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Energy parameters for a Cu02 sheet, taken to be prototypic of the high-temperature supercon-
ductors, are derived from semiempirical and ab initio sources. Intra-atomic Coulomb interactions
(U&) are large, but interatomic Coulomb terms and direct oxygen-oxygen transfer integrals are
also very important. These energies dictate a two-band extended Hubbard Hamiltonian which

cannot obviously be simplified. With Cu(d's)O(ps) as the vacuum state, interatomic Coulomb
interactions create a potential well resulting in hole localization of one hole per Cu02 unit cell, so
that the Cu(ds) valence is dominant. A spin- —, , Heisenberg system thus exists independent of the

presence of carriers due to the poor screening in these materials. We compute the Cu-Cu su-

perexchange energy J from the other parameters and find good agreement with empirically de-
rived values, provided the inclusion of direct Cu-0 exchange. Because of the relatively large
value of J, we assume local antiferromagnetic (AF) order. Itinerent carriers exist on the oxygen
sublattice because of the large Cu Uz energy. The coexisting spin and carrier systems interact
strongly, the most important cause being a virtual process involving the Cu(d's) configuration,
which is lowered in relative energy by Coulomb interactions with the carrier. This process can
produce carrier transport with and without creating spin deviations and stabilizes holes in the oxy-

gen po orbitals. We find that the carriers are neither weakly coupled free particles nor spin pola-
rons, but are something new: "spin hybrids, " consisting of a coherent and nonperturbative mixture
of local spin-orbital electronic configurations, some of which represent deviations in the local AF
order. A model Hamiltonian that describes the spin-hybrid carriers shows that the probability of
finding a spin deviation associated with an isolated carrier quasiparticle is large (30-40%). We
find spin-driven electronic pairing in the Cooper sense between the spin-hybrid quasiparticles.
Retarded interactions occur and we also find direct attractive unretarded interactions at -3-4
Cu-0 spacings. These interactions cause extended s-wave and d-wave pairing and lead to a pair-
ing Hamiltonian reminiscent of Bardeen-Cooper-Schrieffer theory which is, however, only two di-
mensional. The possible role of Josephson tunneling in the third dimension is also discussed.

I. IN i RODUCTION

The high-T, Cu-0 superconductors La2-, (Sr,Ba),-
Cu04 (Ref. 1), YtBa2Cu30 7 (Ref. 2), and the more re-

cent Bi-Sr-Ca-Cu-0 (Ref. 3) and Tl-Ba-Ca-Cu-0 (Ref.
4) have electronic structures of unusual complexity, there-

by raising interesting questions of valency, correlation,
magnetism, and the nature of the charge carriers. Natu-
rally, a prime goal is to determine which aspects of these
materials cause high-temperature superconductivity. Our
approach has been to systematically build a fundamental
understanding, by relying only on those experimental and
theoretical sources which are reasonably well understood.
Our program therefore consists of five parts, the first four
of which are realistically addressed in this paper: (1) we

derive values of the important energy parameters from
both ab initio and semiempirical sources; (2) these in turn
define a Hamiltonian which contains the essential physics;
(3) the origin of the spin system and the nature of the
charge-carrying quasiparticles become clear, the under-

standing of which enables us to (4) explore the pairing in-

teractions between the car'riers. The last part, the phase
transition from the normal state to the superconducting
state, is not understood, since it is unclear whether the
transition is Kosterlitz-Thouless and thus purely a prop-

erty of the two-dimensional (2D) Cu02 sheets or a 3D
transition perhaps driven by Josephson tunneling between
the sheets. In this paper the solution of the pairing Ham-
iltonian is addressed but only using the mean-field approx-
imation. This cannot realistically predict T, because in
two dimensions static long-range order exists only at
T 0.s Whether the phase transition is Kosterlitz-
Thouless5 or 3D driven by the weak Josephson tunneling
between the sheets, the physics which determines T, is
different than in the Bardeen-Cooper-Schrieffer (BCS)
case. 7 We do find, however, that superconductivity in-
volves Cooper pairss (i.e., paired fermions, although cou-
pled by an electronic instead of a phonon mechanism) as
the carrier quasiparticles do not bind into bosons.

There are three fundamental points which highlight this
work. The first is the coexistence of spin and carrier sub-
systems in a Cu02 sheet: i.e., a Heisenberg spin- —,

' system
exists independent of the presence of charge carriers. We
argue that this is a direct consequence of poor screening
which leads to large correlations between the quasiparticle
holes. The second point is that because there are large in-
teractions between the carrier and spin- 2 subsystems, the
carrier quasiparticles contain a coherent mixture of
configurations with different local spin couplings. We
term these carriers "spin hybrids" because they are for-
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mally similar to conventional carriers which are hybrids of
different atomic orbitals. The third point is that because
the spin hybrids contain large admixtures of config-
urations which involve deviations from the local antiferro-
magnetic (AF) order, there is a pairing interaction of a
purely electronic origin: large matrix elements exist for
the exchange of virtual magnons between quasiparticles
and, in addition, there are direct interactions between ad-
jacent carriers, thus producing an unretarded (in time)
contribution to pairing. We therefore propose that high-
temperature superconductivity is caused by the existence
of the spin-hybrid quasiparticles which necessarily leads
to spin-driven electronic pairing within the Cu02 sheets.
Furthermore, we speculate that superconducting phase
coherence could be driven by Josephson tunneling in the
third dimension. (The fact that electronic pairing can re-
sult from the coexistence of spin and carrier systems has,
of course, been suggested before;9 '3 we will see, howev-
er, that the physical picture contained in the present paper
differs considerably from previous work. ) Before outlin-
ing this paper, we expand on these major points.

A most important aspect of these systems, and one
which distinguishes them from many other compounds, is
that the outermost atomic shell of the transition-metal ion
(the Cu 3d shell) is nearly filled, as also of course are the
2p shells of the oxygen ions. Quasi~article holes in these
otherwise filled levels in a Cu(d' )-O(ps) array have
large screened Coulomb interactions as a result of the ina-
bility of the system to effectively screen holes on the same
or neighboring sites from each other. These interactions
constitute the extended Hubbard U;J, where i and j may
denote different sites. As we will discuss in Sec. II, large
U's arise when screening charge cannot be transferred
into the same principal atomic shell that contains the
quasiparticles (because the shell is full in the absence of
the quasiparticles). These energies (the on-site U;=U;;
components of which are known from the interpretation of
Auger and photoemission spectra from related com-
pounds) are sufflciently large to suppress the d
configuration on the Cu ions and cause strong correlation
between the quasiparticle holes. In particular, we argue
that the existence of a substantial interatomic U (U;J,
i~j ) causes a Coulomb localization of the first hole per
unit cell in the two-band extended Hubbard model which
is appropriate to a CuOz sheet. (Interatomic U is also
thought by Varma, Schmitt-Rink, and Abrahams'4 to
play an important role; however, this is in connection with
a different pairing mechanism than we 6nd. ) This factor,
together with the differences in the single-site energies,
leads to the dominance of the d configuration at the Cu
sites (while the admixture of d'0 is signi6cant, the d
component is small). Furthermore, this localization
occurs independent of the presence of carriers. This con-
stitutes our first major point.

We do not assume or expect that the spin subsystem is
magnetic (i.e., has long-range order) in the presence of
carriers. We do expect, however, that there are strong
short-range antiferromagnetic correlations between the
Cu spins due to the magnitude of the superexchange ener-
gy between Cu spins. The system is thus dynamic' in
that the spin orientation changes rapidly (perhaps

—10 ' sec) when compared to the time scale of spin-
resonance experiments (which is why NMR works' ), but
slowly on the time scale of carrier motion
(-10 ' -10 ' sec) so that the carriers experience local
AF order in the Cu spins.

Additional holes, the charge carriers, are introduced
into the material by doping ' or by having a surplus of oxy-
gen'7 in the La material or by having greater than 6.5 ox-
ygens per unit cell in the yttrium compound. 2 (In prac-
tice, the existence of Coulomb potentials produced by
dopants or other point defects in the crystal could bind a
small density of carrier holes, leading to an insulating
phase with a small carrier densit and a insulator-metal
transition with increased doping. ' In this paper, we focus
on the itinerant carriers of the metallic phase. ) We find
that the carrier holes in Cu02 sheets have most of their
amplitude in the oxygen 2p levels. This is a consequence
of the large on-site U for Cu (-9 eV) which inhibits the
d s con6guration.

Our starting point for understanding charge transport is
thus a model of two coexisting systems: a quasi-2D spin-
—,
' Heisenberg spin system principally on the Cu sublattice

and a carrier system principally on the 0 sublattice. We
find that these two subsystems interact strongly due to the
relatively small Cu-0 distance and thus the large transfer
integrals, the near degeneracy of the Cu(3d) and O(2p)
levels, poor screenin which causes carrier presence to
enhance local Cu(d' ) valence fluctuations, and the spin-

character which allows easy self-healing of spin devia-
tions as explained below. In addition, we find that the
strong coupling stabilizes carrier holes in the p orbital
(which points towards the Cu ions) by 1-2 eV compared
with the p, orbitals which have only weak coupling to the
spin system. Although recent work by Guo, Langlois, and
Goddard'9 and by Birgeneau, Kastner, and Aharmony 0

have proposed p hole occupancy (which is found if one
only considers the Madelung potential in conjunction with
strong localization of the first hole per unit cell on the Cu
sites), we find this is not the case upon consideration of
the carrier-enhanced valence fluctuations, a factor also
seen in recent simulations by Hirsch et al. 2'

Much of this paper explores the consequences of the in-
teractions between the spin and carrier subsystems. These
determine the nature of the quasiparticles which carry
charge and hence form the basis for understanding the dy-
namics of transport. If there were no interactions between
these subsystems, the carrier holes would occupy the top-
most part of the oxygen 2p bands: we refer to this as the
"free-hole" limit. These bands have considerable width
and consist of Bloch waves made principally from the 2p„
and 2p~ oxygen orbitals which lie in the plane of the 2D
square lattice formed by the Cu02 sheet. (We find that
the transfer integrals between these orbitals are essential
to any realistic description of the carrier quasiparticles. )
In general, the interactions with the spin subsystem cause
the carrier quasiparticles to be tnixtures (i.e., hybrids) in-
volving several spin-orbital configurations.

It is common to think of valence electrons (or holes) as
hybrid particles: the components of the hybrid are usually
atomic orbitals such as the coherent 4s and 3d mixtures
which describe the valence electrons of the first-row tran-
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sition metals. If these particles were to interact, and if the
interactions were different between 4s-4s, 4s-3d, and
3d-3d, then the resulting net interaction would depend on
the relative amplitudes of the 4s and 3d components in the
carrier quasiparticle. In the present case, the components
of the carrier differ not just in their atomic-orbital charac-
ter, but also in the nature of the local spin couplings. For
this reason, we refer to these carriers as "spin hybrids. "
We shall see that since the spin-hybrid components do
have different pairing interactions, the net pairing is just a
weighted sum of the component pairings.

The components of the carrier quasiparticle are repre-
sented by the various spin-orbital configurations, consti-
tuting all relatively low-energy arrangements of carrier
and spin subsystem holes, in different atomic orbitals
and/or with different spin alignments between them. The
carrier quasiparticle is then a mixture of configurations
which necessarily involve more than one hole. The
speci6c mixture is determined by diagonalizing the
configuration-interaction Hamiltonian matrix which con-
tains the interactions between the spin-orbital configura-
tions and the effects of translational symmetry. In spite of
this complexity, made necessary by the coexistence of the
carrier and spin subsystems, the analogy to more usual hy-
brid carriers is very close.

