponds to a =0.

The wetting line is determined form the condition

CT7 =679 (4.7)

where o.9 is the surface tension of the W9 interface and
f79 is the excess free energy of the system with three
W9 s. The only basic configuration taken into account
for the construction of the transfer matrix of o.

7 is a
configuration with a W7. Following the same procedure

V. CONCLUSIONS

We have determined a domain-wall wetting transition
in a competing multispin model in which a single inter-
face decomposes into three interfaces due to the intrusion
of two new phases between the older ones. The most in-
teresting new feature compared with a similar wetting
transition which occurs in the ANNNI model is the ex-
istence of two very different mechanisms that cause the
transition. We can conjecture that this is due to the
higher degeneracy of the ground state of the two- plus
four-spin model. It would be worthwhile, from the nu-
merical point of view, to study the interfacial adsorption
associated with each mechanism in greater detail and to
determine the order of the wetting transition. The rela-
tion between 4 (Fig. 4) and the interfacial adsorption re-
lated to the A' and B' is another point which should be
clarified. From the analytical point of view, with a
transfer matrix formulation in the Hamiltonian limit
which can include the processes shown in Fig. 5, one
could attempt to explain the behavior of the interfacial
adsorption shown in Fig. 3. It is possible that the pres-
ence of two regions, dry and wet, in the commensurate
phase leads to di8'erences in the growth of the ordered
domains when quenching from the disordered, high-
temperature phase to the commensurate phase. Some
preliminary studies with Monte Carlo simulations with
Glauber, i.e., nonconserved order parameter dynamics
seem to indicate that the growth of order could be
infiuenced by the evolution of three- and four-rayed ver-
tices, the latter formed by heavy (8'9) walls which are
more abundant near equilibrium in the wet region. Far
from equilibrium, there are also 8'9's in the dry region so
the vertex mechanism could be the same in both regions.
This is an interesting open question which, together with
the dynamics of the wetting transition itself, would
deserve an extensive study.
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