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Spin-exchange and dipole relaxation rates in atomic hydrogen:
Rigorous and simplified calculations
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We calculate the magnetic field and temperature dependence of the rates for all two-body spin-
exchange and dipolar transitions among hyperfine levels in cryogenic H gas by means of the
coupled-channels method. A description of this method and its practical application is presented.
A simple interpretation of the rates is given, in some cases with associated simple closed-form for-
mulas, based on the degenerate-internal-states approximation.

I. INTRODUCTION

In the past few years spin-polarized atomic hydrogen
gas at subkelvin temperatures has attracted a great deal
of attention. Already at lower densities the exceptional
properties of this gas have shown up via the observation
of spin waves. ' They have also been exploited in success-
ful attempts to construct subkelvin H masers, with the
aim of improving upon the frequency stability of existing
atomic frequency standards. The primary interest, how-
ever, is still associated with the achievement of the
temperature-density regime where effects due to Bose de-
generacy are expected to show up. Although Bose- or
Fermi-degenerate systems have already been studied ex-
tensively in various parts of physics, atomic hydrogen gas
promises to be exceptional also from this point of view.
In nuclear matter, for instance, the role of occupied levels
in damping nucleon collisions within the Fermi sea and
thus in explaining the validity of the nuclear shell model
is qualitatively clear, but not easily calculated quantita-
tively owing to the high nucleon density, which makes it
diScult to disentangle pure blocking effects from three-
and more-particle collisions. A similar remark applies to
superfluid helium considered as a Bose-degenerate sys-
tem.

Degeneracy in polarized atomic hydrogen promises to
be realizable in circumstances where average interatomic
distances are comparable to the de Broglie wavelength
but much larger than the range of interatomic forces, so
that the macroscopic occupation of single-particle states
will reveal itself in (relaxation and transport) properties
describable with pure two-body collisions. The possibili-
ty, at least in principle, of independently controllable
density and temperature is another attractive feature of
Bose-degenerate atomic hydrogen, which distinguishes it
from other systems like nuclear matter, superfluid heli-
um, or the electron gas in metals.

Experimental and theoretical work on this topic has
had a strong impetus recently by the idea of confining the
polarized atomic gas in a magnetic trap, thus avoiding
the decay of atomic density by three-body collisions at
the helium-covered walls of a gas cell. In a static trap of
this kind, however, other decay modes arise through

two-body collisions of atoms in the two highest 1s
hyperfine states

~

c ) and
i
d ), leading to depolarization

via the formation of atoms in the lowest states
i
a ) and

i
b ). A coupled-channels calculation of the associated

rates has been presented by Lagendijk et al.
The purpose of the present paper is threefold. (l) To

describe in a more complete form the coupled-channels
method, which has been used for the calculation of the
H-maser frequency shift and of the above-mentioned re-
laxation rates, both due to H+H collisions. (2) To
present new values for these rates based on a more accu-
rate numerical calculation and a new H-H singlet poten-
tial describing more precisely the experimental data on
singlet binding energies. (3) To present a simplified
description, in some cases with associated closed-form
formulas, for the two-body rates in various regimes of
temperature and magnetic field.

Apart from making clear how calculations described in
previous papers on the H-maser frequency shifts and on
the rates in magnetic traps have been carried out, we be-
lieve that the new numerical values as well as the simple
closed-form formulas will be extremely helpful for experi-
mental groups working in these areas. For instance, the
behavior of the H f gas in the first stages of confinement
in a trap can be analyzed using the T&0 rate constants.
Also, for further work on the H maser, the present calcu-
lations are of interest. To devise strategies for circum-
venting the source of frequency instability of the cryogen-
ic H maser, indicated in Ref. 5, it is necessary to know
the partial

i
a ), i

b ), i
c ), and

i
d ) densities of the hy-

drogen gas in the cavity. Information about rates for col-
lisional transitions among the hyperfine levels is needed
to determine these partial densities theoretically.