For illustration, let us consider just two of the lowest-
energy local spin-orbital con6gurations. We may write a
carrier hole which is momentarily on an oxy en site be-
tween two Cu holes in a Cu02 sheet as d I'pfd, where the
arrows indicate the S, component of the holes. We as-
sume this configuration to be embedded in a host which is
at least locally antiferromagnetic, so that each of the d
holes is also approximately antialigned with three other d
holes which for simplicity are not shown. Because these
other couplings are not disturbed by the presence of the
oxygen hole, this configuration represents a "free hole" in
that the oxygen carrier hole may freely hop to equivalent
oxygen sites without leaving behind a spin deviation (in
what follows, we disregard the p, orbitals for reasons stat-
ed above; thus, "p" implies p ). This spin-orbital config-
uration interacts and hence mixes with another in which
the carrier hole has opposite spin and is antialigned to
both neighboring Cu sites, gfpid|'. This configuration
represents a carrier-associated spin deviation in the local
AF order (marked by the underline). We will call such
entities "flipped-hole con6gurations" and note that if the
oxygen hole hops away, it leaves behind a spin deviation in
the lattice. Classically, at zero temperature this would not
happen as an isolated carrier in a perfectly ordered AF
sheet would raise the energy of the system by creating
spin deviations. However, in quantum systems this is not
true: at all temperatures there exists a finite density of
spin deviations, some of which are not associated with car-
riers. A carrier can make a deviation at one site and un-
make a different deviation at another site, thus preserving
the energy of the spin system. In addition, a spin devia-
tion produced by one carrier can be healed by another,
leading to retarded pairing interactions. "

The interaction between the above two configurations
(dip jd 1' and gfpfdf) occurs through a single matrix ele-
ment by direct Cu-0 exchange, K, which is ferromagnetic;

however, the strongest ties are through virtual (interme-
diate) states. The lowest-energy virtuals involve the
Cu(d' ) configuration and are of the type p, ~d' pbtdf,
where p, &pb. The 3d-2p transfer integral links virtual
states such as these to free-hole and flipped-hole con-
figurations on adjacent sites.

If we only consider three isolated (Cu-0-Cu) atoms,
the net result of the interactions with virtual states which
involve the d and p configurations is that an "indirect"
Cu-0 exchange energy, K,ff —K, dominates over the
direct Cu-0 exchange energy K between adjacent Cu and
oxygen holes, thus causing antiferromagnetic Cu-0 spin
alignments to be energetically favored in spite of the rela-
tively large ferromagnetic K. Nonetheless, the largest
factor which produces carrier-associated spin deviations is
nor Kgff but the above Cu(d '0) valence fluctuation. This
is because the latter produces a larger matrix element to
simultaneously exchange and move the carrier hole by go-
ing through the virtual intermediate state.

If the above two spin-orbital con6gurations (free hole
and flipped hole) are close in energy relative to the
strength of the interactions, strong mixing is inescapable.
By diagonalizing a con6guration-interaction (CI) matrix
representing the above con6gurations, a wave function for
the lowest-energy state is obtained. The atomic-orbital
hybridization of the carrier particle, the extra hole, is thus
found, but a carrier is also obtained which is "dressed" in
its spin and orbital associations, characterized by the
coherent superposition of the various configurations. This
superposition is the conceptual basis of the "spin hybrid,

"
the existence of which is our second major point.

We naturally expect that the lowest-energy spin-orbital
configurations will dominate the ground-state carrier-
quasiparticle wave function. If the above-mentioned cou-
pling between the free-hole and flipped-hole
con6gurations were weak and their local energies compa-
rable, the free-hole con6guration would dominate the car-
rier because it can freely delocalize through the periodic
array of AF-ordered Cu spins. In this case, it would be
convenient to think of the quasiparticle as a free hole
dressed with spin exitations in a manner similar to weak-
coupling phonon dressing. For this to be true, the energy
of the free-hole con6guration, after being adjusted for
delocalization over the oxygen sublattice, must be much
lower than the energy of the flipped-hole configuration
after similar adjustment for translational symmetry.
However, we will show that in the case of the Cu-0 ma-
terials, the delocalization energy of the free-hole
con6guration is not great in and of itself, principally due
to the reduced dimensionality. Furthermore, because of
the above-mentioned d' virtuals, the difference in energy
between the delocalized free-hole and flipped-hole
configurations (the diagonal energy difference) scales with
the off-diagonal matrix elements which promote mixing.
A central point then is that it is incorrect to view the
flipped-hole configuration simply as a resonance which is
degenerate with the free-hole band, and which therefore
would form a localized state (i.e., a true spin polaron) if
its exchange energy K,p were great enough to move it out-
side the band. Because of the above scaling, a localized
spin polaron will not form even if K,g were very large,
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even several times the bandwidth, because K,ff is also cou-
pling the two con6gurations. (For the CuO materials K,ff
is not a large energy. In Sec. IV we compute K,g-0. 1

eV.) For all reasonable energy parameters, a spin hybrid
always exists in that an itinerent carrier is a strong mix-
ture of the free-hole and flipped-hole con6gurations. Thus
we are never in the free-hole nor spin-polaron limits in
spin- —,

' Cu02 sheets, and furthermore perturbation theory
cannot be used to explore the interactions between the
carrier and spin subsystems or (as we shall see) between
the carriers themselves.

Our third major point is that the substantial spin-
deviation configuration character in the spin-hybrid car-
rier quasiparticle leads to an attractive electronic pairing
interaction because of large matrix elements for carrier-
magnon interactions (other than K,ff) which produce re-
tarded pairing through magnon exchange (a process
which is analogous to the exchange of virtual phonons in

Cooper pairs). In addition, however, the spin-deviation
component naturally leads to a direct and thus unretarded
pairing interaction. The nature of this pairing is wholly
spin derived: Let us use the label A for the Cu sublattice
which has spin down () ) locally and 8 for the spin-up (f )
sublattice. Assume that a spin distortion, a single Cu spin
flip, on the A spin lattice is associated with the flipped-
hole configuration of a carrier. Then the Cu-Cu superex-
change energy J causes real-space configurations in which
spin-up (A) and spin4own (8) flipped-hole configura-
tions with the A and 8 Cu nearest neighbors to be lower in
energy than configurations where they are apart. This
contributes to extended s-wave and d-wave pairing as the
attraction is in real space and occurs when the quasiparti-
cles are a fixed distance apart. In the simplest picture,
two isolated Cu spin deviations cost zJ each or a total of
2zJ, where z is the number of nearest neighbors which in
the 2D square lattice is 4; on the other hand, it costs only
2(z —1)J for two nearest-neighbor deviations, a savings of
2J.

This "simplest picture" is too simple. To actually
evaluate the energy of the pairing interaction between two
spin-hybrid carriers is a complex matter due to the
Coulomb interactions between the carrier and Cu holes
and dynamical effects from carrier motion. This would
require a con6guration interaction calculation with up to
10 holes and 16 sites (which involves greater than 10
bases before spin and symmetry decomposition). There-
fore, in this paper we will not attempt any quantitative
evaluation of the retarded or unretarded pairing interac-
tions, but only qualitatively describe the pairing which
may be expected as a consequence of the existence of the
spin-hybrid carriers.

To address the question of the phase transition from the
normal state to the superconducting state, we speculate on
the possible role of the coupling in the third dimension.
This we only consider qualitatively in this paper by argu-
ing in analogy with the Neel transition in related insulat-
ing materials. We find it a~pealing, if the phase transition
is not Kosterlitz-Thouless, that there is a formal resem-
blance between the superconducting and the Neel transi-
tions, with the Josephson tunneling matrix elements in the
third dimension playing the role of the superexchange per-

pendicular to the Cu02 sheets. If so, the highest-T, ma-
terials may have the strongest tunneling between the
Cu02 sheets.

In the sections that folio~, we provide the arguments
which support each of these major points and present the
mathematical basis for this qualitative discussion. This
paper is necessarily long as each major point arises be-
cause of the work in preceding sections. We believe the
coherence and actual simplicity of the total picture, when
viewed in its entirety, argues for the validity of the basic
model. Because of the length, we have attempted to make
the paper slightly redundant, so that the casually interest-
ed reader ean skip the more-detailed parts if he or she so
chooses.

In Sec. II we discuss the ab initio and semiempirical
values of the energies necessary for understanding these
materials, including the origin of the large U's which
cause the breakdown of the band-structure description.
We also see that the minimum relevant Hamiltonian is
more complex than a simple single-band or even two-band
Hubbard model. We report model calculations in Sec. III
which indicate the origin of the spin subsystem and the
degree of valence fluctuations on the Cu sites. We also see
why the spin and carrier subsystems exist on separate sub-
lattices. In Sec. IV, as a self-consistency check, we dis-
cuss the computation of the Cu-Cu superexchange from
other energy parameters and see that it compares well to
the experimental results. We also compute the effective
Cu-0 exchange energy, K,ff. In Sec. V we investigate the
spin- —, Heisenberg system in the absence of carriers in or-
der to introduce concepts and notation which are essential
for understanding the nature of carrier-spin interactions
and transport. In Sec. VI we write a Hamiltonian which
describes the spin-hybrid carriers and allows us to study
its properties over a wide range of energy parameters.
The Hamiltonian which describes the pairing interactions
between spin hybrids is presented in See. VII. The second
part of Sec. VII gives a prescription for a mean-field solu-
tion of the pairing Hamiltonian. Section VIII is a qualita-
tive discussion of the possible role of the third dimension
and Josephson tunneling in the phase transition to the su-
perconducting state. In the Discussion (Sec. IX), we
compare our work to that of others and review arguments
for the validity of the major points. In what follows, we
emphasize the generality of the formalism.

II. THK ENERGY PARAjMETKRS OF A
Cu-02 SHEET

We have derived a set of reasonable energy parameters
in order to guide our thinking towards a model. All that
follows is based on the assumption that the energy param-
eters are at least approximately correct.

The spin and carrier, or two-subsystem, model for the
electronic structure of these materials is a direct conse-
quence of the strong correlations between hole quasiparti-
cles in the Cu(3d' )-O(2p6) shells. Moreover, strong
correlation is quite expected. The nearly closed-shell na-
ture of both the Cu and the 0 ions causes screening to be
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inefficient, leading to large values of the screened hole-
hole interactions (the generalized Hubbard U's). This
occurs not only in the Cu and 0 single-site terms, Ud and
U~, respectively, but also for Coulomb interactions be-
tween holes on nearby atoms, i.e., the interatomic U terms
(which is to say that on a length scale shorter than the
average carrier-carrier spacing, the material exhibits
"dielectric" as opposed to metallic screening).

The basic understanding of the relationship between
large U's and filled shells may be found in work done quite
a while ago in an attempt to explain Auger spectra from
metallic Cu. Kowalczyk er al. showed that the value of
Ud in Cu metal, determined from the 1.2 3VV Auger spec-
tra, was 7.7 eV and could be simply understood in terms
of "atomic" energies. [Ug is 16.5 eV for a gas-phase Cu
atom, obtained from the values of the first and second ion-
ization potentials; the difference between this and the
atomic Fo Coulomb integral (-27 eV) has been termed
"static relaxation" by Shirley 3 and involves the relaxa-
tion of the atomic electrons from their ground-state orbit-
als due to the presence of two holes on the atom. ] In the
solid, Ug is reduced from the atomic value of 16.5 eV due
to charge transfer between atoms and to polarization of
the surrounding medium; the former dominates in the
case of a metal. If one assumes complete short-range
screening, this is equivalent to a local atomic config-
uration which is essentially 3d 4s 4p' in the Auger final
state. Comparing the energy of this atomic configuration
to twice that of 3d94s and to the ground state,
Kowalczyk et al. 2z found a value of Ud close to that ob-
served.

