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Dynamic symmetry breaking in mixed-valence systems
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The precise mechanism which allows the hybridization between nearly degenerate localized 4f
and (6s, 5d}-conduction-band states of a mixed-valent rare earth (RE) is investigated in detail. We
propose that a dynamic symmetry breaking, generated by coupling the displacement of the RE ion
from its equilibrium position to the mixing term of the Anderson Hamiltonian, induces the hybridi-
zation of the opposite-parity f and sd states. The model is solved under the assumption that the de-

generacy of the 4f level, Nf, is large, which yields exact results in the Nf ~ oo limit. Also, only one
Einstein phonon mode is retained. Both a semiclassical and a full quantum-mechanical treatment
are presented. Finally, we apply our model to the metal-insulator transition of SmS.

I. INTRODUCTION II. MODEL AND SOLUTION

In spite of the elapsed time and the significant efforts
that have been devoted to the understanding of inter-
mediate valence, ' several important issues remain open.
An area of special importance, with many ambiguities
and unanswered questions, is the full description of the
electron-phonon interaction in fluctuating-valence sys-
tems. The aim of this paper is to discuss and clarify one
outstanding problem in this area: the precise mechanism
which induces the hybridization between the nearly de-
generate (6s, 5d )-band states and the 4f electrons local-
ized on the rare-earth (RE) ion.

While the earlier efforts to understand the intermediate
valence phenomenon were developed within the frame-
work of the Ramirez-Falicov model, most recent work is
based on the Anderson Hamiltonian, or generalizations
of it. The latter include a coupling term between local-
ized and band states with the phonon field. However,
with few exceptions, only breathing modes of the fluc-
tuating valence RE are incorporated. These modes do not
break the local inversion symmetry at the RE lattice site,
which is present in many physical systems of interest.

In this paper we investigate the dynamical symmetry
breaking at the RE site. It is induced by coupling the dis-
placement of the ion from its equilibrium position to the
mixing term of the Anderson Hamiltonian. The
relevance of the latter, in the context of intermediate
valence, was first recognized by Alascio, Lopez, and Ol-
medo. In our formulation, band and localized states hy-
bridize through this dynamic Jahn-Teller mechanism,
thus allowing the mixing of opposite parity states.

This paper is organized as follows. After this introduc-
tion the model is formulated analytically and solved in
Sec. II. Next, in Sec. III its application to SmS is briefly
discussed. In Sec. IV a summary is given and conclusions
are drawn.

In the analytic formulation of our model we limit our-
selves to the simplest case which nevertheless incorpo-
rates most of the essential physical elements. That is, to
a single impurity Anderson Hamiltonian with degenerate
f states which hybridize with sd-band states. This mix-
ing is induced by a local distortion that breaks the inver-
sion symmetry at the impurity site. For simplicity we do
retain just a single local phonon mode.

The Hamiltonian, in the partial-wave representation
and with use of the notation of Ref. 6, reads

H =Hei+Her+He

where

Nf Nf

H
1 Xskckck+ X Eff,f.+ U X nfPf'

v, v'=1

Hq ——Acerb b, (2b)

Hel-B

1/2

(6+b ) g ( Vkck f + Vk'f, ck ) . (2c)2M' k

Above, ck (ck } creates (destroys} a conduction electron in
state k, where k=(k, v} is a collective index denoting
both the wave vector k and the z component of the total
angular momentum v; c.k and cf are the energies of the
conduction and f electrons, respectively. The operator
f creates a 4f-electron state, flf„f f„; U is the——
Coulomb integral between different f states on the impur-
ity; b creates the Einstein phonon mode of frequency co;
and Vk is the strength of the s fmixing matrix ele-ment.
Obviously, the c and f operators obey Fermi commuta-
tion relations, while the b operators obey Bose rules.
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A. Semiclassical approach

In order to obtain a qualitative understanding of our
model, without the intricacies of a full quantum-
mechanical treatment, we start providing a semiclassical
approach. In the Born-Oppenheirner approximation Eqs.
(2) reduce to

H=H„+H, is(x)+p /2M+Mrp x /2,

where

(3)

H, i s ——g x ( Vkck f,+ Vk f«ck ),
k

(4)

and p and x are the canonical momentum and displace-
ment of the Einstein oscillator. The kinetic energy term
is negligible in the large-M limit. The adiabatic electron-
ic eigenstates

~
g„(x)) are obtained from

(H,)+H, ) a )
~
Q„(x) ) =E„(x)