In Sec. II A we summarize some equations of scatter-
ing theory necessary to derive S- and T-matrix elements
for relaxation processes. In Sec. IIB we consider the
degenerate-internal-states approximation to these ele-
ments, and Sec. II C is devoted to the two-body rate equa-
tions. In Sec. III we describe our coupled-channels
method in a more complete way than has hitherto been
done. The new results for the rates obtained in this way
are presented in Sec. IV. %e also consider the tempera-
ture dependence of some of them and in addition give a
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simplified description. Part of this has already been
briefly pointed out in a previous paper on atomic deuteri-
um in traps. Finally, some conclusions are given in Sec.
V.

II. TRANSITION AMPLITUDES AND RATES

A. Smatrix for coupled channels

2 2

H = + g H "'+V =H() + V . (2)

where p is the relative momentum, p is the reduced mass,
and V represents the effective interaction among the par-
ticles, that may depend on the internal variables and is
considered to be of finite range, i.e., V(r) may be neglect-
ed beyond a certain value of r Furtherm. ore, we have in-
troduced the free Hamiltonian Ho with eigenstates

~ p p(zP) normalized as

&p. p
'&'I p.p P&=@p.p p.p@..&pp. —

The associated eigenvalues are

2
Pap

E~p +E~+ cp o (3)
2p

The scattering state
~

4'+p) ), that in a time-dependent
picture develops out of the initial state

~ p pc(P ), and in-

corporates all the available information of the scattering
process has the familiar asymptotic behavior:

(r
~

q((+) ) e'&as
~
~p)

(2M)

+ g fa'p', ap( pa'p& pap)
a', p'

ip,~ r/A
e

X

(4)

with p .p =p p r. For the derivation of this equation we

In this section we summarize some expressions, neces-
sary in the following to calculate the rates and to find
simplified expressions for some of them. Although the
general structure of the final result for the S matrix is ob-
vious from the outset, its normalization has given rise to
factor of 2 errors in connection with bb~ab and
ah ~aa relaxation in the case of spin-polarized atomic
hydrogen. For that reason it is necessary to define explic-
itly our conventions with respect to the S matrix, as well
as the precise normalization of the rate coefficients G [cf.
the factor 1+ 5„& in Eq. (16)].

We start by considering the collision of two distin-
guishable particles with internal degrees of freedom, that
are described by an internal Hamiltonian H'"' for each of
the atoms with corresponding eigenstates:

H'"'ia)=e ia) .

The total Hamiltonian of the two particles in the center-
of-mass system is

refer to the literature. ' Furthermore, we have intro-
duced the scattering amplitude for distinguishable parti-
cles

f. ..(p.p p. )=-@(21Tfl), , (+)
2M2

& p. p~'13'
I
T

I p.p 0&
(M(2M)

27rR2

(5)

and also defined the asymptotic magnitude of the
momentum in channel

~

a'P' ) as

p .
p +2@——(E p s —ep),— (6)

The aforementioned S matrix can be proven to be uni-
tary, which corresponds to the conservation of particles.
Furthermore, in the case that internal parity is un-
changed ( ~1 —1'

~

is even), it turns out to be symmetri-
cal. To define the S matrix symmetrically in all cases, a
phase-factor i' is to be added to every spherical harmon-
ic. ' We thus find

the square root being positive real (open channels) or pos-
itive imaginary (closed channels).

Using the Lippmann-Schwinger equation ' for
~

)p'+p) )
and the notation Go(z) = 1/(z Ho) fo—r the free resolvent
operator, it is possible to derive the well-known equation
for the T operator in Eq. (5):

T(z) = V+ VGO(z) T(z),

that can, in principle, be solved for arbitrary complex z,
representing the total energy available to the two-particle
system.

Note that in an arbitrary plane-wave matrix element
(p'a'P'

~

T(z)
~
paP) no specific relation among p', p,

and z needs to be fulfilled. This so-called off-shell T ma-
trix plays an important role in the three-body problem.
In the present paper where only two-body collisions are
considered, it will be more profitable to confine our atten-
tion to the on-shell T (and S) matrix, but to consider it as
a function of independent channel momenta p -p of all
coupled channels. We return to this in the second part of
this section.