In the Cu-0 superconductors, charge-transfer screening
is reduced from that of the metaL The reason for this is
that the neighboring 2p oxygen shells are already full so
that polarization or charge-transfer screening must in-
volve the 4s, 4p and 3s, 3p shells of the Cu and 0 atoms,
respectively. It is difficult to imagine how this could lead
to better local screening than in the case of the metal since
charge transfer into the 4s and 4p levels was taken there
to be perfect. Thus we believe that Ug in the metal repre-
sents a lower bound for Ug in the superconductors. For
the oxygen single-site term, a KVV Auger-derived value of
U~-6 eV is typical for oxides. (Because of uncertain-
ties in the characterization of surfaces in actual high-T,
compounds, note that we have used Auger-derived values
only from related well-characterized materials. )

The above discussion concerns a "static" value for U
because it was assumed that the charge-transfer screening
involves complete relaxation. This approximation was ap-
propriate because the screening length is very short in the
metal and the sharp lines seen in the Auger spectra of Cu
are more than an order of magnitude narrower than the
width of the Cu 4s-4p bands so that the final state is
long-lived compared with screening relaxation times. A
dynamical value of U, which is appropriate for describing
the valence fluctuations in the Cu-0 materials, for exam-
ple, would be larger than the static U because if the fluc-
tuations were fast, screening relaxation may be incom-
plete. Thus the values of U derived from Auger spectra
represent lower bounds on the values appropriate for ques-
tions of quasiparticle-hole dynamics.

It is interesting to compare values of U determined from
the Lz 3VV Auger spectra of Cu, Ni, and Co metals. The
7.7-eV value for Cu is reduced to -2 eV for Ni (Ref. 25)
and is zero within experimental uncertainties for Co (Ref.
26), thus allowing the recovery of a one-electron descrip-
tion of the two-hole excitations in Co. This dramatic
reduction is due to the opening of the 3d shell so that
screening charge can be accepted (in the case of Cu
screening charge is constrained to the 4s, 4p shell, one
principal atomic shell higher than that which contains the
quasiparticle holes). Thus the large values of U in the
Cu-0 superconductors are due to the closed shells and are
an inescapable consequence of closed shells.

There have been some recent ab initio calculations of U
by Schliiter, Hybertsen, and Christensen, 27 by Harmon
and co-workers, zs and by McMahan, Martin, and Sat-
pathy. 9 All three workers used band-structure calcula-
tions with supercells to self-consistently compute the re-
laxation of the medium to the presence of two holes on a
Cu or an 0 site. Remarkably, all found Ud-7-11 eV on
the Cu sites which agrees well with the Auger-derived
value. In addition, all also found a large U~ on the oxygen
sites. The semiempirical (Auger) values for Cu are close
to all of the ab initio results; in addition, the values of U~
in Refs. 27 and 29 are -6-8 eV, also close to the Auger
value. Due to the difficulty of the calculations, we will
adopt for use in this paper the Auger value of U~-6 eV
as it was measured on a metal oxide. We use the calculat-
ed value, however, of Ud-9 eV as it is slightly greater
than the value for Cu metal as we expect it would be from
the general arguments presented above. We also note that
the value for Ud is probably more certain than that of U~.
In spite of the above concerns for the dynamic versus stat-
ic values for U, we will see in Sec. IV that the Auger-
derived values, when used in a Hubbard-like model Ham-
iltonian, do indeed predict values of the superexchange, J,
which are in agreement with experiment.

Because the U's are large, the one-electron picture is an
inconvenient starting point from which to analyze the
electronic structure; the single-particle wave function by
definition leads to fluctuations in the Cu valency which are
only determined by the statistics of a single Slater deter-
minant and not by the relative energies of the Cu-0
configurations. A more-appropriate picture and one
which we adopt in this work is a configuration-interaction
model of valence fluctuations. In order to study the latter,
in addition to the values for U we need (among other ener-
gies) the transfer integrals between Cu and 0 sites (t~d)
and 0 and 0 sites (t~~)

We use the band-structure calculations to estimate the
transfer integrals. If one makes a tight-binding 6t to the
results of Mattheiss in the limit of only nearest-neighbor
Cu-0 interactions, one obtains a value of —1.6 eV for the
transfer integral t~. However, a calculation of the over-
lap of the ion orbitals between Cu-0 and 0-0 (orbitals
obtained by computing the ions in the Hartree-Fock ap-
proximation while in Madelung wells appropriate to
La2Cu04) reveals that at distances appropriate to the
Cu02 sheet the overlaps are 0.07 and 0.04, respectively
lbetween the d(x —y ) and the p(x) and p(y) orbitals
taken as oriented in the crystal reference frame]. Thus
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timated based on the amount one may expect the bare
e /r to be reduced by short-range screening, found by
comparing the single-site value Ud between the solid state
and the gas phase. With Ud-9 eV in the solid versus
16.5 eV in the gas, the upper bounds are -3 eV for
nearest-neighbor oxygen-oxygen (U~~) and -4 eV for
copper-oxygen (Uzd ) Coulomb interactions. Now making
the assumption that the holes are better screened when

apart (than they are if together on the same site) leads to
what actually are guesses: U~d -1-3 eV and U~~-0.7-2
eV. Calculations of these quantities are very difficult to
do with accuracy, so we adopt these values for the present.
Schliiter eral. have also estimated that U~d (4 eV
based on different reasoning, while Harmon and co-
workers estimate U~d-1.6 eV, which is larger than the
calculated value of 0.6-0.9 eV of McMahan et al. 29 The
latter would indicate very rapid convergence to the dielec-
tric limit. It is also noteworthy that a satellite has been
observed in the Auger spectrum of the superconducting
materials, which if assigned to a charge exchange excita-
tion suggests a value of U d -2 eV.

Some previous work" has assumed that carrier holes
on the oxygen sublattice must hop through the Cu ions in
order to move; however, this is not necessary. If fact, with
the above numbers t~/(AUd -b,s)-0.3 ~ 0.15 eV, which
is less than t~~ so that the direct oxygen-oxygen hop is the
largest contribution to charge-carrier motion (hUd is the
difference in Coulomb energy for the carrier hole being on
the Cu site versus being on the 0 site -Ud —2U~g).
However, we shall see that there is also another substan-
tial contribution to carrier motion, which involves the d'0
fiuctuation as described in Sec. VI.

The direct Cu-0 exchange energy K is important for
our calculation of the superexchange energy J and for un-
derstanding the effective exchange energy between carrier
holes and the localized Cu holes. This number was ob-
tained from a nonorthogonal basis set from 6rst principles,
as described in Ref. 35. It was found that K- —0.22 eV;
this number can be corrected for nonothogonality using
other two-electron integrals which increases it to -0.17
eV. The Cu-0 singlet-triplet energy difference is then
~2K( and favors local ferromagnetic Cu and 0 spin
alignments, thus competing with the "gtg/hU" terms"
which require singlet Cu and 0 coupling. This magnitude
for K is much larger than in most systems (it is commonly
neglected in model Hamiltonians) but is significant here
due to the relatively small Cu-0 distance: its magnitude
falls by 50% as one increases the distance from 1.89 to 2.0
A. Nonetheless, the net interactions favor singlet cou-
pling with K,s-0.1-0.2 eV (see Sec. IV and Appendix
A).

The above set of energy parameters define our model
Hamiltonian. However, the model would not be substan-
tially altered even if the energy parameters are subse-
quently re6ned, within reason. The major conclusions of
this section are that the single-site and interatomic values
of U are large (with the former of the order of the single-
particle valence bandwidth), direct oxygen-oxygen trans-
fer integrals cannot be neglected (being about half the
Cu-0 values), and that direct Cu-0 exchange is surpris-
ingly large (affecting the calculated values of J and K,ff).

the direct oxygen-oxygen transfer integral t~~ cannot be
neglected. Further support for this assertion can be found
from photoemission studies of oxides such as MgO in
which there are no metal d levels to play a significant role
in the oxygen 2p bandwidth, which nevertheless is -6
eV, ' corresponding to a tight-binding r~~ of 0.25 eV.
Since the 0-0 distance is -0.3 A (10%) smaller in the
Cu02 sheet than in MgO, t~~ should be signi6cantly
larger than this value in the superconductors. Assuming a
Huckel model and scaling the above t's by the overlaps,
one finds from the band structure and also from scaling
the MgO value that t~q-1 Oe.V and t~~-0.6 eV. 3 Fur-
ther support for the importance of t comes from work of
McMahan, Martin, and Satpathy, who obtained tight-
binding values of t~~ -1 Oe.V and t~~„- —0.3 eV for the
oxygen bands, which also results in a value of t~z-0.6 eV
when rotated to the crystal reference frame.

Note especially that if t~~ were not included, t~d would
have to be larger in order to fit the band structure. How-
ever, we shall see in Sec. IV that the superexchange J is
very sensitive to t~ and that the inclusion of t~~ not only
provides for a more-accurate description of carrier trans-
port, but also allows t~ to be small enough that the calcu-
lated J is in good agreement with experiment. Many
workers have left out considerations of tzz in their mod-
els. "'2 We find that its inclusion is essential for any real-
istic description of the carrier quasiparticles, as will be
seen below.

An additional energy difference needed for our calcula-
tion is that of the one-electron or diagonal energies (s;) of
the 3d and 2p orbitals. Band-structure results show that
the 3d and 2p energies are nearly the same, which naively
suggests sq s~. However, anticipating the results of the
next section, this would cause the holes to prefer neither
the Cu nor oxygen sublattices (in the absence of t~~, in-
cluding this term would cause the first hole per unit cell to
favor the oxygen sublattice) even though they are local-
ized by their Coulomb interactions. Emery has pointed
out "33 that if we take the band-structure results as a
mean-field solution of a Hubbard Hamiltonian, then the
difference in energies its= sd —

s~ U—g/4 U~/8-1 —5eV.
with the 3d orbital lower in energy. We accept these re-
sults and consider he's from 0.5 to 1.5 eV in what follows.
(Very recent work2 29 has suggested be-2 eV which will
not qualitatively change our results. ) Within this range
for hs, a sufficient concentration of the spin-system holes
resides on the Cu sublattice so as to agree with the spec-
troscopic results which indicate the dominance of d .

The interatomic U;J are important (but very uncertain)
energy parameters, values for which are essential for any
quantitative understanding of these materials, as illustrat-
ed in Sec. III. When i and j are nearest neighbors, U;J is
in an intermediate regime between "long-range" e /e r
dielectric screening and the "short-range" single-site U's
which have been determined by Auger spectroscopy.
Here e is the optical frequency dielectric constant which
is -7 in CuO; we presume this to be a lower bound within
a Cu02 sheet as the electron density within the sheet is
higher than average for the crystal. We shall use a value
of e —10 for the sheet. While e /c r represents lower
bounds for the interatomic U's, upper bounds may be es-
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III. Cu VALENCE FLUt. I OVATIONS AND THE SPIN AND CARRIER SUBSYSTEMS

We now address whether the Heisenberg spin- —,
'

system exists independently of the presence of charge carriers or
whether local AF correlation is purely a consequence of a half-filled band. We also examine in this section the question
of which sublattice is preferred by the carriers.

The Hamiltonian suggested on the basis of the above parameters is a two-band (for the Cu and 0 sublattices) extend-
ed (for the interatomic U) Hubbard model:

H0 Z ~inia+ XUini fni J + 2 Z LUij nia&nlaq+ tij (pia& Wja& + itriaz+Jag)+ Kij itrJa2itrla2itrta~ itria~ ~

E,d l &, &I J,&2

(3.1)

where the n; (cr f, )) are occupation operators and the
itic (itr; ) create (destroy) a hole of spin cr on site i in the
otherwise filled Cu(x -y2) and O(x or y) level. The
prime on the summation indicates i Wj Th. e oxygen 2p or-
bitals are those which point towards the nearest-neighbor
Cu ions (see Sec. VI and Appendix A). The sums go over
all sites, where t;J tz~ between adjacent oxygen sites in
the Cu02 plane, t~ between nearest-neighbor Cu and 0
sites, and zero otherwise. The explanation of the UJ is
less obvious as the variation of UJ with R;J is uncertain.
This is discussed further below. The direct (K;J K if i
and j are nearest neighbors and zero otherwise) and in-
direct exchange interactions will not concern us for the
time being.

