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Recently, Inderees et al. have observed inverse-square-root behavior of specific heat of
YBa2Cu307- near T, corresponding to Gaussian Auctuations. We analyze their results using the
most general Landau theories of superconductivity that are consistent with either orthorhombic or
tetragonal crystal symmetry. In particular, we calculate the amplitude ratio C+/C-, where

C(T) C~
~
T —T, [

't2 and the coefficients Cy and C- are associated with the behavior of
C(T) above and below T„res pecti vely. We conclude that the value of the amplitude ratio ob-
served experimentally is inconsistent with ordinary s-wave pairing. For an orthorhombic crystal
only trip1et superconductivity is possible. Assuming tetragonal symmetry we find that either trip-
let pairing or some d-wave singlet states are allowed. The latter must have an order parameter
transforming like d„„d„,. This singlet case lies within the experimental bounds only if the aniso-
tropic gradient terms satisfy certain conditions, which we discuss in terms of microscopic models.

I. INTRODUCTION

Recently Salamon and co-workers'2 have measured the
specific heat of the high-temperature superconductor
YBa2Cu3Q7-s close to T,. They observe, in addition to
the usual mean-field discontinuity, a correction propor-
tional to

~
t

~

'/2 where t = (T T,—)/T, .—Such a tempera-
ture dependence is a general consequence of Gaussian
fluctuations of the order parameter in a Landau theory in
three dimensions. In ordinary bulk superconductors these
effects are negligible; however, they become observable in

YBa2Cu307-s because of the very short coherence length
(go-10 A). Inderhees et al. have compared their results
to the predictions of the Gaussian fluctuation theory for
the O(n) symmetric Ginzburg-Landau free-energy func-
tional in d dimensions. The standard result3 for the
specific heat of this model, near T„ is C(T) CMF(T)
+CG(T) where CMF is the mean-field contribution exhib-
iting a discontinuity and CG C ~ ~

t
~

+ / are the
Gaussian fluctuation corrections above and below T„re-
spectively. In particular, the amplitude ratio C+/C —is
n/2d/2 for this model. 4 For more general Ginzburg-
Landau theories it is convenient to think of this amplitude
ratio as defining an effective order-parameter dimen-
sionality n, tr by n, ti 2 C+/C- Now the .major con-
clusions of Inderhees et al. are that (a) YBa2Cu307 —s ex-
hibits three-dimensional superconductivity and (b) the
effective dimensionality n, tr is bounded by 5 &n, ff &9.
Indeed, for the best sample they found 6 & n,r & 8. Such
a large value of n, tr is surprising since it is inconsistent
with the simplest Landau theory, corresponding to s-wave
pairing, as for example in the usual Bardeen-Cooper-
Schrieffer theory, which has a single complex order pa-
rameter (i.e., n 2).

We have analyzed this experimental result in terms of
the most general Landau theories consistent with singlet
or triplet pairing in either an orthorhombic or tetragonal
lattice. We show below that while the amplitude ratio

C+/C- is not in general universal in the Gaussian fluc-
tuation regime, its measured value severely constrains the
form of the allowed order parameter. In particular, ordi-
nary s-wave pairing cannot agree with the experimental
data. Indeed for orthorhombic lattices only triplet pairing
with negligible spin-orbit coupling is consistent with the
experiment. For tetragonal symmetry we find both singlet
and triplet states which are allowed. The singlet states
have a (d„„d~,)-type order parameter. Furthermore,
these states only fall within the experimental bounds pro-
vided the anisotropic gradient terms satisfy certain condi-
tions, which we shall discuss below.

It is important to stress that these results are completely
general and do not depend on the microscopic theory of
the superconductivity, the form of the Landau theory be-
ing entirely a consequence of the crystal symmetry. The
only significant assumptions we are making are first, the
neglect of accidental degeneracies or further symmetries
which might be present due to the microscopic mechanism
for superconductivity. 5 Second, we shall assume that the
experimental data do indeed correspond to Gaussian fluc-
tuation effects; i.e., we assume that the observed C(T)
divergences are not due to critical fluctuations, which
would imply non-Gaussian exponents. This is reasonable
since the Ginzburg region3 where critical effects are im-
portant would be outside the experimental range of

~ t ~
& 3 x 10 3 assuming a coherence volume ($~ 10' A3

[taking the discontinuity in CMF(T) as 14 mJ/cm K
(Ref. I)].