The expressions given so far were based on the p repre-
sentation. For actual calculations it is far more con-
venient to work with angular momenta. We therefore
transform to an angular momentum basis

~
plm ) in the

momentum space of the particles, defined by

(p'
~
plm ) =— , Y, (p') .&(p —p')

PP

Equation (5) for the scattering amplitude can now be re-
formulated, introducing the S matrix by

~a'P'I'm ', aPlm (PaP )

=~aa'~PP'~ll ~mm''
2nip+p p—p &(p &l'm'a'P'

~

T
~ p plma13) .
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I

( y(+)) 1 2lrl

(2M)'"

I (pa 0 r I~—I'~/2)
e

a'P'I'm ', aPlm (PaP }
r Qp, & /fi

+& &PP&II &

—i(p ~r jh —I'~/2)
e

r QP a Ir /A

X I'I*(p,p)Y( (p Ir} ~a'p') as r~~ . (10)

We are left with the generalization to identical parti-
cles. Because of our interest in atomic hydrogen we will
confine ourselves to bosons. It turns out that Eq. (10) is
again valid for the symmetrized wave function
(r

~

S
~
'Isa'), $=(1+P,2), if we add a factor

2/g2 —5 ~ to the right-hand side and replace all chan-
nel states by symmetrized and normalized states

)
plm t aPI ) defined by

~
plmaP)+( —1)'

~
plmPa)

plm a
+2(1+5 p)

In addition, the right-hand side now contains sym-
metrized S-matrix elements SI .&II. ~

I &II and corre-
sponding Kronecker symbols 5~ .&) ~

li~. Equation (10}
modified in this way is used in the discussion of the
coupled-channels approach in Sec. III.

B. Degenerate-internal-state approximation

In a previous paper we already pointed out briefiy the
importance of neglecting in a specific way the differences
between internal energy levels. Here we will formulate
this approach in a more general form, applicable also for
T&0. Let us first consider exchange transitions. The
general idea is to consider an angular momentum basis
T-matrix element as a function of all channel momenta
involved. In simplified notation

I I(pl&P2 ~ ' ' ' &Pi»' ' Pf»' ' ' Pn)f I

I,. I
and to split off factors p and pf pertaining to the low-

energy dependence in the initial and final channels, re-
spectively. The remaining factor is approximated by its
(in general nonvanishing) value for p, =p2 —— ——p„=p,
for which the limit p~O may be taken, but also a corn-
mon value p&0:

Tl I (Pl &P2»' ' Pi»Pf»' ' ' Pn }f i

lf I,=(Pf/P) (P, /P)'Ti i (P P . P . . P. . P) .f i

(12)

I

Note that for exchange transitions I& ——I, . Note also that
the degenerate-internal-states approximation (usually re-
ferred to as adiabatic but also as sudden approximation)
is often thought to be a typical high-energy approxima-
tion, in the sense that all differences between internal en-
ergies should be small compared to the asymptotic kinet-
ic energy. In such a case a choice for p so that it is of the
order of the asymptotic channel momenta, is preferable.
We already pointed out in Ref. 7, however, that this
high-energy condition is too strong.

For dipolar transitions the degenerate-internal-states
approximation does not work in the form (12). Due to
the long range of the dipole interaction the low-energy
behavior of dipolar T-matrix elements does not corre-
spond to the above-mentioned powers of p& and p;. It is
possible, however, to implement the degenerate-internal-
states approximation for dipolar transitions in a different
way. In all cases a calculation to first order in V" is
sufficiently accurate, i.e.,

(-) d (+)T[a'P')I'm', (aPIIm = c & 4( P'a)I'm' I
V

I 4(ag)Im &c

the subscript c indicating that the corresponding scatter-
ing state is distorted by central interactions only. The
state

~ gI &(I ~ ), describes a time-reversed scattering
process and therefore obeys incoming asymptotic bound-
ary conditions. We now apply the degenerate-internal-
states approximation to initial and final states separately,
so that both can be expressed as linear combinations of
pure singlet and triplet scattering states. We come back
to this in Sec. IU B.