Numerical simulations would be useful to find the
ground state of this Hamiltonian, especially in the case of
one hole per unit cell, and find the variation of the AF
correlation length with the number of charge carriers.
Unfortunately, these calculations have not yet beeri done.
Meanwhile, the following arguments and simple calcula-
tions suggest that the Heisenberg spin system forms.

In principle, the ground state of a finite system with one
hole per unit cell could be found by mixing configurations
which represent all possible placements of N holes on N
Cu and 2N oxygen sites. Consider the first step in such a
calculation, the evaluation of the energy (and wave func-
tion) of a single hole in an array of fixed N-1 holes. An-
ticipating that the lowest-energy configurations will have
the holes uniformly distributed over the N sites, we com-
pute the site energies in the presence of a fixed N —1 ar-
ray with these holes on all Cu sites but one. Taking the
energy of the central Cu site (which is the one without a
fixed hole) to be zero, the four neighboring and equivalent
oxygen sites would have an energy of hs+hU where the
latter represents the change of the total Coulomb hole-
hole interaction energy in moving the hole from the cen-
tral Cu site to the oxygen site. This energy is unknown as
we do not know the variation of U with distance, i.e., be-
tween the single-site values and the dielectric limit. If we
assume that there is rapid convergence to the dielectric
limit with distance, then short-range contributions to h,U
dominate and we obtain b U-Up&. The corrections to this
value for longer-range Coulomb interactions reduces AU,
with a reasonable lower bound being approximately
U~ij'2. For the hole to move further away from the cen-
tral site costs more Coulomb energy: onto the next Cu
atom costs between Ud and Uq —U~ (again depending on
the variation of UJ with distance) as the' site is already oc-
cupied by a hole; however, even to move onto one of the

eight equivalent next oxygen sites costs up to an additional

U~, or hs+2U~ for the site energy of those oxygens.
Further motion away from the central site occurs with no
or only small additional Coulomb energy.

Thus the hole sits within a Coulomb potential well. If
we take hs-0. 5-1.5 eV and Uzd -1-3 eV, reasonable es-
timates are as follows: It costs 2-4 eV for the hole to
move onto one of the adjacent oxygens and an additional
1-3 eV to move any further. Solving for the 2D hole wave
function with these site energies and including the transfer
integrals as in Eq. (3.1), we find that the hole is localized
with about 75 ~ 10% of its density on the central Cu and
the remainder almost entirely on the adjacent four neigh-
boring oxygens. Only a few percent of its wave function
penetrates further from this central region.

These results are suspect because they represent a
single-particle solution. For this reason, we also per-
formed a configuration interaction calculation in which we
used the Hamiltonian of Eq. (3.1) and allowed two holes
to move in a correlated manner while embedded in an ar-
ray of holes fixed beyond five central Cu sites. The results
were almost identical to the single-particle result. Thus
there was no indication that the inclusion of correlation
would alter the basic conclusion of hole localization, al-
though more rigorous calculations could address this
point.

Because these calculations are simple and can be easily
reproduced, we do not go into further details concerning
them but simply report the observation that the Coulomb
potential well causes hole localization such that each hole
spends perhaps 75 ~ 10% of its time on a Cu site and the
remainder on essentially only those four oxygen nearest
neighbors which surround the Cu site (thus producing a
Heisenberg spin- 2 system; see Sec. IV). If interatomic U
were not included, the Coulomb potential well would be
"leaky" in that there would be no energy cost for moving
beyond the nearest-neighbor oxygen sites, and the hole
would be free to delocalize through the oxygen sublattice.
In this case, unless he were larger than about half the oxy-
gen bandwidth (in marked disagreement with the band-
structure results ) the Cu sites would exist as reso-
nances within the oxygen band and localization would not
occur, thus taking the model towards the band-structure
picture. A substantial interatomic U thus causes the
breakdown of the band-structure model and the establish-
ment of a spin system whose existence occurs even in the
presence of carriers.

One may wonder if a simpler two-band Hamiltonian,
e.g., without U~, could achieve the same result. This of
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course is true; however, if we were to omit the interatomic
U and establish the spin system through an increase in the
magnitude of Ae, this would prevent the realistic treat-
ment of the Cu d' valence fluctuation which is enhanced
by carrier presence (see Sec. VI) and which is at the heart
of the carrier-spin interaction. Thus we shall use the
Hamiltonian of Eq. (3.1) in this paper.

If only the above qualitative arguments were available,
one might hesitate to proceed without further calculations
which attempt to determine the ground state of the Ham-
iltonian in Eq. (3.1) with one hole per unit cell, at least in
a finite system. However, several experimental pieces of
evidence support the existence of a spin system indepen-
dent of the presence of carriers. Without carriers, we
have of course the observations of antiferroma~netism in
La2Cu04, and more recently in Y~Ba2Cu30s. Howev-
er, recent neutron-scattering measurements by Birgeneau
et al. '9 show that the Cu2+ moment is independent of car-
rier density in the lanthanum compound with up to 18%
Sr doping. Meanwhile, polarized light scattering experi-
ments by Lyons et al. on both the yttrium~ and lantha-
num ' materials observe high energy losses with a peak at
3000 cm ' in the lanthanum compound and 2600 cm
in the yttrium compound. In the latter case, the sharpest
peak was in samples with an oxygen content of 6.0 where
the system is antiferromagnetic, but a broad band of
losses persisted at oxygen concentrations of 6.6 and even
7.0. This suggests that if the loss is associated with two
magnon processes (which analogous studies of the well-
understood antiferromagnet K2NiF4 suggest), it does not
disappear but only broadens as first long-range order is
lost (at 6.6) and further with an increasing number of
carriers present (at 7.0). In addition, there is much spec-
troscopic evidence4 which indicates that the Cu valency
does not appear to change in the La material with doping,
or change in the yttrium material when oxygen is in-
creased beyond 6.5. In view of the above arguments, we
assume the existence of the spin- —,

'
system for what fol-

lows.
Charge carriers are introduced as the number of holes

increases beyond one per unit cell. The energies derived in
Sec. II indicate that the charge carriers have amplitudes
which are largest on the oxygen sublattice because one lo-
calized hole per unit cell is already on the Cu sites: The
large value of the Cu Ud suppresses the d configuration,
since to place an additional hole on a Cu site costs 9 eV,
while to place it on an oxygen site within the plane only
costs hs+2U~d-3-7 eV. Delocalization further favors
the oxygen sublattice as the direct oxygen-oxygen transfer
integrals lower the oxygen energy from the above single-
site value by -4t~~ -2.4 eV, so that the comparison is ac-
tually -9 eV cost for the Cu sites versus only -0.5-4.5
eV for the oxygen sites. These carrier holes then interact
with the Cu sublattice via t~ and direct exchange K.

Experimental information which supports this con-
clusion includes the observation of oxygen carrier holes by
resonance photoemission and the absence of Cu(d )
features even with a substantial number of carriers.
However, the physics of what follows does not change sub-
stantially as the carrier amplitude is changed between the
Cu and oxygen sites within reasonable limits.

IV. EFFECBVE EXCHANGE ENERGIES

A. Superexchange

The superexchange energy Jbetween Cu sites may now
be discussed in light of the above energies. J is defined in
this work such that it costs J per nearest neighbor to flip a
Cu spin in an otherwise antiferromagnetic array. This en-
ergy is not an independent variable as it may be computed
from the values of t~d, t~~, U~q, U~, Ud, 4e, and K, the
direct Cu-0 exchange. We perform this calculation in an
attempt to see whether the values of these parameters as
determined and defined in Sec. II lead to a consistent pic-
ture of the energies, since J has indirectly been deter-
mined from three experimental measurements: the spin-
wave dispersion, '5 the variation of the AF correlation
length with temperature, and the two-magnon-loss (spin
exchanIte) spectrum observed in polarized light scatter-
ing. ' The spin-wave dispersion implies J-37-70
meV; the measurement of the correlation length implies
that J-25-40 meV and the Raman scattering implies
J-67 meV (Ref. 40) or -32 meV (Ref. 45) in La2-
Cu04. (A 12% smaller value than in Ref. 40 has been
found for the yttrium "1:2:3"compound from two-
magnon loss. ' None of these measurements are definitive
for the following reasons: (1) the spin-wave dispersion
has only been determined within a factor of 2; (2) the
correlation length at best determines an unknown constant
times J; although the constant has been derived by several
independent researchers, all of which more or less
agree s (however, simulations on small systems may
bring these theories into question 9); finally, (3) the deter-
mination from the two-magnon-loss spectrum generally
assumes that the peak is approximately 5.4J. These esti-
mates are based on the earlier work on K2NiF4. Howev-
er, similar measurements by different groups do not agree
with each other. Whatever the case, there remains some
uncertainty as to the precise value for J, although
J-25-65 meV for La2Cu04 seems definitive.

We have attempted to compute J without using pertur-
bation theory. Let us first consider three sites, Cu-O-Cu,
and two holes. We assume that only the 3d(x 2 —y 2) and
the 2p(x) orbitals are involved on these Cu and 0 sites,
respectively. It is then simple to write the nine possible
two-hole spin-orbital bases [e.g., (d ~,pp

—ppd ~,)/ J2,
(d~,d2~-d2pd~, )/J2, etc. , where the placement of the
one-hole spin-orbital basis in the expression indicates
coordinate r~ or r2], determine the Hamiltonian matrix
for these bases using Eq. (3.1), diagonalize it, and find the
energy splitting between the lowest two energy states,
which represent singlet and triplet coupled Cu spins. The
Hamiltonian can be block diagonalized using eigenstates
of spin and symmetry. The triplet states block into
H, ' (2&2) and H,~'~(1 x 1), while the singlet states block
into HP ~(4x4) and H,~' (2X2) where the superscripts
(a) and (s) refer to antisymmetric and symmetric with
respect to reflection about the 0 atom and the subscripts t
and s refer to triplet and singlet. The two states of in-
terest are the lowest singlet which is the minimum eigen-
value of H, ' and the lowest triplet which is the minimum
eigenvalue of 0& ' . We expect this energy difference to be
approximately 2J. These two matrices have the following
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forms:

and

tpd

0 —J2tpd 0 0

—J2rlpd AF- —K —2tpd

0 —2tpd h, Up 0

0 0 aUd

tonian and we try to equate the lowest
~
S ( —,

' state to
Eo —3J, the next triply degenerate ) S ) —,

' states to
E0+J, and the lowest )S) —,

' state to Eo+2J. This
spectrum arises if the low-lying states can be modeled by
the Heisenberg Hamiltonian. We take the space part of
the wave function to belong to the 8~ representation of
C4„. If we label the central Cu to be the 6rst Cu in the
product wave functions, then the lowest
(

~
S (,S,)- ( —,', -', ) state is

0 —J5,~
—J2tpd AF +K

where &F is the energy cost to move a Cu hole onto an ox-
ygen site. As discussed above, l)s+U~/2&~&de
+U),p. hU), is the energy cost to move two nearest-
neighbor Cu holes onto the intervening oxygen site. This
has an upper bound of 2h, s+U~ and a lower bound of
2hs+ U~

—U~. Similarly, hUd is the energy cost to move
one Cu hole onto the site of a nearest-neighbor Cu hole.
The upper bound for this energy is Ud while the lower
bound is Ud —U~g. Recall that this uncertainty is related
to the lack of knowledge of the Coulomb interaction of
two holes when further apart than nearest neighbors, rela-
tive to that of two holes on nearest neighbors. Clearly, we
can expect that U~d )e /ff rc„o and e /2ff rc„o
& Udd & U~d/2, where Udd is the Coulomb repulsion af
two holes on nearest-neighbor Cu's. The differences be-
tween these matrices and those from Shen et al. ' are first
in the diagonal energies of the intermediate states, due
primarily to U~d and second in the matrix element from
the charge-transfer fluctuation to a doubly occupied d or-
bital, i.e., the 2,4 element of H,(').