The rest of the paper is organized as follows. In Sec. II
we briefly review a standard method for classifying the
possible superconducting order parameters in the presence
of crystalline anisotropy and for obtaining the correspond-
ing Landau theory. In Sec. III we show how to compute
the C+/C — amplitude ratio for an arbitrary Ginzburg-
Landau free energy. In Sec. IV we discuss superconduc-
tors with orthohombic symmetry. Here we show that the
only case which allows n, tr & 2 is triplet pairing without
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spin-orbit coupling. In Sec. V we analyze the case of
tetragonal symmetry. We find that the only allowed sing-
let superconductor has "d-wave" pairing and requires cer-
tain special anisotropic stiffness coefficients in order to
have a large enough C+/C —.We then list those triplet
superconductors consistent with tetragonal symmetry
which permit sufficiently large C+/C-. In Sec. VI we
discuss, within a simple class of models, the angular
dependence of the anisotropic gap function which could
result in the enhanced stiffness coefficients required for
the "d-wave" singlet case discussed above. Finally, in
Sec. VII, we conclude with some comments on the evi-
dence for anisotropic superconductivity from other experi-
ments and summarize our results.

II. LANDAU THEORY AND POINT-GROUP
SYMMETRIES

for singlet superconductors, and

A(k) -g~.&"(k) (3)

We begin our discussion with a brief review of Landau
theories for superconductors in the presence of crystalline
anisotropy. Such a program has been pursued in detail in
the context of heavy-fermion systems by a number of au-
thorsb s and recently a classification of the possible phases
of the high-temperature superconductors has been given
by Sigrist and Rice. 9 The order parameter for supercon-
ductivity is given by the pairing matrix F,~(k)

(c,(k)c~( —k)&, where k lies on what is, in general, a
multisheeted nonspherical Fermi surface and where a,p
are spin indices (or pseudospin indices in the presence of
spin-orbit coupling). It is usual to also introduce Ap(k)
and A(k), where

F,p i—(Ap(k)1+A(k) cr)oy

With this definition Ap(k) transforms as a scalar under
rotations and A(k) transforms as a vector. Now, the
group classification of phases is possible because close to
T, the gap equation can be linearized, giving a matrix
equation from which the transition temperature is deter-
mined by the highest eigenvalue. b The order parameter at
T, must therefore transform according to an irreducible
representation of the relevant symmetry group. (This
property can also be inferred directly from the Landau
theory without any microscopic knowledge of the order
parameter, since in any Ginzburg-Landau free energy the
quadratic term has the general form a „A*A„and the
transition temperature is determined by the first negative
eigenvalue of the matrix a „.) Singlet and triplet states
can now be distinguished by parity; since Ap(k) and A(k)
are even and odd under spatial inversion, respectively, we
can assume that for crystals with an inversion symmetry
either Ap(k) or A(k) but not both will become unstable at
the transition.

The above implies that close to T„ the ony significant
thermal fluctuations are of the form

Ap(k) -gri y" (k)

H[rt]/T d r[ ,' K,j,b8; &—,*8Jrib

—a~,*q,+gp;~, (~)],

where R;(rl) denote a maximal set of invariant quartic po-
lynomials and T;J„I are the stiffness coefficients. Explicit
expressions for the free energies consistent with ortho-
rhombic and tetragonal crystal symmetries have been
given by Volovik and Gorkov, and by Ozaki, Machida,
and Ohmi, s which we shall consider in turn below. We
shall also make use of the group-theoretic classification
for the possible order parameters of the high-temperature
superconductors by Sigrist and Rice. 9

III.THE AMPLITUDE RATIO C+/C-

In this section we will obtain a general expression for
the Gaussian fluctuation contribution to the specific heat
for an arbitrary Ginzburg-Landau free-energy functional
of the type considered above. Let ri„a 1, . . . , n be an
n-component real order parameter. To compute the
Gaussian fluctuations, it is necessary to expand the
effective Hamiltonian to quadratic order in deviations
rt, (r) from its minimum. Above T, this is trivial; below
T, one expands around the broken symmetry state. It is
convenient to write the result in terms of the Fourier-
transformed variables:

H[ri]/T- 2 farl.'(q) [q'K.b(q)+ ~
i I ~.f ]rib(q), (6)'q '

where t —= (T—T, )/T„q is a unit vector in the q direction,
summation over repeated indices is assumed, and an ir-
relevant additive constant is dropped. Here K(q) is the
stiffness matrix, which in general is anisotropic, and M—
is the mass matrix above and below the transition, respec-
tively.