C. Rate equations

In this subsection we present expressions for two-body
rate constants in terms of the symmetrized S-matrix ele-
ments introduced above. A safe way to derive these,
from the point of view of avoiding factor of 2 identical-
particle errors, is to make use of a quantum Boltzmann
equation that can be derived from the BBGKY hierar-
chy

d
dt PK K+ p„,=II g g gp„~„[(1+5„g)(1+5„)(I+5„2)(1+5„)]'

P, V P&V

7TA2

(n'2(I'm', (I&.'v'( Im (q } («2(I m', (I&v(lm (q }'
2~q (,m Im

(14)
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Here p represents the one-particle density matrix, nor-
malized according to Tr(p)=1, n is the particle density,
and q the relative momentum of the colliding pair. The
right-hand side contains a thermal average with respect
to q. In a previous paper we used Eq. (14} with the
coherence of the o and c states included (p„=p,', &0) as
a starting point to derive the spin-exchange frequency
shift of the cryogenic H maser. The same equation may
serve as a starting point to derive the two-body rate equa-
tions. In this case the hyperfine states contribute in-
coherently:

Ia)=cos8I $t) —sin8I ff),
Ib&= I'll&,
Ic)=cos8I ff)+sin8I 1t),

where 8 follows from tan(28) =a /[2B (P, +Pz )].
Furthermore, H contains the effective interaction

V= V'+ V" .

(20)

(21)

np„.„=n„5„.„. (15)
We use the notation V' for the central (singlet and triplet)
interactions

We use the unitarity of the S matrix to express the elastic
S-matrix element occurring in Eq. (14) in terms of inelas-
tic ones. This leads to the well-known combination of
"in" and "out" terms:

d n„—= g g (1+5„&)(G&„„&n&n„G„&—&„n„n&)
Ipvl

V'= V,(r)P"+ V, (r)P", (22)

P '(P ") denoting a projection operator on the subspace
of singlet (triplet) states. The operator V stands for the
sum of the electron-electron and electron-proton magnet-
ic dipole interactions. It is a scalar product of operators
of rank 2:

in which the relaxation constants are given by

Gap~a'p = X 2 I ~(a'p')I'm', [ap)Im(q)
~& ~, m ~, m

2
5(a'p')I'm', (ap)lm I th

(16)

(17)

Vd(r) =—
2

PaPe 4m.

4nr' „

1/2

( —1)t'Y2 „(r)Xz'„

' 1/2

( —1)"Y2 „(r)Xz~ .

(23)

—(e,+a&—a —c&)/kT
Gap a'p' Ga'p' ape (18)

Equation (17) gives the desired relation between the mac-
roscopic quantities G p .p and the microscopic S ma-
trix, that can be used to calculate the rate constants of all
possible exothermic transitions among the hyperfine
states of atomic hydrogen. It is suScient to consider only
these transitions, because the rate constants of a process
and its inverse are related by

The tensor operator X'J can be thought of as arising from
the coupling of cr' and o~ to a spin operator of rank 2. As
usual we leave out the proton-proton dipole term.

After this description of the effective Hamiltonian we
turn to the problem of solving the time-independent
Schrodinger equation. We introduce a fully symmetrical
basis of so-called channel states I I

rim I apj ) j, similar to
Eqs. (8) and (11),and decompose

I

tII'+') as

g f "dr r ' i'I rlrn IaP] & .
I api I m

III. COUPLED-CHANNELS APPROACH

We start by describing in more detail the effective
Hamiltonian (2). Considered as a four-particle problem
(two electrons and two protons), a collision between hy-
drogen atoms is a complicated process. It is well known,
however, that the problem can be considerably simplified

by means of the Born-Oppenheimer and Shizgal approxi-
mations, which replace the total Hamiltonian by an
effective expression (2) in which H'"' consists of the
hyperfine and Zeeman interactions for each of the atoms:

8 "'= o', .o f+P,B.rr,' —PrB.cr~ (i =1,2)—

with a the hyperfine constant, p, and pp the electron and
proton magnetic moments, respectively, and cr, the Pauli
spin matrices. The eigenstates of this internal Hamiltoni-
an are conventionally denoted by

I
a ), I

b ), I c), and

I
d ) in order of increasing energy. In terms of electron

( f }and proton spins (0 ) they have the form

In coordinate space we thus find

(rI tII'+')= g g ™~~I i'Y, (r)
I
IaP]) .