Using this three-center model, we find the energy split-
ting to depend strongly on the chosen values for the Cu-0
transfer integral t~g and the Cu-0 direct exchange in-
tegral K (recall that K & 0; i.e., ferromagnetic exchange),
and less strongly on &F.. With values of t~d 1.1 eV,
E —0.18 eV, h,e 1.0 eV, Upg 2 eV, Up 6 eV, and
Uq 9 eV (t~~ does not enter into this calculation), the
upper bound for the 6 energies gives an energy splitting
(2J) equal to 70 meV, while the lower bound gives 160
meV. A value of 1.45 eV is determined using the energy
parameters and the matrices in Ref. 51, where it is recog-
nized that this value is larger than is realistic, reasons for
which are discussed there.

We, however, have no real reason to believe that the
three-center model should be adequate or that it tests the
adequacy of the Heisenberg Hamiltonian as a representa-
tion of the low-lying states. Thus we also consider a clus-
ter which has five holes and nine centers, one central Cu,
its four neighboring 0 ions, and the four Cu ions which
are also nearest neighbors to these 0 ions:

CQ

0
Cu 0Cu OCu.

0
Cu

In this case, we spin and symmetry decompose the Hamil-

4paaaa —
apaaa

—
aapaa

—
aaapa

—aaaap

with all holes on different Cu's (no holes on the oxygens).
The (( S (,S,) ( —', , —', ) state is, of course, aaaaa and the
energy depends on ) S ~

not on S,. The three degenerate
(~S(,S,) (2, 2 ) statesare

apaaa —aapaa+ aaapa —aaaap,

apaaa —aapaa —aaapa+ aaaap,

and

apaaa+ aapaa —aaapa —aaaap.

The splitting (ideally 4J) between the
~
S ) —,

' states is
120-240 meV (J 30-60 meV) and the splitting (ideally
J) between the degenerate ( S ) T manifold and the

( S ( 2 state is 32-64 meV (using t~~ 0.5 eV, although
the computed value for J is quite insensitive to the input
value for t~~). This value for J is in accord with the ex-
perimental determination which assumes a Heisenberg
Hamiltonian.

It is encouraging that we do indeed find a splitting of
the different spin states in agreement with the spectrum of
the Heisenberg Hamiltonian for five spins. This increases
our confidence not only in our parameters but also in the
Heisenberg description for the spin system.

Note especially that the high sensitivity of J to t~d lends
support to the -1.1 eV value of the latter. In turn, this
supports a value of t~~-0.5 eV as both of these transfer
integrals are then necessary in order to produce a tight-
binding fit to the band-structure calculations. Thus our
energy parameters do indeed lead to a self-consistent pic-
ture.

B. Effective Cu-0 exchange

The effective exchange energy between a hole on an ox-
ygen site and a hole on a neighboring Cu site is also a
dependent energy. This energy is the effective static spin
coupling between holes on the Cu sites with holes an the
oxygen sites again mediated by virtuals. There is experi-
mental evidence that spin interaction energies between
carrier holes and localized Cu spins may be on the order
of 1 eV. We compute the effective exchange energy
from the three-site model [Cu(1)-0-Cu(2)] with three
holes (S,"'

—,
' ) and fit the lowest three states to the fol-

lowing effective spin Hamiltonian:

Huf E()+2J(1 —k)Scu() ) Scu(2)

+2K,ffSo' (Scu())+Sea(2)) ~

where Sg„~~~, Sg„~2~, and Sg are the spin operators for the
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Cu(1},Cu(2), and 0 sites, respectively. The parameter A.

reflects the reduction in superexchange between Cu sites
when a hole is present on the oxygen site. %e expect X, to
be close to 1, which would mean that the spin coupling be-
tween Cu's is completely blocked when the oxygen site is
not closed shell.

The lowest eigenvalue of H, (( corresponds to aaP—2aPa+Paa with eigenvalue Eo —2K,(r+ 2 (1 —k)J.
The next eigenvalue corresponds to aaP —Paa and has ei-
genvalue Eo ——,

' (1 —X)J. Both of these states correspond
to [8"'

~
—,
' . The third eigenvalue corresponds to

[ S"'
(

—', , which for S,"'
—,
' is aaP+ aPa+Paa with ei-

genvalue ED+K,((+ (1 —k)J/2. The result of this compu-
tation with the energy parameters as used for computing J
suggests X 0.945 (thus the superexchange is indeed al-
most completely blocked by having an oxygen hole
present) and K,(r 0.1 eV.

There is no contradiction between the small value of
K (I and the above-mentioned large carrier-spin interac-
tion energy. For example, when we computed the singlet-
triplet splitting for two holes in five sites (a Cu site and
the four surrounding 0 sites) we found the splitting to be
2 eV. Thus there is an effective energy of 1 eV which
strongly couples the Cu spin to the spin of a carrier delo-
calized over four oxygen sites and which is due only in
small art to K,(r. The explanation of this involves the
Cu(d' ) valence fluctuations as will be explained in Sec.
VI and Appendix A.

V. SPIN- g HEISENBERG-NEAREST-NEIGHBOR
AF COUPLING

A. The AF spin- & Heisenberg Hamiltonian

In order to describe magnetic deviations in the presence
of carrier holes, we first describe them in the absence of
carrier holes. This introduces some notation necessary for
deriving the Hamiltonian for carrier holes coexisting and
strongly interacting with the Cu spin system. We do not
assume that the reader is familiar with spin-wave theory.
Moreover, we have not located a reference which is
specific to spin —,'. Standard spin-wave theory for arbi-
trary ( S ~

makes a Holstein-Primakoff transformation52
and then expands in the operator (2(S ( ) '. This expan-
sion is not obviously applicable to

~
S (

In what follows we take the Hamiltonian in the absence
of carrier holes to be that of a nearest-neighbor Heisen-
berg system with ( S ( speci6cally equal to —,

' . The appli-
cability of the Heisenberg Hamiltonian is supported by
the superexchange calculation in the preceding section as
well as by the observation of antiferromagnetism'
and the spin-wave dispersion in neutron-scattering experi-
ments. ' We 6nd that we do not need to make any opera-
tor expansions when ( S ( is —, . In addition, since the spin
Hamiltonian is a crucial part of determining the pairing
Hamiltonian (see Sec. VII} this warrants complete detail.

For the present analysis we avoid unnecessary complex-
ity and assume a two-dimensional square array, hence

H JZSI SI+h,
I,h

where J)0 and I labels lattice sites and h labels the
nearest-neighbor Cu site, thus from a Cu site we add
h a„, —a„, ay, or —ay. It is our aim to rewrite this
Hamiltonian in terms of creation and annihilation spin de-
viation operators which operate on a reference state.

We take our reference state to be the classical ground
state; i.e., a perfectly ordered antiferromagnetic (AF) ar-
ray of spin &. Furthermore, we define the unit cell to
have two spins, one up and one down in the reference
state, where the sublattice A has all spins down and sub-
lattice 8 all spins up. The new lattice vectors are
a~ a„+ay and a2 a —ay, and the basis vectors for the
two spins in sublattices A and 8 are —,

' a„and ——,
' a„re-

spectively. Now all nearest neighbors to spins on sublat-
tice A are on sublattice 8 and vice versa. The Hamiltoni-
an in this representation is

H-2JQSI A'SI+h, B,
l,h

(5.1)

+JZ (d(,Ad(+h, B+dl+h. Bd(,A}
I,SI

+2Jg d(,Ad(, Ad(yh, Bd(+h, B .
1,b

(S.2)

Some discussion of the various terms in this Hamiltoni-
an is useful at this stage because the origin of the terms
does get slightly obscured after the Fourier transforms
de6ned below. The first term is an irrelevant constant en-
ergy (we have taken N sites per sublattice). The second
term is 4J times the number operator for spin deviations
on 8 and the absence of spin deviations on A; i.e., each
isolated spin deviation costs 4J of energy. The third term
is the term which allows spin deviations to propagate
through the lattice and also allows the creation of pairs of
spin deviations from the vacuum and the destruction of
pairs of neighboring deviations. The last term is a short-
range repulsion between a spin deviation on A and the
lack of a spin deviation on 8. This arises because, should
a spin deviation on sublattice A be nearest neighbor to a
spin deviation on sublattice 8 there is a cost of 6J rather

where the extra factor of 2 arises because we now sum
over half as many unit cells. Next we define spin devia-
tions from the reference state; thus a spin deviation in sub-
lattice 8 or 8 at lattice point I is created by the operator
SI,A [S ]I,A+I[Sy]l A or Sl B [S„]I, B I[Sy]I,B
spectively. Therefore we equate dl A Sl+A and d(,B SI,B
and note that [S,]I,A —

2 +dl Adl A while [Sz]I,B
2 -dl Bdl B. Furthermore, the dl and d~~ operators

satisfy mixed fermion-boson commutation relations. We
call this particle, as it has been referred to previously, a
hard-core boson. Due to spin &, it is a fermion with
respect to occupation number, that is [dl, dl ]+ 1.
However, as with all spin-raising and -lowering operators,
it is a boson with respect to exchange of two such parti-
cles, that is

[dl,dj,] [dl, d;,] [de, d~, ] 0,
providing that jrWlo. Substituting these new operators
into the Hamiltonian, we have

0 —6NJ+4JQ (d(Ad(A+d(Bd(B)
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bk~ e Ze
I

(s.3a)

bk, a e Z e dl. a ~

I
(s.3b)

Once again these operators are bosons in that bk, com-
mutes with bk„( k2zek~cr) and with bk„. In addition,
they must satisfy the following constraint:

Zb 8 +bkAk -N (s.4)
k

than the 8J required to create two isolated spin deviations,
thus the factor of 2J per nearest-neighbor pair.

We now de6ne the Fourier transforms bk ~ and bk a
(where from here forward we drop the vector notation)
such that

ment of no net magnetism or no long-range order as this is
the case for a 2D Heisenberg system. In addition, this
constraint automatically satis6es the required constraint
condition expressed in Eq. (5.4). Equation (5.6) is also
formally similar to the magnon Hamiltonian derived for
large spin where the quartic term is typically dropped
(ri 1) and the operators approximately satisfy true bo-
son commutation relations. The magnon is then a linear
combination of a creation operator of wave vector k on
sublattice A and an annihilation operator of wave vector
—k on sublattice 8 or the reverse. Here we proceed to

determine the spin-wave excitation spectrum by including
the quartic term in mean 6eld (as described above). Al-
though these bosons do not satisfy boson commutation re-
lations in that [bk, bk ]wl, the commutator does at least
equal an operator which is independent of k; i.e.,

[bk.,b".] - -Z[d—i.,di'. ] -f..-
N 1

(s.7)

The condition that there be no long-range order implies
that (f ) 0.