~
f„(x)), (5)

and following Born and Huang the ground state of the
system reads

&x
~
Eo) =y(t„(x)

~
l(„(x))-=((,(x)

~ y,(x)), (6)

X

FIG. 1. Effective potential W(x) in the semiclassical approx-
imation, plotted for three values of the parameter p( ~

Vk
~

').
The upper curve corresponds to the smallest value ofp(

~
V&

~

')
and the lowest one to the largest. Arbitrary units are used. The
change in character of the potential, from single to double well
as p( ~

V&
~

') increases, is clearly seen.

where (tp(x) satisfies the Schrodinger equation

d +Ep(x)+.kx /2 (tp(x)=ep((ip(x) . (7)
2M dx2

To obtain
~
gp(x) ) we employ the variational ansatz of

Varma and Yafet, ' which in the large Nf limit, and for
infinite U, yields

XVk
~
gp(x)) =a(x)

~ PF )+ g ~ Pk ), (&)

k(kF cf+ ck

b(x) D
ln

[bE ef [— (12)

nf —— 1—
—1

n.(b,E —ef )

b(x)
(13)

W(x ) =Ep(x ) +kx /2, (14)

where b,(x)—=~px (
~

Vk
~

). Consequently, the RE ion
oscillates in the effective potential

where

x'/ Vk /'
a(x) = 1+

k(k, (bE —&f —&k }'

—1/2

(9a)

which is displayed in Fig. 1 for several values of the pa-
rameter p( ~

Vk
~

). It is observed that W(x) has either

one or three extrema; they can be evaluated by means of
the Hellman-Feynman theorem. One readily obtains an

implicit equation for these extrema which reads

is a nortnalization factor,
~
PF) denotes the full Fermi

sea and
xp= [nf(xp) 1]bE(xp)2=2

k
(15)

l((}k) (+f) gf ck ~@F) (9b}

The shift bE=Ep(x) EF, with EF be—ing the ground-
state energy of the full Fermi sea, is given by

x'
I Vk

I

'
bE=

k&k f
(10)

The f-level occupation can now be evaluated as

nf= ox ~ o&

For a half-full conduction band, of width 2D
»

~

bE(x) Ef ~

and constant densi—ty of states p=1/
(2D }= (2D } ', one obtains

Thus, in close analogy with the results of Ref. 6, Eq. (15)
has either one or three solutions. This implies the ex-
istence of a critical value of p(

~
Vk

~
) above which

spontaneous symmetry breaking does occur. In the latter
case the system gains more electronic energy than the
elastic one required to distort the high symmetry equilib-
rium configuration. On the other hand, when there is no
distortion, no hybridization is induced and the RE
remains in an integral valence electronic configuration.
Conversely, distortion implies mixing and nonintegral
valence; as the first increases so does the latter.

B. Quantum-mechanical approach

Up to this point our treatment only allows for static
solutions; quantum tunneling between the minima of the
potential well of Fig. 1 was excluded. Below, a full
quantum-mechanical calculation of the Auctuations of an
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H
I Eo ) =Eo

I Eo ) . (16)

This state belongs to the product space H, ~ +HE and thus
is is natural to adopt the following ansatz as the varia-
tional trial function:

IE )=pa, Ie)e IB,), (17}

Einstein oscillator coupled to a correlated electron gas, is
provided. Our treatment yields a dynamical symmetry
breaking due to the Jahn-Teller effect. The analysis is
closely related to the calculation scheme developed by
Schonharnmer and Gunnarson to treat the breathing ion
case.

Consider again the Hamiltonian H of Eq. (1) and define
the ground state

I
Eo ) and its energy Eo by

where { I
e ) } is a complete orthonormal set of states of

H,&, chosen as eigenstates of the operator 8/ g——f„f„.
On the other hand, { I 8, ) = & e

I Eo ) } is a complete set
of boson states. Thus, Eq. (16) can be rewritten as

X&e I H.i+Ha+H. i al e-'&
I 8, &=Eo

I B.&

and in the N&~ ~ limit, in which the Hilbert space splits
into two disjoint parts, a substantial simplification does
occur. In fact, the states

I pF ) and { I pz ) } of Eq. (8) do
not mix with the rest of the electronic states and conse-
quently, electron-hole pairs and double f occupancy do
not enter our description in the large N/ limit. From (18)
we thus obtain the following set of variational equations:

ao(E&+%cob b }
I Bo ) +

' '[/2

X atUa(b+b }
I Ba & =aoEo I Bo &

k &kF
(19a)

ao 2M' Ua'(b+b )
I Bo)+aa(Ey sa+s/+&~b b) IBa &=aaEo

I Ba & (19b)

where E& is the full Fermi sea energy, s& the energy of a conduction electron with wave vector k, and v~ = V~ /QX/.
The combination of Eqs. (19) yields