IapI I m

(25)

Substituting this expression into the Schrodinger equa-
tion and projecting onto the state

I
rim Iapj ) gives the

desired coupled-channels equation:

1' d' l(i+1)fi'
+E„+Ep EF( t pt(r)—

2p dr 2pr

X y Cmtap(, ,m, (air)(r)F, I.,ir)(r),
Ia'p'I I', m'

(26)

in which the coupling matrix is defined by

5(r r')—
Clm

I a)p,
I'

m[

' a)I(rr )
rr

=i (rim jap] I
(V'+ V")

I

r'l'm'ja'p'j ) . (27)
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2p
d

F(r)=
2

C(r)F(r), (28)

where the columns of I' represent a complete set of
linearly independent solutions. The rows correspond to
the mutually coupled channels

~

Im Iapj). Because of
rotational symmetry around the magnetic field direction
all of these have the same total magnetic quantum num-
ber M =m+MF.

Equation (28) is numerically integrated using a

For spin states tapI and (a'p'I with equal total Mr the
V contribution, if it does not vanish, dominates by far
that due to V . It is customary to indicate such processes
as exchange transitions. Processes to which only V con-
tributes are indicated as dipolar transitions. This is the
case, in particular, for b,MF&0 which requires a transfer
of angular momentum among orbital and spin degrees of
freedom. For even I also the b,M+ ——0 transitions with

MF&0 belong to this category.
To discuss the numerical method for solving Eq. (26)

we introduce a matrix notation

I „(r)=—5 „Qp /Airh&' '(p r/A)

—i(p r/fi —I n. /2)m m

——5 imn
Qp /fi

as r ~ ao, (29)

0 „(r)=I'„(r) .

modified Numerov method. " During the integration
there is a danger of losing sufficient linear independence
of the di5'erent solutions relative to the numerical noise
level. This is caused by the "locally closed" channels, for
which CI (~) I ( &~(r) & 0, leading to exponential growth
of one or more common row elements in all columns of F
and therefore to numerically linearly dependent solu-
tions. We solve this problem by transforming to new
linear combinations of solutions at one or more values of
r, thus restoring sufficient linear independence. '

From F(r) we extract the S matrix. To that end we in-
troduce two diagonal matrices containing Hankel-like
basis solutions of Eq. (28) with the right-hand side equal
to 0:

-11
10 10 10

10
12 (a) --„1012 12 (bl -12

-13

-14
10 10

-14
10

10

-16

10

10 10

15

19 20 2Is
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10

10

-17

-1$
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-19
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-19 -19
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-20 -20 '0
20

-21
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00l0t 001 0.1

Magnehc field tT)

$2'
00te O.Ol 0.1

Magnehc field m

108

FIG. 1. T =0 spin exchange and dipolar relaxation event rates as a function of magnetic field. The horizontal scale shows a gradu-
al transition from a linear to a logarithmic field dependence as we plot 1+8/BO logarithmically. Here Bo——a/16p~ =3.17)(10 T
(p~ is the Bohr magneton), the factor —, ensuring a favorable separation in linear and logarithmic parts. The lower horizontal scale
shows corresponding values for B. (a) The curves correspond to the following rates: (1): bd~aa, (2): cc~aa, (3): cc~bd, (4):
bd~ac, (5): cc~ac, (6): ac~aa, (7): dd~aa, (8): cd~ah, (9): dd~ad, (10): bd~ab, (11): cd~ac, (12): cc~bb, (13): bc~bb,
(14): cd~bd, (15): ac~ah, (16): ad~aa, (17): cc~bc. (b) The curves correspond to the following rates: (18): dd~ac, {19):
ac~bb, (20): cd ~aa, (21): bc~ah, (22): cd —+ad, (23): bc~aa, (24): cc~ab, (25): bc~ac, (26): bd ~ad, (27): bc~ad, (28):
bb ~aa, (29): cc~ad, (30): bb ~ab. (c) The remaining relaxation rates, not shown in (a) and (b). Curves correspond to the follow-
ing rates: {31):dd~cd, (32): ad~ac, (33): bd~bc, (34): ab~aa, (35): cd~cc, (36): bd+bb, (37): ad~ab, (38): cd~bc, (39):
dd ~cc.