The free energy F of the system is given by the func-
tional integral

exp( —F/T) Dg, (q)Dri, (q)exp( —H[ri]/T) . (7)

for triplets, where y" (k) and yr (k) are sets of modes
corresponding to irreducible representation I of the sym-
metry group. For singlet superconductors the symmetry
group will be G x Tx U(l), where G is the point group, T
is time reversal, and U(1) is gauge symmetry. For triplet
superconductors the group is either G x Tx U(l) if there
is significant spin-orbit interaction, or else G x TXU(1)
XO(3) if there is no spin-orbit interaction. In this latter
case the unstable modes will have the following form: b

[A(k) l„-gg„y"(k) (4)
pm

for p 1, . . . , 3. Therefore, for the purposes of construct-
ing a classical partition function, one may write the
Ginzburg-Landau free-energy functional, or coarse-
grained effective Hamiltonian, H[ri], as a functional of
ri (r) or rl„(r) which are to be treated as slowly varying.
Near the transition one may, therefore, expand H[q] in
the form
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We thus obtain

T r d

F Fo—+— Trlnlq K(q)+ ItIM —j. (8)
2 4 (2z)d

The t +d/ singularity in the specific heat due to Gauss-
ian fiuctuations is then found from

C(t) —,
' Tr/[q K(q)+ I t IM —] 'M —l

(2n) d

(9)
Let k~ —~(q), a 1, . . . , n be the eigenvalues'0 of
K '(q)M~ —1, respectively. The amplitude ratio of in-
terest, in d 3 dimensions, is given by

sponding Ginzburg-Landau free-energy functional is

H~r/~~T atty', 3'9JI,3+Piny, 3rtp, 3nv, 3nv, 3

+/J2q„, 3q„,3q„3q.,3+ 8;q„,3a;q„,3.

For —1 & b =P2/—/j~ & 0, the free-energy minimum
below T, is g„3 Ao(1,0,0) with A)=a/2(P~+P2). Ex-
panding about this minimum to find the mass matrix
M and using the formalism of Sec. III, we find

(12)

Cp fdn, g,"-ib,.'+'(q)l'/'

fdovg."-)b.,' '(q)l'/' (10)
Qn the other hand, for b=P 2/P~&0, the free-energy
minimum below T, is rtp 3 Ao(1/ J2)(l, i,0) with

a/2P~. In this case the amplitude ratio is given by

For the simplest case of an n-component Ginzburg-
Landau theory with the full O(n) symmetry, both K and
M+ are proportional to the (n xn) unit matrix, and M
is a projector along the broken symmetry direction (with
magnitude twice the eigenvalue of M+). This immediate-
ly leads to the result stated earlier, that for the O(n) mod-
el C+/C — n/(2)

Corrections to this result due to electromagnetic terms
in the free energy have been investigated by Goldenfeld
and Pethick. " They find, however, that the extra contri-
bution to C+/C —is smaller by a factor of x ", and thus
is negligible for the high-temperature superconductors
which have an Abrikosov parameter r-50

IV. ORTHORHOMBIC SUPERCONDUCTORS

YBa2cu307 4 has an orthorhombic (D2/, ) crystal
structure and thus we first analyze order parameters con-
sistent with this symmetry. For singlet pairing and also
for triplet pairing in the presence of large spin-orbit cou-
pling, the only allowed representations are one dimension-
al (see, e.g., Sigrist and Rice9). In each case, the effective
number of order components is two, giving Cy/C-

2/23/2, which is incompatible with the experimental re-
sults.

We are thus forced to turn to the case of triplet pairing
(S 1) without spin-orbit coupling. Here again the p-
wave order parameter breaks up into three one-
dimensional representations (r2, r3 r4 or B2„, B~„,
B3g) due to the low crystalline symmetry (using the nota-
tion of Sigrist and Rice or of Tinkham, ' respectively).
However, in each case the existence of three independent
spin degrees of freedom, as well as the phase, leads to an
order parameter with six (real) components. Thus, as
shown below, one can obtain amplitude ratios correspond-
ing to a maximum value of n, tt 6.