{e~b'b+(b+b')[r(e/+An)btb bE) j(—b+bt) } I 8, ) =bE
I 8,), (20)

where AE =Eo —E& is the energy shift of the ground state relative to the noninteracting Fermi sea and

I (z)=——
k&kF k

(21)

The ground state
I Eo ) is thus

I Eo & =ao
I PF &+

' 1/2

(b+b')Ika& o IBo&
a(aF (bE c/ firth —b +—~e)

(22)

To obtain hE, Eqs. (20} and (21} have to be solved self-consistently. Introducing the basis set { I
n ) },defined by

b b
I

n ) =n
I

n ) and expanding
I Bo ) =+8„ I

n ), a tridiagonal matrix equation for the coefficients P„ is derived

[nfico+(n+1)r„+, +nI „,]p„+'t/n(n —l)1 „,p„z+&(n+ 1)(n+2)I „+&p„+z AEp„. —— (23)

Assuming again a half-full conduction band of width 2D
and a constant density of states p= 1 /(2D) =(2D) ', one
has

&x
I
8 ) =QP„&x

I
n ) =QP„y„(x), (25)

(24)

C. Wave function, probability density, and f-level occupation

x&
I U„ I') ., ~E+nr~-r„= ln

4McoD D+ c~ —AE+ n %co

The simplicity of I „and the tridiagonal form of the ma-
trix of Eq. (23), make the numerical solution both simple
and efficient.

where

p„(x)=
' 1/4

(2"n })
7rA

y, exp( Mcox /2A)H„(v'M—co/Ax ) (26)

Once the set {P„}is known, the vibrational wave func-
tions can readily be evaluated using

and H„are the Hermite polynomials. " By the same to-
ken
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(x
~
B„)= &fil2Mcouk

&n y„,(x)xg p„ hE —sf —(n —1)fico+ ek

&n + lip„~,(x)
+ hE e—f (—n + 1)fm+ek

(27)

of (x
~
Bk ). The full ground state

~
Eo ) instead, accord-

ing to Eq. (22), is given by a linear superposition of even
and odd functions. The relative weight of each of them is
determined by the model parameters, mainly by Uk and

Ef.
While the ground-state expectation values of the dis-

placement (Eo
~

x
~
Eo ) =0, the probability of finding the

RE ion at x =0 is finite. Actually, this probability as a
function of x can be evaluated using

Notice that only coefficients p„with the same parity in

the n index are coupled through Eq. (23). Since the
eigenfunctions y„(x) of Eq. (26) are even (odd) when n is
even (odd), th'e vibrational wave functions (x

~
Bo) and

(x
~
Bk ) have definite parity; furthermore, Eqs. (25) and

(27) imply that the parity of (x
~
Bo) is opposite to that

I

p(x)= ( (x
~
Eo)

~

iiQ [ (x [BQ) / +
k &kF

which can be expanded in the basis set Iq&„(x) I of Eq.
(26) as

p(x) =cio g P„[nl '„ itp„,(x)+y„(x)+(n +1)I"„+,y„+,(x)]
n

+P„P„+i&(n +1)(n +2)I"„+&y„+(ix) +P„P„z&n(n +2)I"„ iy„ i(x)

PnPm &nm &(n +1)(m +1)(1„,—I'
i )y„ i(x)q i(x)+ (I „,—I,)p„,(x)y, (x)

irico n —m n —m
n, m

(, num)

PnPm &n(m+1) (I „,—I,}q&„,(x)y, (x)
n, m

(num+2)

PnPm &m(n +1}(r„„—r. , )q „„(x)q. ,(x)
fico n —m +2

(n~m —2)

(29)

Above we have used the definition that uk and sf have a competing effect on p(x). The
larger cf, the smaller the mixing between localized and
band states and the smaller also the consequent symmetry
breaking. In fact, the similarity between Fig. 2(a), plotted
with parameters V—:((

~
uk

~

))' =1 and sf ——1, and
Fig. 3(c}with V=5 and ef ——20, is quite apparent. More-
over, the sets V= 1, ef ——1 [Fig. 2(a)] and V=5, ef ——100
(not shown) yield identical results, as far as the probabili-
ty density p(x) is concerned.