38 SPIN-EXCHANGE AND DIPOLE RELA3MTION RATES IN. . . 4693

100
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-13

10
14

1+8/8

-12
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The application of the above-mentioned procedure
would involve an integration to very large radii, because
the dipole interaction decreases only as r . Therefore,
we restrict the integration of Eq. (28) to within a radius of
r „beyond which the central interactions can be neglect-
ed and treat the dipole interaction in the region r & r

&
as

a perturbation. We achieve this by defining a local S ma-
trix through the relation S(r) =B(r)A '(r) and deriving
from Eq. (31) an integral equation for S(r}:

10

10

10

S(r)=S(r, ) — ' f "dr'[I(r')+S(r')O(r')]C(r')
Tl

X [I(r')+O(r')S(r')] . (33)
Ul

E -17

10

-17
'l0

10

-19
10

-19
10

10 ",- 10

-21

00.001 Og 0.1

rhgnet~ fera [T)

10

FIG. 1. (Continued).

Here hI '(p) is a spherical Hankel function. Again p is

positive real or positive imaginary. With the help of
these matrices the solution F(r) can be written as

The coupling matrix C now contains only the dipole in-
teraction. The first-order treatment then consists of re-
placing S(r') in the integrand by S(r, ) and taking the
limit r~ 00.

Because of the strong central interaction it is preferable
from a practical point of view to perform the coupled-
channels integration in the region r &r& using the basis

[ ~

rlmSMsIMI ) ), where the electron spins are coupled
to S and the proton spins to I. This basis has as an addi-
tional advantage that it is now possible to refrain from
the Shizgal approximation by including the electronic
spatial degrees of freedom through the use of Heitler-
London wave functions. Furthermore, we are now able
to include both the intra-atomic as weil as the interatom-
ic hyperfine interaction. At r =r& we finally transform
back to the asymptotic (hyperfine) basis and apply Eq.
(33) only to the open channels.

IU. RESULTS AND DISCUSSION
F(r) =I(r) A (r)+O(r)B(r) . (30)

A. Coupled channels

Applying the method of variation of parameters' results
in a coupled set of first-order differential equations for the
coefBcient matrices:

In view of magnetic traps for hydrogen atoms with
relevant temperatures eventually in the 10-100 pK
range, we present in Fig. 1 the T =0 rates

A(r) =
2 O(r)C(r)[I(r) A (r)+O(r)B(r)],

dr
(31)

B(r)= —
2 I(r)C(r)[I(r) A (r)+O(r)B(r)] .

3 2 2Ga pa'p' =4~ ~ PP a'p'
I
T

(
a'p' }I'm ',

( ap}oo(P a'p' &
0}

I

(34)

To find the S matrix we integrate the coupled-channels
equations (28) until the coefficient matrices in Eq. (30)
have become r independent. We then have

F(r) =I(r) A +O(r)B =[I(r)+O(r}S]A . (32)

This defines the S matrix as S:—BA '. Comparison with
the asymptotic behavior described below Eq. (10) leads to
the conclusion that the open-channel submatrix of S so
derived, is identical to the S matrix to be calculated.

for all 45 exothermic spin transitions in H+H collisions
as a function of magnetic field. As implied by the theory
of Sec. III, the effect of the condensate is left out of con-
sideration. The difference with previous results is due to
a smaller integration step size and an improved H —H
singlet potential, describing more accurately the experi-
mental H2 rovibrational energy data. Although these
corrections are rather small, they accumulate in the case
of exchange transitions and in some cases lead to
significant changes in the rate constants of up to 50%.
The changes of the dipolar rates relative to Ref. 4 are
only at the 10 level.