The Landau theories, and thus the Cy/C —calculations,
for the three cases of interest are formally identical, so we
shall give the results only for the 13 representation. As
described in Sec. II above, the order parameter is repre-
sented by A„(k) r1„,3k, (the other two representations
have k, replaced by k and k„, respectively). The corre-

( )3/2( 3/2)
b&0).

We find that, in both the phases, C+/C- is nonuniver-
sal, with 0 ~ n,f~ 6, depending on the ratio b P2/P~ of
the quartic coefficients. Note that in the Gaussian fiuc-
tuation regime, one does not in general expect universal
amplitude ratios, in contrast to the critical region. '3

Cy/C- takes its maximum value, corresponding to an
n,f 6 for b 0, where the Landau theory has full O(6)
symmetry and Mt 1 has five zero eigenvalues for the
Goldstone modes. For be0, in both phases, two of these
modes acquire a nonzero mass, contribute to C-, and
hence reduce the amplitude ratio. Indeed, this is quite
generally true, in any case where the stiffness matrix is
proportional to the nxn unit matrix then C+/C is
bounded above by n/2 "/2

V. TETRAGONAL SUPERCONDUCTORS

We now turn to the case of tetragonal superconductors
with D4/, symmetry. The motivation for this, in the
present context, is the following. While the 1:2:3 super-
conductor has orthorhombic symmetry, the amount by
which it deviates from tetragonality is small (ba/a
-0.02). In fact a large class of the proposed microscopic
mechanisms relies on pairing within the Cu02 planes
which are very close to tetragonality. One can crudely es-
timate the splitting BT, in the transition temperatures of
two representations derived from a single tetragonal rep-
resentation under the orthrohombic distortion as
bT, —IB(8T&/Bp)(ba/a) I. Using the measured values
of these parameters, ' we find b T,/T, -0.03. If
bT, /T, « t, where t is in the reduced temperature range
over which the Gaussian fiuctuations are seen, then one
would expect to see a transition corresponding to a repre-
sentation of the tetragonal group. We have been unable
to determine conclusively whether transition should have
tetragonal or orthorhombic symmetry since our crude esti-
mate puts b T,/T, inside the experimental range
(0.003 & t & 0.05). In any case, it does not rule out the
possibility of the tetragonal phases.
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A. Singlet pairing

Let us first look at singlet pairing. The only irreducible representation of D4q which is not one dimensional (and there-
fore has more than two real components) is I 3+ (or Ez). The "d-wave" order parameter has two complex (=four real)
components (rt„re). The corresponding Ginzburg-Landau free-energy functional is given by

H[~]/T- ', (fa„~.f'+ ]a„~,f')+ '„(fa,&„f'+]a„~,f')+ (fa,~„f'+ la, ~„l')

+ ', (a,~„a„~„'+c.c.)+ ' „(e,~„a„~„'+c.c.)+V(~), (i4)

where

V(&)- u&;-&,'+P, (&;&,')'+132( ~;~; ( '+Ij3(( ~, (
'+

) ~, ('). (is)

Notice that for a particular choice of parameters,
namely, m1 m1' m2, (m3) ' (m3') ' 0, so that
the stiffness matrix is proportiona[ to the unit matrix, and

p2 p3 0, we recover the 0(4) model. One might then
be tempted to conclude (in analogy with the results of Sec.
IV) that the maximum attainable C+/C- ratio is that
corresponding to n, 1r 4. This is not correct, as we shall
now show. The basic point is that, while the additional
quartic terms always lower the amplitude ratio from its
value for the pure O(n) symmetric theory, the anisotropic
stiffness terms can, and do, increase n, ff.

The free energy of Eq. (14) has three inert phases:
rt(1,0) (for p3 & 0,2p2 & —p3), ti g(1, 1) (for

p3 & Q, p2 & 0), and ti ri(l, i) (for p2 & 0,2p2 & —p3),
with the domains over which they represent free-energy
minima shown in parentheses. In addition, the quartic
coefficients must satisfy the stability conditions: p1 & 0,
p1 +p2+ p3/2 & 0, p1 +p2+ p3 & 0, and p1 +p3/2 & 0.

For arbitrary Ginzburg-Landau coefficients, calculation
of C+/C —[using Eq. (10)] requires numerical integration
since the eigenvalues of K ~(q)M( —) have nontrivial
dependence on q. However, several limiting cases can be
worked out analytically.