B. Spin-wave excitation spectrum

In order to find the excitation spectrum for the spin- —,
'

system with antiferromagnetic coupling, we diagonalize
the Hamiltonian in Eq. (5.6) just as done in spin-wave
theory (including the quartic term in mean field). The
quasiparticle excitation spectrum is obtained by diagonal-
izing Lk~ (a matrix in bk, b k, space) where z 8 (A)
when cr A (8) and

where G is a reciprocal-lattice vector and in the present
square lattice case

Vk Ze'"' 2[cos(k a, )+cos(k a„)].
h

(s.s)

We note that Vk has extended s-wave symmetry. For
simplicity we ignore umklapp processes (GWO) and arrive
at a Hamiltonian which is reminiscent of the BCS Hamil-
tonian, except that the quasiparticles are more like bosons
than fermions:

(4J+gpaHg +pp)
—Jg Vk

+JqVk
—(4J+gyaH~+ pp)

(5.8)

Lk

H 2NJx +4JZ (bkgbkg+bkabka

+qJZVk(bi, gb ka+bk gb k—a), -
k

where we have now included (after the fact) the anisotro-

py field H~, the gyromagnetic ratio g, and the Bohr
magneton pa. We have also included a chemical potential
pp to impose the constraint of no net magnetism s 5 and
the mean-field (MF) pair exchange enhancement ri 1

+ x The no. rmalization constraint for the new quasiparti-
cles (yk ) is that they satisfy the same commutation rela-
tions (in the mean) as the bk operators; i.e.,
([yk, yf ] & (fk & 0. Thus the elementary spin excita-
tions are yk bk cosh(8k)+b k, sinh(8k) and the exci-
tation spectrum is

(s.6)

where we have bilinearized the Hamiltonian by de6ning
the mean-6eld variable ri 1+s with

s'Vk =2Z Vq(b(k+q)pb —(k+q)a) ~

using the familiar identity that

Ai -[(A —&A&)+ &A)][(i—&a&)+(a&]

The Hamiltonian is rewritten (ignoring the irrelevant con-
stant energy) in terms of the bk & and bk a as

H 4JZ(e *
bk, gbk g,g+e— '

bk, abk G,a)-
G,k

+JZVo k(e '*b-k,gbp k,a+e — '*bk qbo ka)—
G,k

+2J Z VG qbk &—Ab (k ~

—q)Ab —(k2+G q)ab -kqa t-
N G,q, k, ,k,

-&A)i +&a&A —&A)&a&+(A —&A))(a —&a))

and ignoring terms which are square in the fluctuations.
This result in itself is not profound but it does preserve

the symmetry of the Hamiltonian which is invariant when

bkQk~ goes to bkQkq.
Let us now use N, to equal the number operator for

spin deviations on sublattice cr, i.e.,

N, w Zbk~bk~, N~a Zbkabka.
k k

The ground-state energy is minimized with the constraint
that (N, ) 2 N (Refs. 48 and 54) (recall that N is the
number of sites per each sublattice) which is a require-

HMF+ppN, -2NJ~'+Zek(yf~yk + y k.y k,), --
and

a$ (gpaHg+pp+4J) —(JrlVk) (S.IOa)

gpaH~+ pp+4J
cosh 28k

~k

JVk g
sinh (28k )

~k

(5.10b)

(S.IOc)

This result is not markedly different from standard
(high) spin-wave theory, albeit with a renormalized
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B) (4J+hl) —(JVh) (5.11)

As in standard spin-wave theory, the behavior of ek near
k 0 is

J gJ and a renormalized anisotropy field, p. gppH~
+po —4Jx'. Note that p is necessarily greater than zero
since with these renormalized values

by Jp (1 —p/4) J or Jp (1 —p/2)J where in the latter
we assume no double occupancy for the oxygen holes. (p
is defined as the number of carrier holes per Cu site. ) The
difference between (1 —pf4) and 1 —p/2 for the low den-
sity of holes in the superconducting materials is too trivial
to concern us. Thus in terms of the hard-core boson spin
operators (dl ) we have from Eq. (5.2a)

BE-o=8J(hl+ J I k al I
'),

where we have assumed that hl((4J. For ( k al ( »p/J
the dispersion along the a„direction is 2Ja} ~32Jrc„o.
For a quoted dispersion of 0.4-0.75 eV A. (Ref. 15) and
r( Q 1.89 A this gives J 37-70 meV.

HP -4JpZ (dIA dIA +dl adIB )
l

+JpZ (chAck+xa+dlAck+ha)
l,h

+2Jpgd(AdlAdl+hadl+ha .
l,h

(6.2b)

VI. THE SPIN-HYBRID CARRIER
QUASIP ARTICLES

Based on the above results, we now write a Hamiltonian
which contains the interactions between a carrier and the
spin subsystems. This section consists of three parts: a
formal definition of the spin-hybrid carrier Hamiltonian is
followed by a discussion of how the basic physical descrip-
tion of the carrier can be systematically constructed. Fi-
nally, a simple band-structure model of the carrier allows
us to extract the essential physical description of the
quasiparticle.

A. Formal definition of spin-hybrid Hamiltonian

There are three parts to the Hamiltonian: (1) a "stat-
ic" or pure spin part which does not involve transport, (2)
a transport part which does not involve the creation of
spin deviations, and (3) the terms which involve both
transport and the creation of spin deviations. The spin
part of the Hamiltonian is the sum of two terms, the first
of which reduces to the Heisenberg Hamiltonian in the
absence of carriers (see Sec. V). The second term explic-
itly contains the exchange interactions between carrier
and Cu spins. Thus

H' HP +HP (6.1)

where the superscript (s) denotes spin or static (as op-
posed to transport).

HPl is a modified Heisenberg Hamiltonian to allow
blocking of superexchange due to the presence of carriers
(recall that in the preceding section we found the blocking
was 94% complete). The modified Heisenberg Hamiltoni-
an is

Hp 2JQ (1 —nlht)(1 &lh&)SIA Sl+hB, (6.2a)
l, h

where nlh 1 h~ ) yk t l~ &y'lh 1 t}~ is the number operator for t
()) holes on the oxygen site lh which sits between a Cu at
lA and one at l+h8. If the carrier is present, whether it
has spin up (nlht 1) or spin down (nlhf 1) the superex-
change coupling between the neighboring Cu's essentially
vanishes. In what follows we will assume that we can
treat the carrier term (1 —nlhh)(l —nlh~) as blocking the
superexchange in an average sense; i.e., we will replace J

This mean-field treatment of the superexchange blocking
may not be the best description. For example, if the holes
were static the spin system would be better described as a
percolation problem as in the treatment of dilute magne-
tism. 5 However, the holes are not static but move on a
time scale considerably faster than the spin system. For
the purposes of this paper, we do not consider further the
dynamics of the spin system, thus we do not address this
problem further. This is not to say that we do not consid-
er it an important element of the problem. Quite to the
contrary, we do anticipate that carrier scattering off of
spin fiuctuations is the strongest scattering in the system.
However, this is not considered in this paper.

The carrier spin-coupling Hamiltonian is

2+effZSlh ' (SIA+SI+hB) ~ (6.3a)
l, h

where Slx is the spin operator for a hole at the oxygen site
lh. The z component of Slh is Sfx 2 (nlhl n ~lx)

—and the
raising and lowering spin operators are Slx }hl)fgllhflhh and
Slh l/Ilhh lhllh f. In terms of the Cu spin operator (dl ) and
the fermion hole operators (}hllhl&) the carrier-dependent
term is

&effZ ~(IIlhh &lhh)(dlAdlA Ck+xaCI+x—a)
l, h

+ }hi(h I }hllh f (dIA +dl +hB )

+ Wht Ãlhh(dlA+dl+ha) ~.

The sum of Hjl'1+HER'} constitutes the spin or static
(H ~'1) term of the Hamiltonian.

We next include the transport terms of the Hamiltonian
as HI'}. There are three distinct processes by which a hole
moves through the lattice, thus HI'1 is the sum of three
terms

H"'-H"'+H'll+H V (6.4)

The first term Hpp is the direct oxygen-oxygen hop which
is one of the two largest terms in transport

Hpp 2 &pp
Z" (plAh IhIIAh, .+ y(ah shah,

o;l,hl, h2

for a t, ), where the double prime on the summation in-
dicates that h2Wh ~ or —h ~. Hpp cannot change the spin
of either the carrier or the localized Cu holes and is in-
dependent of the spin of the neighboring Cu holes.

We apologize for the cumbersome notation, but recall
that the Cu02 plane has four oxygen atoms per magnetic
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unit cell. If we label oxygen sites /Ah (where (t( —a,
—a~, a„a„) as /Al, /A2, /A3, /A4, respectively, then
nearest neighbors to /A 1 are /A 2 and /A4, connected
through space by t~~ and through the A Cu, and /A 3 is a
second nearest neighbor connected through the A Cu.
Similarly /82 and /84 are nearest neighbors to /81
through the 8 Cu (/83 is again a second nearest neigh-
bor). All other combinations are obtained from these by
cyclic permutation. Thus the counting scheme looks as
follows:

4
13 381

4 2

1A 381A 381
2 4 2 4

1A 381
2 4

effective transfer integral to be t~/AF. , where AF. is the
energy of the virtual (d' ) state;. however, this is valid

only if tpp&&hF-, which is not the case. In actuality,
t~ =AF-. Recall that the Cu valency fluctuates in the ab-
sence of carriers, principally between d and d ' in about
a 3-4:1 ratio (see Sec. III). Without carriers AF. is on the
order of 3 eV. However, in the presence of a carrier hole
on an adjacent oxygen site, Coulomb repulsion between
the carrier hole and the localized Cu hole causes this fluc-
tuation to be much larger (-1-2:1),since &F. is then
only about 1-2 eV. Despite the breakdown of perturba-
tion theory, we can derive an effective transfer integral for
this process which we will call tdio (tdio-0. 56 eV com-
pared to t~~ 0-5e.V). We show in Appendix A how to
estimate this transfer integral using a similar method as
was used to compute J and K,(r in Sec. IV. This process
provides transport through the following term in the
Hamiltonian:

Hpil g' tpo(8)(d(gd(gyjih, tt(((~h, (+4(~d(~tt((F~h2tt('(Ah, t
l,hl, h2

and one can sit at an A Cu site and begin at —a„or at a 8
Cu site and begin at +a, and count counterclockwise. In
addition, we have oriented the oxygen p orbitals such
that the k 0 state is fully antibonding; i.e.,

+d(Bdlt(t/(PBh 2f t/(IBh ) f

+d(((d(BYFBh21YIBhgt) ~ (6.5b)

—1+ ~ +3 — 8 —1+
+

—1+ A+3 — 8 —1+ A +3 — 8 —1+

—~+ ~ +3 — 8 —1+
+

where the prime on the summation indicates that /(q~h(.
The terms in which h2 ht are forbidden by the Pauli-
exclusion principle. The (superscript 21) notation t&)0(8)
indicates that this term arises from the exchange of two
particles Thus. tzlo —

&ph, (1)d(2) ( H&ia) ph, (2)d(1)&.
Note that td')o (ph, (l )d(2)

~ Hd ia ( ph, (l )d(2)) vanishes
unless h2 h t. The (8) notation signifies that the transfer
matrix element has a nontrivial dependence on the phase
between the two oxygen sites at /oh t and /ah 2. We define
the interaction energy (not the transfer matrix element) in
the triplet case (where the carrier and the Cu have the
same spin, denoted by T) to be tria tPo —(de. This en-

ergy reflects both the energy lowering of the oxygen orbit-
al and the hopping integral. In Appendix A we derive the
hopping integral from this interaction energy. This quan-
tity has a different k dependence than t~~; since t~~ does
not go through a virtual the k dependence is the standard
and familiar one, that is & tz~exp[ik (crht —crh2)]. In
contrast, however, the k dependence for transport through
a virtual is, for example,

t~io(k at/2) 2 [1 —exp(ik at/2) l J2t(,g

where the + and —indicate the phase of the p orbital. In
conventional notation, this is k X.