In view of a recent neutral trap experiment it is of in-
terest to calculate also the T&0 rates for the decay of dd.
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to have a sharp minimum at O=ir/6, i.e., B =0.0292 T.
The agreement with our rigorous calculations is excel-
lent.

Without exception the dipolar transitions are far dom-
inated by the single term in Eq. (40) with S'=S= l. This
introduces a further simplification: all transition ampli-

tudes contain a common orbital factor which is a
"universal" function of p & and p &, determined by trip-
let scattering. A similar conclusion therefore applies to
the rates. Writing the energy c +c&—c. —c& released in

a dipolar transition as 6, we find that for low tempera-
tures (3k2( T 5 b, ) the corresponding rate is described by

G II' g(B, T)=(0.2130&&10 ' cm s ')(6/a)'

kBT
1 —1.440 +1.797 (42)

to within 2%. For higher temperatures (0.2 ~ b, /ki(T ~ 3) we have

G $' &(B,T)=(0 5741.X10 ' cm s ')(k&T/a)'
'2

X 1+1.401 —0.06181
i ( I(z'P']

i
P'"X2 P"'

i faPI ) [
B B

(43)

also to within 2%. It should be pointed out that Eqs. (42) and (43) are also valid for dipolar transitions at stronger
fields, provided the energy released in such a transition is not too high. In particular, the high-field behavior of the
bb ~ab and ab ~aa dipolar transition rates, important quantities in b-state atom experiments, is described by Eqs. (42)
and (43) with the spin matrix element equal to —2&3(u /p, ( 1+16.68/B). Equation (43) is a generalization of a closed
formula presented previously' to a greater set of transitions.

In the intermediate field regime, 0.1 T ~ B ~ 1 T, it is no longer possible to neglect the energy differences between the
various hyperfine states because corrections to the T-matrix element to first and higher order in the internal level split-
tings become important. It appears that at these intermediate fields the solution of the full coupled-channels equation is
required to obtain reliable values of the relaxation constants.

In the strong-field regime (B 1 T) a simple approach is again possible. This is already evident by a simple inspec-
tion of Fig. 1(a). Let us first pay attention to the exchange transitions. These clearly fall in three diff'erent categories:
they arise essentially from cross terms of exchange and the nth power of the hyperfine interaction, where n =0, 1, or 2.
This expresses itself in three different slopes -B . To understand this in more detail, we consider the coupling
among the channels cc, aa, I ac ], and I bd ]. Ordering rows and columns correspondingly, the coupling matrix is to
lowest nonvanishing order in 8=a /f B(IJ,, +(Mz )]:—e:

e (V, —Vo)

—
2' &2s( V, —Vo )

—
—,'&2e( Vi —Vo)

e ( Vi —Vo)

—
—,'&2e( V, —Vo)

—,'&2e( V( —V(i)

—,'( V(+ Vo)

—,'( V( —Vo)

—,'(V, —Vo)

—,'(V, + Vo)

—,'&2s( V, —Vo) —
—,'&2e( Vi —Vo)

—
—,
'V 2E( Vi —V(i) —,'v 2e( Vi —Vo)

(44)

Clearly, for strong fields the exchange coupling is in al-
most all cases damped by (a power of) the hyperfine mix-
ing parameter c and can thus by treated in first order.
The only exception concerns I bd I and I ac ], which are
strongly coupled mutually in a B independent way. This
agrees with Fig. 1(a). The 2 X 2 submatrix pertaining to
these channels decouples if one transforms to
[Ibd )+IacI]/&2 and [Ibd I

—Iac]]/&2 basis states.
The diagonal potentials for these states are pure triplet
and singlet potentials, respectively. In a sense the
degenerate-internal-states approximation is again appli-
cable here for strong fields since the difference between
bd and ac internal energies is small. Equations (35) and
(36) therefore apply. For T~O we then have in particu-
lar

I

Equation (45) describes the bd ac curve in Fig 1(a) «r
all B values to within 4%.