First, consider the case when m I m I'; (m3)
(m3') 0, so that the stiffness matrix is diagonal.

For arbitrary values of the quartic coefficients in the
(p2/p1, p3/p1) plane, i.e., for all the three phases, we find

(see Fig. I) that 0& C+/C- &4/23/2. The maximum
value, corresponding to n,f 4, is obtained at
(p2/p1, p3/p1) (0,0) when the free energy has full O(4)
symmetry. Away from the origin, the amplitude ratio de-
creases as some the Goldstone modes acquire a mass. The
minimum value (zero) is obtained on the instability lines.
These results are analogous to those obtained in Sec. V for
the orthorhombic phases.

We now turn to the effect of anisotropic gradient terms
on C+/C-. The stiffness matrix K(q) is no longer diago-
nal. It is convenient to rescale lengths in the (x,y) plane,
and along the z axis, so as to choose
[(mI) '+(mi') ']/2 1 and (m2) ' I, res ctively.
Then K(q) is characterized by two parameters

c1=—[(rnI) ' —(mI') ']/2

and

c3—= [(m3) '+(rn3') ']/4.

I

Now K develops a zero ei envalue (signalin an instability
of the system) when c (q,' —q„')' +4c (q, q3) 1,
which will occur for some q when C1 1 or c3 1. Since
the eigenva[ues of K 'M determine the amplitude ratio,
one might expect problems when the stiffness matrix be-
comes noninvertible.

To simplify the discussion, we set pz p3 0 since we
understand the role of these quartic coefficients will be to
increase C—.Actually we take a limit that approaches
the origin from one of the three phases. For the (1,0)
phase, we have plotted the contours of constant n,f in the
(c3 c1) plane in Fig. 2. We find that n, tf ~ 4 and takes its
maximum value at (c3, C1) (1,0). Doing the C+/C —in-

tegrals analytically, as c3 1 along the c3 axis, we find
that both C4- and C —diverge with a finite ratio corre-
sponding to n, ff 4%2. Similar results are obtained for
the (1,1) and (l,i) phases, with again n,a~442, al-
though the contours of n,a are different in each case; see
Figs. 3 and 4.

o

-2
-2

FIG. 1. Effective order-parameter dimensionality n,z for the
singlet tetragonal I 5+ phases as a function of Ginzburg-Landau
parameters p2/p& and p3/p& of Eq. (15). Here we set
c~—= [(m[) ' —(mi') 'l/2 0 and c3=[(m3) '+(m3) ]/4

0. Note that n,g attains its maximum value of 4 at the origin
and tends to zero at the instability lines.
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VI. PARTICLE-HOLE SYMMETRY AND

ANISOTROPIC STIFFNESS CONSTANTS

„ky

In Sec. VA we found that the only singlet states which
could give n,tt& 2 were the tetragonal I s phases, and that
this required certain highly anisotropic stiffness
coefftcients. It is clear that one requires some microscopic
analysis to determine the plausibility of achieving such
large C+/C va-lues for any of these phases. In this sec-
tion we will argue that the I 5 phases of the simplest mod-
els of copper oxide superconductors have an additional
(particle-hole) symmetry to'6 which leads to the required
anisotropic stiffness constants.

For simplicity let us consider the model electronic
Hamiltonian on a tetragonal bravais lattice:

0 trJ Cr+ CJ++ Q VrJII$ Cr'l Cj1 Ctl Cg 1 q ( 16)
&i,j,e i,j,l,n

where t;~ t if i,j are nearest-neighbor intraplanar sites,
t;J t~ for nearest-neighbor interplanar sites, and t;J 0
otherwise. We have also introduced Wannier basis matrix
elements V;,t„which correspond to some attractive singlet
potential. By assuming that only nearest-neighbor hop-
ping occurs in the single-particle Hamiltonian we are only
considering models with a single square Fermi surface.

Now consider the linearized gap equation associated
with the above model:

kx

FIG. 5. The particle-hole symmetry IT on a square Fermi
surface, where I is inversion and T is translation by (x/a) (1,1).

basis (class I in the notation of Ref. 12) one has a basis
vector yr(k)llv(k) whereas for an odd basis (class II)
yr(k) J v(k) (see Fig. 6). As we shall see the absence of
mixing between the even and odd basis functions causes
the I 5 phases to be extremely anisotropic.