On the other hand, the similarity between Figs. 2(b)
and 3(a} is quite obvious. It is due to the fact that reduc-
ing the value of cf below a single quantum of energy of
the Einstein phonon (which we did choose as our unit of
energy) has no effect on the admixture of localized and
band states.

The f-level occupation nf is the most relevant physical
quantity in the study of intermediate valence. A pro-
cedure quite similar to the one used to obtain Eq. (29)
yields

ar„(z)
(30)

Z

which under the same assumptions that led to Eq. (24)
yields

r'„= D
4McoD ( hE sf n fico )(EE— s—f nAco D—)— —

(31)
Plots of the probability density p (x) versus x are given

in Fig. 2, for various values of Uk. As the latter increases
so does the probability p for finding the ion displaced
from its static equilibrium position. However, in sharp
contrast with the semiclassical results, there is always a
non-negligible probability for finding the atom in the
neighborhood of x =0. In Fig. 3 we also plot p (x) versus
x, but now for various values of ef (the distance between
the bare f level and the Fermi energy). It is apparent

n&
——(Rf)=(Ep x FffJ' Zp:llog(1 [III &+(II+1)l +&]

v=1 n

+p„p„z&n(n —l)I"„ +pi„p„&+(in+ 1)(n+2)I"„]+i (32)
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FIG. 4. Occupation n~ vs energy e~ of the bare f level, rela-
tive to the top of the Fermi sea. The uppermost curve corre-
sponds to V=7.5, the middle one to V=5 and the lowest one to
V=2.5. Energies are measured in units of %co.

FIG. 5. Samarium f level oc-cupation vs e~. The uppermost
curve corresponds to V=3.5, the middle one to V=4 and the
lowest one to V=4.5. Energies are measured in units of %co.

quite close to the bottom of the conduction band. Upon
alloying (with Gd, Tm, or Y, for example), or under hy-
drostatic pressure, the 4f level is pushed upwards into
the conduction band. Hybridization with the latter states
tends to further ionize the Sm +, mixing the Fo
configuration with the magnetic H5&2 and 07&2
configurations of Sm'+. In the context of our theory we

propose that this behavior of SmS can be explained in
terms of a dynamic shifting of the equilibrium position of
the Sm ion, which breaks the high symmetry of its loca-
tion. The RE is treated as an isolated impurity, due to
the small spatial extent of the 4f states. In this model the
Sm ions fluctuate, independently of each other, between
the 4f (5d, 6s) and the 4f (Sd, 6s)' configurations.

However, if one just considers a mixing term of the
type

H =Qekclcck +ge s
I Hsl2 v~ ( Hs/2&v If

+E~6 I
Fo)( Fo I

+ficob b

' 1/2

'b+"'

xX (Vkca
I

Fo&& Hsn, v
I
+H. c. ), (34)

IV. SUMMARY AND CONCLUSION

where the notation was introduced after Eqs. (2). Apply-
ing the formalism of Sec. III one obtains, using reason-
able estimates of the pertinent physical parameters, the
results displayed in Fig. 5. It is observed that a con-
sistent and plausible physical picture does emerge.

H —g ( Vsd fc '+sf; +H. c. )

where cj creates a Wannier state at site R related to the
sd band and 5 is a vector connecting R with its nearest
neighbors, then for high symmetry no mixing does occur.
For example, for cubic symmetry the matrix elements are
proportional to

[sin(k„a )+sin( k a ) +sin(k, a ) ]

and near the bottom of the band, where the f level is lo-
cated, the wave vector k=0 and no hybridization can
occur.

This proposal constitutes an alternative mechanism to
the one put forward by Bilz et al. ' They attributed to a
dipolar force, related to the deformation potential of the
local charge, the origin of the symmetry breaking which
gives rise to a relative displacement between d and f or-
bitals.

In our formulation we describe the system analytically
by means of the following Hamiltonian:

A detailed study of the mixing mechanism, between f
states on RE ions and (5d, 6s)-conduction-band states,
has been presented. The RE ions can be located on high-
ly symmetric lattice points, in particular at sites invariant
under inversion symmetry. %'e propose the Jahn-Teller
effect as the mechamsm which allows the hybridization to
occur. This way, states of opposite parity can mix due to
a dynamic symmetry breaking.

Both a semiclassical and a full quantum-mechanical
solution have been presented. While its formulation and
technical aspects do not differ greatly from previous
work, in which the elastic field is coupled to the number
of f electrons on the RE, the interpretation we propose is
significantly different. Finally, the application of the
model to SmS is reasonably successful.
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