Disregarding O(s3) terms it follows also from the ma-
trix (44) that aa and cc are coupled only to the difference
channel [ I bd J

—
I ac I ]/i/2. This explains the coin-

cidence at higher B of the 1 and 6 and of the 3 and 5

curves. In analogy to Eq. (40) we have for these transi-
tions

T
I bd I

l'm ', cclm T
I ac I

l'm ', cclm

=5((5 ~ &2e(it(o(
~

( V—i Vo)
~ @I( )

(46)
Taal'm',

I bd I 1m Taal'm',
I ac I lm

—,
'i 2&&0'ii '

I
(Vi —Vo) I

@o(+'& .

G =vt (a —a(o))2cos (2g) . (45)
Here we used the SM+IMI structure of the ap states for
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strong B.
For weaker fields (but still so strong that the above

first-order treatment applies), the singlet and triplet wave
functions P can both be inserted for zero energy, leading
to four T-matrix elements equal in absolute magnitude.
This is in agreement with Fig. 1(a): The curves 3,5 and
1,6 coincide. At somewhat stronger fields the curves
separate again due to the finite final kinetic energy. From
the c. dependence of the ce-aa coupling it is finally clear
that the corresponding rate falls off as B

At strong fields the dipolar transitions show a similar
classification. The 11 strongest ones do not need a proton
spin flip but only a single or double electron spin flip. As
a consequence the transitions are almost entirely due to
V '". The spin matrix element is more or less indepen-
dent of 8 (for strong fields). The highest category (7,8,12)
consists of electron double spin-flip transitions. The mid-
dle category (9,13,16,17) of electron single spin-flip pro-
cesses with S =1 in both initial and final states. The
lowest category (10,11,14,15) comprises electron single
spin-flip processes where the initial or final states have
S =1 with only 50% probability. This reduces G by a
factor of 2. The spin matrix element for the highest
category differs by a factor &2 from that for the middle
category. This is to be combined with a factor &2 from
the phase-space factor p & in Eq. (34). The propor-
tionality of the G values is clearly seen in Fig. 1(a). The
initial gradual increase with B is due to the same factor
p, tr

—&8. The explanation for the bending down of the
curves at the highest B values is similar as for that of
curves 1 and 6 considered before: the disparity in initial
and final kinetic energies. It is clear that the highest
category starts to bend down at smaller B: the double
spin-flip energy is a factor of 2 larger.

The remaining dipolar rates all show a decreasing slope
due to c, and c. dependences of the electron-electron spin
matrix element: The dominant initial and final proton

spin configurations are orthogonal. Hyperfine induced
admixtures in one and two atoms, respectively, are re-
quired to achieve equal proton spin wave functions. The
first category contains the bb ~ah and ah ~aa relaxa-
tions as special cases, and also dd ~ac, which is one of
the most important dipolar transitions for the decay of
the static magnetic trap. At the fields considered the
electron-electron contribution dominates. At the higher
fields electron-proton relaxation starts to take over. De-
pending on the relative sign of the electron-electron and
electron-proton matrix elements, 6 curves start to bend
down or up relative to their above-mentioned dominant
slope.

V. CONCLUSIONS

Given the eft'ective Hamiltonian the coupled-channels
method is a rigorous method for calculating H+H spin-
exchange and dipolar rates. In the foregoing we have de-
scribed this method and some of its results: the B depen-
dence of all T=O rates and the T dependence of some
B =0 rates. The latter have been selected on the basis of
their importance for the cryogenic H maser and for the
Hf magnetic trap. Closed-form formulas for the rates,
useful for the analysis of both types of experiments, have
been presented for the field and temperature dependence
in the weak-field regime (8 80. 1 T), based on the
degenerate-internal-states approximation. A simple in-
terpretation has been given also for the strong-field be-
havior (8 ~ 1 T) of the rates.
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