The second trans~mrt route, embodied in Hd(l), is about
as important as Hpp

' however, it competes with tpp for
transport along the at and a2 directions. This transport
route makes use of the d' valence fluctuations, in the
case that the Cu hole has the same spin as the oxygen
hole. In this process a Cu hole nearest neighbor to an oxy-
gen hole hops onto one of the three other nearest-neighbor
oxygen sites and then the oxygen hole hops onto the Cu
site. If perturbation theory were valid, we would take the

F+I AF+t p

along the a~ direction. This may look complicated but it is
straightforward, especially if we examine the limit of
large AF- which is the relative energy of the virtual. In
this limit

2

tzia(k at/2) = —, [1 exp(ik a—t/2)]T [ ~ 2tpg

/~+(„/ '

which obviously vanishes for k 0, a direct consequence
of Pauli exclusion. For the case in which the carrier and
Cu spin are singlet coupled through the virtual, we have
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td io tPo+ tz L which is similar except the minuses are re-
placed by pluses; i.e.,

t io(k a~/2) —,
' [I+exp(ik a~/2)l&2t~d

timate values of t~~ relative to t&io (see Appendix A):

+ l

Jsr,d

~ss

which in the limit of large && becomes

2fggf
tdio(k a~/2) = —,

' [I+exp(ik a~/2)]
~
AF —

gap

(6.6b) +
+1 —

f
—3+ [ —1+

which now vanishes at k a~/2 m. The value for t&~iÃ

along the aq direction is obtained by simply replacing a&

by az. The value along a, and a~ is obtained by setting t~~
to zero (since there is no t~~ transport along these direc-
tions) and replacing a~/2 by a„or a~, respectively.

In summary, we have found an unusual k dependence
because significant transport occurs through the d ' virtu-
al state. There are two terms which determine the energy
of a carrier state r

' (which adds only to the diagonal en-
ergy) and t z', because the matrix element involves multi-
ple holes so that we have to account for indistinguishabili-
ty. Thus, only t ' contributes to transport since the hole
moves only by what is effectively an exchange process.

In obtaining the expression for HPi) in Eq. (6.5b) we
have used the identity de+~ 1 —d~Q~ which represents
a number operator for "no spin deviations" (see Sec. V).
This term contains the fact that free (i.e., without creating
a spin deviation) trio transport through a particular sub-
lattice can be shut down or opened up, depending on the
carrier spin, if a spin deviation is present. The fact that
t&~io vanishes when k 0 with the antibonding phase rela-
tions as illustrated above suggests that the lowest-energy
state may not be k 0 but may involve the following
phase orientation for a spin- f carrier depending on the ul-

I

+ +
+1 — l —3+ f —1+ i +3 — 1 +1

+
1+ i +3 —

f +1

This orientation has antibonding oxygen atoms surround-
ing a Cu of the opposite spin to that of the carrier, but it
has nonbonding oxygens about a Cu of the same spin as
that of the carrier.

The final transport route Hd~[~ is through virtual ds
configurations which can only occur if the Cu spin is oppo-
site that of the oxygen spin. This is significant though
smaller than both H~~~1 and H&~'il Thus a~.ain using an
effective transfer integral, tzs td'/+tel —=2tzs (tzs

t&f —t&z) 0) (see Appendix A), we have the following
term in the Hamiltonian:

Hg&'- 2' r~ «)«i~di~y(AhgtpfAh, t+d(kdlB W(Bhg f'WIAA, f+'dlAd/'AY(AhglYIAh)1+dlBdl59fBhg1WIBh&l)
l,hl, h2

(6.7)

The terms in which h z h & are equivalent to returning the system to an indistinguishable configuration and do contribute
to the diagonal energy. The k dependence of

tds(k a~/2) ——,
' [I+exp(ik a~/2)jt~ql(hU+t~~) .

Thus when k a~/2 m the t&s term vanishes.
We will treat these transport terms H&i) and H&V by assuming local AF order and define y to be the deviation from lo-

cal order. Since there is no long-range order, half the time (neglecting fluctuations about the local order) a free hole can
transport through the A Cu with a rds effective transfer integral and through the B Cu with a tdio effective transfer in-
tegral. The other half the time the roles of the d and d' are reversed. For the purposes here we will assume that local
order has A Cu's down and B Cu's up, hence locally and including spin fluctuations in mean field

Hd™~~ ~ 2' &Po(6 )[(1 y) which JWlA—h l+ (1 —y)v'(Bh 1 WIBh, f + ypfAh f WIAh, f + yW(Bh 1 WIBh, l j
l,hl, h2

and Hd~)~ is similar with f and ) interchanged

HdL (MF) ~ g' tds(8) [(1—y) y)gq, y~gtp, ~+ (1 —y) y(aa, 1 gian, 1+yp(aa, &Wi~a, &+ yv(ah t YIBh 1 j ~

l,hl, h2
(6.8b)

When the local order changes then A and 8 are interchanged.
The td io and t&s processes do more than enhance transport; most importantly for superconductivity, they also provide

spin-flip mechanisms (through the telo and tP above). These spin-flip mechanisms are in addition to and in fact much
more important than those from the second and third terms in Hp [Eq. (6.3)l. Thus there are terms in the Hamiltonian
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which both transport charge and create spin flips in the Cu spin system and which form the essence of the origin of the
spin-hybrid carriers:

H'" -H 0'+H(%)

where

Hd'&" +Hpt' -
2 ~tgs(8)+td'3'o«) j Z' (dI'Awk~a, J yiAhtf+dIB y(ah, J yIBhtf+dIA y(~h, f yIAht J+dl'By(sh, f fttIBht J ),

l, hl, h2
(6.9)

and where the superscript (st) signi6es spin flip and trans-
port. Now the h2 h I terms are equivalent to simple ex-
change processes and these are included in the second and
third terms of H [Q. (6.3h)].

Each term in HzS, such as dlAffflhsflj'Ilh f plays two
roles depending on the circumstances. This might be a
free-carrier, spin f, entering a region whose local AF or-
der has sublattice A spin ). The carrier hole can change
roles with the A Cu hole creating a spin-j carrier hole at
site lb 2 and simultaneously creating a spin deviation in the
local AF order, dltA. We call this a flipped-carrier con-
figuration as the term represents the conversion of a free-
carrier Cu(A)-0-Cu(8) spin configuration () f f) to a
flipped-carrier configuration of (f J f ) where the underline
signifies a deviation from local order. However, if the lo-
cal order has the A sublattice spin f, then the same term
restores the local AF order; i.e., () f )) (f ) )), flipped
carrier to free carrier. Again, we will assume in Sec. VI 8
that the local order has sublattice A spin ).

In summary, H H~)+H(')+H "). The latter two
terms provide transport. However, the last term produces
spin deviations in the local AF order at the same time as
transporting the charge. This is the dominant term for in-
teractions between carriers and the spin systems. The 6rst
term determines diagonal energies and creates spin devia-
tions. It does not transport charge. The dominant spin-
flip mechanism is hence not K,ff in H", but most impor-
tantly tgo and of some importance t&s in H(" (we esti-
mate K,ff-0. 1 eV while tpo-0. 36-0.56 eV and tds

I

-0.06 eV; see Appendix A). In addition, there are three
tPo and three tzs to each K,ff.

ClhAf fttIAh JdlA s

claB I sifIBh f dIB .

(6.10a)

(6.10b)

Recall that dlA(8) destroys a spin deviation at lattice site
lA(8), thus it takes a f ()) Cu spin to a J(f ) Cu spin.
When the local order reverses we have two different parti-
cles, namely

ClhAJ fiIIAhfdlA s

ClhBf YIBh Jdl B.

(6.10c)

(6.10d)

We note that the fermion commutation relations for this
composite carrier are peculiar, in that in terms of mean-
6eld occupations on the local ordered spin "particles" we
have

8. Spin-hybrid models

Needless to say, the Hamiltonian cannot be solved ex-
actly; nonetheless, in Sec. VIC a simple carrier band-
structure model will illustrate the consequences of the
carrier-spin interactions for determining the nature of the
carrier quasiparticle. First, however, in order to bilinear-
ize the Hamiltonian, we define two "composite particles"
composed of a fermion oxygen carrier hole and the adja-
cent Cu-spin deviation:

CIIfAoclhAo+ ClhAocl aAm +CI +h hBocl +h —hBo+-CI +h hBocl +h hB—o 1, — (6.11)

where cr f or J. Thus it seems that clhAf is only part of a particle; i.e., the one which can make a spin deviation on sub-
lattice A. The other part of the particle unmakes spin deviations on sublattice 8, which is particle el~a, -hBf. This will
have significance in a future paper when we consider scattering off the changing local order. However, for the purposes
of this paper we assume local (denoted below by a superscript L) order with sublattice A (8) spin down (up). Then the
relevant "particles" are cth with cr A f and 8J) and in terms of these H ' and H ' become bilinear. We 6nd

H (i;L) H(ig, )+HP;L)
PP

(V for virtual), where

Hpp 2 tpp X ~(1 y)(ftl(~h f YIAh, f+ Yah I YIBh, J+cl aAfclh, Af+cl aBJclh, BJ)j
l, hl, h2

and

Hp' 2 (1 —y) g' tds(8)[(fir(Ah fftIIAh, f+YiBh JWIBh, J+Cjg AI'Clh, Af+Clti BJClh, BJ)
f,hI, h2

+ (1 y)tdipo(8)((fAfhsffttIAht I+ ftl(Bhsf YIBhtf) j .

Finally

Hp' 2 (1 —y)[tpo(8)+tits(8)l g' (cli AfÃIAh, f+YfAh, fclh Af+CIfi BJYlBh, J+'FlBh Jclh BJ)
l,hl, hz

(6.12a)

(6.12b)

(6.12c)
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where if the local order reverses then A and 8 are inter-
changed. Note that we have used the following identity:

blAlgjAhql+lAh|f clgqAlÃIAh(t Y7Ahqlclh, Al . (6.13)

Recall the use of 8 in the notation is to signal an unusual k
dependence for these terms.

The reader may now be wondering what happened to
the missing terms, for example, the remaining y(td s+ td |'o)

in H$" . These terms couple to carrier configurations
which are in addition to free-t (f f j), free-) (f j j),
flipped-t (t j f ), and flipped-) (j f j) carrier
configurations. The missing terms correspond to cou-
plings to con6gurations such as Cu(A)-0-Cu(8)-0:
( j ff), (jjf ), and(tj f) and(j f j). Thereareato-
tal of eight of these, four each for up (f ) and down ( j )
carriers. We call these double-flipped carriers for obvious
reasons (recall the underline indicates a deviation from lo-
cal order). There are four configurations for each spin of
the carrier because there are four oxygen sites neighbor-
ing the flipped Cu which has opposite spin to the carrier.
In Appendix B we include these configurations in the
Hamiltonian. For the remainder of this section we only
consider the two lowest-energy con6gurations, free and
flipped.

The physical description of this Hamiltonian is dis-
cussed now. If there were no interactions between the
spin and carrier subsystems (i.e., K,lr tds td L 0) then
H decouples, H Hg~'3+HE~I and the spin and carrier
systems exist essentially independently. An isolated car-
rier on the oxygen sublattice would delocalize through the
oxygen-oxygen transfer integrals t~~ in H~~~3, so that its en-
ergy would be 4t~~, and its orbital would be the purely an-
tibonding Bloch wave corresponding to the top of the oxy-
gen 2p bands. This free-hole carrier then moves through
the lattice without disturbing the AF order of the Cu spins
except in the average sense of reducing J to J~- (i—p/2) J. Its wave function can be composed from the set
of local spin-orbital configurations written as dl'p df for

three holes (two "localized" spins and one carrier) in a
Cu-0-Cu unit, which we may write in shorthand as jo t.
Its energy is independent of its spin cr t or j.