To understand the nature of this anisotropy, we will cal-
culate m1 mi', m3, and m3'. This will be done by compar-
ing the expression for the supercurrent obtained from the
Ginzburg-Landau theory with that obtained with the

tuyr„(k) —„dSk n(k') V(k, k') y„(k'), (17)

where the integration is over the Fermi surface of the
above model, n(k)dSk is the number of states per unit en-
ergy in a k-space shell with energy thickness tu, and of
area dSk centered around k on the Fermi surface, and
where

V(k, k') -N zg g exp[ —ik(R, —R, )
n, n'm, m'

+ik'(R —R )]V„„~. (18)

ky

k)

The transition temperature is, in the weak-coupling lim-
it related to the largest eigenvalue ra by T, 1.14tu,
&exp( —I/ru). At half-filling the square-shaped Fermi
surface of the above model becomes perfectly nested as
t& 0. Furthermore, in the limit of tightly bound atomic
orbitals the matrix elements V~jt„ for i san or jul will be
negligibly small. In the simultaneous limit when the band
is half filled, t~ 0 and when the above matrix elements
vanish (which we shall call the "particle-hole symmetric"
limit following Sigrist and Rice ), the linearized gap
equation acquires an additional symmetry9's not associat-
ed with the point group D4t, . Consider the reciprocal lat-
tice translation T defined by Ty(k) y(k+Q), where

Q n/a(1, 1,0) and where y(k+G) y(k) for any re-
ciprocal lattice vector. The operation IT, where I is the
inversion operator, flips edges and leaves the square-
shaped Fermi surface invariant (see Fig. 5). To see that
IT is, in fact, a symmetry of the linearized gap equation in
the above limit, observe that V(k+Q, k'+Q) V(k,k').
Therefore, the relevant symmetry group in the particle-
hole symmetric limit is the direct product D4s x (E,IT).
The basis functions ttrr can, therefore, be classified accord-
ing to whether they are even or odd under IT. For an even

FIG. 6. (a) Class-I phases (even under particle-hole symme-
try) have yr(k) llv(k). (b) Class-II phase (odd under particle-
hole symmetry) have yr(k) J.v(k).
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linear response analysis of the microscopic Hamiltonian
[Eq. (16)). We begin with the Ginzburg-Landau theory:
In the presence of a slowly varying static vector potential,
the super|:urrent is

Ji ~ kB

TRACK

jgbr'jg rjbAj
bH [rj;A) (19)

where e~ 2e. We have omitted terms' 's involving the
gradients of the rjj's by supposing that we have con-
strained rj to be spatialy uniform. Now according to the
linear response analysis of the microscopic theory (again
assuming that rj is constained to be spatially uniform),
J; —(e /m)nf~Aj, where m is an arbitrary mass chosen
to be the bare electron mass, and where the superfluid
density tensor, nfl, is given by

n/j- 2g(3-). . .' .;(k)v, (k) ~~(kk)
~

'.
xkT, 2z vk

(20)
In the above expression, the integration is over the Fermi
surface, v;(k) are components of the Fermi velocity
vF(k), v(k) ~vF(k) ~, and h(k) is the quasiparticle ex-
citation gap given by

(21)a(k) —„den(k') V(k, k')F
1 i

(k') a)Ap(k) .

In the above expression for n,'j in the Ginzburg-Landau
regime we are neglecting strong-coupling corrections. '9

Now comparing the above two expressions for the su-
percurrent, one obtains the desired parameters of the
Ginzburg-Landau theory:

„-cp,' v„'(k) ( yy(k) ~

',
2m~' " 2x v k

, -c. ,
"

vy'(k)
~ tjy(k) (',

2m[ '"
2m 'v k

(22)

(23)

and

+1 1 1

m3 m3'

dSk

(2x)'v(k)

x „(k)v„(k)y, (k) y (k), (24)

where the constant

N N
cp —,

' ((3) x2 kjjTc 3

For class-I superconductors where y(k) v(k), the
above results give (m ~') ' (m [ ) ' [(m 3 )
+(m3') ']/4 ~hereas for class-II superconductors one
obtains

(m~) ' (m~) ' —[(m3) '+(m3') ']/4.

In either case the stiffness matrix has a zero eigenvalue
and the amplitude ratio achieves its maximum value of
4J2 5.65 in the (1,0) and (l,i) phases.

Of course corrections to the particle-hole symmetric
limit, either in the form of next-nearest-neighbor hopping,
or interplanar hopping or nonvanishing matrix elements

Vj~„(ien or jul) will cause the order parameter stiffness
matrix to be nonsingular hence reducing the amplitude ra-
tio from its upper bound.

VII. DISCUSSION

We shall now compare our results with evidence for or
against anisotropic superconductivity in YBa2Cu307 —s in-
ferred from other experiments. The first observation of
which we are aware supporting anisotropic pairing is the
small orthorhombic strain anomaly at T, reported by
Horn et al. ' The presence of this strain anomaly, and the
absence of any corresponding volume anomaly would im-

ply anisotropy of the order parameter in the a-b plane. 2p

This experimental result has recently been considered
theoretically by Volovik ' assuming a singlet state belong-
ing to the tetragonal group. He finds that the state which
couples most strongly to the strain is the (1,0) phase of
the I 5 representation, although the other possible states
also couple to the strain and so the order parameter can-
not be definitely determined.

It has been argued that Josephson effects are forbidden
or at least weak between singlet and triplet superconduc-
tors. 22 This would imply singlet superconductivity in
YBa2Cu307 —s. Unfortunately the situation is not so
clear in the presence of spin-orbit coupling when the only
distinction between singlet and triplet states is parity un-
der inversion. Because inversion symmetry is broken by
the tunnel junction Josephson effects may in fact occur. 24

Indeed, Josephson tunneling has been observed between
Nb and UBe~3.

Strong arguments against anisotropic superconductivity
in YBa2Cu307 —& have been presented by Harshman et
al. ,

z6 who find the low-temperature dependence of the
penetration depth to be inconsistent with nodes in the gap
function. We would like to make two comments about
this. First, the gap structure depends both on the order-
parameter symmetry and on the Fermi surface topology.
For example, the Anderson-Brinkman-Morel type triplet
states that have nodes on the k, axis for a spherical Fermi
surface could be nodeless on a Fermi surface like that of
YBa2Cu307-s which is open in the k, direction. Second,
the group theory analysis of the order parameter and the
Ginzburg-Landau theory are valid only close to T, . Away
from T, the nonlinear gap equation can mix states of
differing symmetry, 2 and thus may alter the gap nodal
structure. This comment would also apply to all other
measurements of the low-temperature gap function such
as optical reflectivity, Raman scattering, tunneling nu-
clear quadrupole resonance and low-temperature heat-
capacity measurements, some of which appear to show a
nonvanishing gap, while others report evidence for gap-
lessness.

Triplet superconductivity is not unreasonable in YBa2-
Cu307 —s given the noncoexistence of antiferromagnetism
and superconductivity. In fact a number of authors have
proposed triplet pairing mechanisms. As far as we are
aware the 15+ singlet phases have not been predicted by
any theoretical model to date.

To summarize our results, we have found the following.
(1) The amplitude ration C+/C —in the Gaussian fluc-
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tuation regime is nonuniversal. However its large mea-
sured value puts severe constraints on the form of the su-
perconducting order parameter. In particular, all the al-
lowed order parameters are anisotropic.

(2) For orthorhombic (D2h) symmetry, the only case in
which one obtains more than two effective order-
parameter components is that of triplet p-wave pairing
with weak spin-orbit coupling. The three allowed repre-
sentations are (I 2, 13, 14 or Bz„, 8~„, 83„), and for
each of them n, ff is a continuous function of the micro-
scopic parameters bounded above by n, ff ~ 6.

(3) For the tetragonal (D4h) group, the only singlet su-
perconductor which can have n, ff & 2 has a "d-wave" or-
der parameter, transforming according to the I 5+ (or E)
representation. In this case n, ff is bounded above by 5.65;
however, n, ff )4 requires that certain anisotropic stiffness
constants satisfy rather stringent conditions. We have
shown that within a class of simple models such anisotrop-
ic gradient terms are indeed possible.

(4) There are three possibilities for triplet superconduc-
tivity in the tetragonal case consistent with the measured
C+/C —.For strong spin-orbit coupling the I 5+ (or Es)
representation [discussed in paragraph (3)] is allowed.
For weak spin-orbit coupling the possible representations
are I 2 [discussed in paragraph (2)] and I 5 or E„. The
latter has a 12-component order parameter and would
have regions of allowed parameter space consistent with
the experimental data.
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