A second configuration, the flipped-carrier configura-
tion referred to above, arises because both H$' and Hl"
couple the free carrier to this con6guration. Of the cou-
pling terms H " dominates since K,p is a relatively small
energy compared to tdb, and in addition there are more
tpo matrix elements than there are K,lr matrix elements.
This dominance is clearl~ true at low carrier densities
where the magnitude of td )0 is not diluted by its k depen-
dence. While it is true that lpo decreases as we begin
filling the band, it never reverses sign. Furthermore, from
our estimates (see Appendix A) it would require nearly
half filling the band in order for K,s to be more important
than tPo even at the Fermi level.

The diagonalization of this Hamiltonian with these two
spin-orbital con6gurations yields the spin-hybrid carrier
wave functions. The amount of flipped-carrier conngura-
tion weight in the wave function reflects the probability of
a carrier being associated with a spin deviation as a func-
tion of the wave vector k.

C. Band-structure description of the spin hybrid

We now write a band-structure description of the car-
rier which contains our spin-hybrid model for the quasi-
particle. This was derived in the normal manner of in-
cluding translational symmetry by writing our basis func-
tions (the free- and the flipped-carrier configurations) in
the Bloch form (with the k 0 state taken as fully anti-
bonding) and recognizing the unusual k dependence for
t&I and tP0 Apost u. nitary transformation assures that
the 6nal matrix is real. If we add one spin-t hole to an
otherwise AF system of Cu spins (thus S,"'

2 ), we find
the Hamiltonian matrix with four oxygens per magnetic
unit cell to have the following general form (before the
unitary transformation):

(6.i4)

'h)l(k) hl2(k) hl3(k) hl4(k)'

hl2(k) hll(k) hl4(k) hz4(k)

hl3(k) hl4(k) hll(k) hl2(k)

,h)4(k) hz4(k) hlz(k) hl((k),
where h;l is a matrix which links and i-site oxygen with a j-site oxygen. After a unitary transformation this becomes

[hll+ 2 (hl3+h24)+hl2+hl4]

—,
' (hl3+h24)

—,
' (h'„—h',.)

g (hl3 —h24)+hf2+hl4

(h l3+h24)

[hll ——,
' (hl3+hg4)+hl2 —hl4]

[ —,
' (hl3+h24) —hl2 —hl4]

—,
'

(hl3 —h24)

(hR hR )

[ —,
' (hl3+h24) —h|2 —h)4]

[h»+ —,
' (h~»+h" ) —h" —h~]

2 (h l 3+h24)

—,
'

(hl3 —h24)+hf2+hf4

—,
'

(hl3 —h'Z4)

—,
' (h~l3+h~24)

[hll —
2 (hl3+h24) —hl2+hl4]

(6.is)
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where we have dropped the explicit reference to the wave vector k and used the superscript notation R and I to refer to
the real and imaginary parts, respectively. Finally, after evaluating the h;~. matrices we obtain the following relations:

hl2+hl4 28p+28lck ck +i282sk ck, , hl2 —hl4 —28lsk, sk„+l282ck.sk,

hl3 ~ h24 (Cp ~ Cp)+Cl(ck ~ Ck,„)+«2(sks, —sk,„)i

(6.i6)

sk~C2+ 2sk, Ck„82 sk sC2+ 2ck.sk„82

sks, C2 2ckscky82

A3 Cks Cl (6.17)

where

where BJ and CJ are constant matrices with dimension the number of configurations. For example, if we consider only
free-carrier and flipped-carrier configurations then these matrices are 2x 2. Note that the matrices for a spin-J carrier
replaces k with —k. The notation is as follows: c refers to cos, s refers to sin, k„ to k a /2, k» to k a„/2, k2„ to k a,
and k2» to k i»; i.e., ck, cos(k i„),etc. Finally, the band-structure Hamiltonian has the following form:

~ l+Cks Cl+2cksckyBl 2 (Cks, Cks»)Cl

2 (Cks, Cks )Cl A2+Cks„Cl+2ck, ck Bl —sk,„C2+2ck,ck„82

sk C2 2sk, ck„82 sks, C2+ 2sk, ck 82 281sk, sk»

—sk, C2 2ck—,ck„82 sk, C2 —2ck,ck„82 28lsk, sk„ A2 —ck, Cl

Al hll+Cp+28p, A2 hll Cp, A3 hll+Cp 28p.

With only the two con6gurations in the basis, free and flipped carrier, the matrices are

(6.18a)

3J —K,ff
h

Keff K,ff (6.18b)

(1 —y) —,
' (tPo+t„s) —(1 —y) —,

' (tPo+tss)
—(1 —y) —,

' (tdlo+tss) 2 (1 y)tss
(6.i8c)

(1 —y)(2t»+ 2 (tds —tpo)] (1 —y) 2 (tsb+tss) —yt»
—(i —y) 2 (tPo+tds) —yt» (1 —y)(t»+ & tSs)

(6.18d)

(1 —y) —,
'

(tSs+ td2)o) —(1 —y) —,
' (tS2'to+ tSs)

—(1 —y) & (tds+tPo) (1 —y)(t»+ & tss)
(6.18e)

The CJ matrices are obtained from the BJ matrices by setting t» 0. Diagonalization yields the band structure of the
spin-hybrid carriers. For a low carrier concentration (« one per unit cell), only the lowest-energy states are of interest.
We would like to say that this is near k 0; however, as indicated above and in Appendix A the lowest-energy wave func-
tion may have a different phase around Cu's of the same spin and around Cu's of the opposite spin, as illustrated in the
6rst part of this section. This is the case for a sufficiently small AF-. Here we ignore this complication simply because it
does not alter the qualitative picture; we are focusing on the hybrid character that is determined by carriers interacting
with localized Cu spins of the opposite orientation. The subtlety, however, arises from carriers interacting with Cu spins
of the same orientation. Thus the mixing which determines the hybrid is relatively immune to this complication. For
k 0 we have the simplifying feature that this model Hamiltonian blocks as follows:

A i+ Ci+28i
0 A3+ C) —28'

0 A2 —C)
0

0

A2 —Cl

The highest eigenvalue (lowest-energy configuration) is the largest eigenvalue from Hp Al+Cl+28l, where we 6nd a
most important result:

Hp
3J+ (1 —y)3tds+4t»

Gaf +3(1 —y )(td s + td lo )+2yt» ]

—[Koff —3(1 —y)(tds+tpo) —2yt» j

K ff+(1 —y)(2t»+3tSs)
(6.19)
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From this matrix, it is easy to see the essential physics
of the carrier quasiparticles: First there is strong mixing
between the free-carrier and the flipped-carrier configura-
tions; the diagonal energy difference between these two
configurations is 3J—Kcff+ (1 —y) 2tl,l„but the off-
diagonal coupling is K,ff+3(1 —y)(tda+tpo)+2yt~~
Thus, using the energy parameters K,ff 0.1 eV (see Sec.
IVB), tPo 0.56 eV, tea 0.06 eV (see Appendix A), and

t~~ 0.5 eV (see Sec. II) the ratio of the coupling (-1.9
eV) to the energy difference (-1.2 eV) is -1.6 (with

y 0 for simplicity), which yields a mixing angle of 36',
or 65% free carrier and 35% flipped carrier, where the
latter may be interpreted as the precent of time that a car-
rier is associated with a spin deviation on the Cu sublat-
tice. Since K,ff-tda« trio-tBB, we see that the d' fluc-
tuations dominate the creation of spin deviations. The en-
ergy lowering due this hybridization is —1.4 eV. This en-
ergy lowering contributes significantly to stabilizing a hole
in the p band, which is the principal reason that we find
the top of the p band (0 p orbitals along the Cu-0 axis)
to be significantly higher in energy than the p, band (0 p
orbitals perpendicular to the Cu-0 axis) even though the
center of the p„band lies -0.8 eV above the center of the
p band is the absence of Cu-Q interactions. This 0.8 eV
energy is due to the difference in the Madelung potential
for the two orbitals.

As k increases the diagonal and the off-diagonal ele-
ments both decrease comparably, thus the mixing is
strong across the entire band. In addition, we expect that
these qualitative trends survive a careful treatment of the
nonstatic, imperfect local order of the Cu spin system as
long as the time scale for Cu spin fluctuations is signifi-
cantly longer than that for carrier motion. Since Cu spin
fluctuations are occurring on a time scale a factor of 5 to
10 slower in these systems, this should be sufficient.

An alternative view of this spin hybrid is that if a spin-
up hole is added to the system, the resulting quasiparticle
is a linear combination of a spin-up hole and a spin4own
hole on the oxygen sublattice. This is the origin of an in-
teresting subtlety of the modeL As mentioned above, add-
ing a down hole to the system produces the same band
structure with k replaced by -k. Thus we define the
spin-hybrid quasiparticle as follows:

sheets, although they move as relatively mobile free holes,
contain a strong component (&40%) of spin-deviation
character.

H„Hg+ HB+ HgB+ A~B . (7.1)

The first two terms are "single"-particle terms and are
just the quasiparticle Hamiltonians for spin f (H~) and
for spin ) (HB) from the preceding section. These define
the energies (relative to the chemical potential tt) of the
two different types of "fermion" charged quasiparticles (a
free carrier and a flipped carrier) on the A and 8 sublat-
tices. Recall that we have four k states for each carrier,
but the band structure produces eight. The relevant four
are the highest four in energy. The kf states are degen-
erate with the —k ) states. The standard chemical poten-
tial p. controls the total number of fermion charged parti-
cles ((N, )) where

Z ck„clh„+w(„h~itli„h~ (7.2)
I,h

for cJ f, ). (The total number of charged carriers per
sublattice, (N, ), is pN where N is the number of Cu sites
per sublattice and p is the density of dopant holes; e.g.,
La2 ~Sr~Cu04). The one thing that this Hamiltonian al-
lows which technically it should not is the simultaneous
occupancy of a spin flip at lA and a free-spin-) carrier at
site /Ah, since this combination represents a flipped car-
rier. We could solve this problem by imposing the addi-
tional constraints that

VIL QUASIPARTICLE-QUASIPARTICLE HAMILTONIAN

In this section it is our goal to derive a Hamiltonian
which describes the dynamics of quasiparticle-
quasiparticle interactions for quasiparticles of opposite
spin. Locally, we assume that sublattice A has all spin
down ()) in the AF reference state, hence a flipped-
carrier in sublattice A has Cu spin up (f ) and oxygen spin
down ()). For simplicity we exclude the double-flipped-
carrier configurations.

The total Hamiltonian, including the chemical poten-
tial, can be written as

@k f +k t cos8k +CkA sink

@-k l +—k J cosek +C kBsintIk—(6.20)

dl„dt„+g (cj,a cth„+ Vr(„h~Wlah~) +dig Chw
h, a

dlidlB+ Z (clkB~clhB~+ it jBheÃIBhcr) +dlBdl B
h, cr

where cos Hk represents the probability of free-carrier
character and hence sin Ok represents the probability of
flipped-carrier character. There is no violation of the
Pauli-exclusion principle if we populate both @kt and

However, we cannot populate both @kt and @kJ,
since this would indeed violate Pauli exclusion. In other
words, we must be cognizant of the fact that the spin hy-
brid is a linear combination of an up and a down oxygen
hole state. Thus when we compute the band structure we
throw out all states with —k f or k ).

In Appendix B we expand our basis to include addition-
al configurations and find that the free-carrier component
decreases and the flipped-carrier component increases.
Thus we are able to conclude that the carriers in Cu02

Imposing this constraint on the mean is an equivalent for-
mulation to that of the s~in waves in Sec. VB in the ab-
sence of charge carriers.

The third term in the Hamiltonian (the diagonal pair-
ing term) has its origin in the energy costs (primarily due
to Coulomb repulsion) and the energy savings realized by
having carriers on neighboring sites out to ifth neighbor
(a distance of 4rc„o). All of these terms are quartic and
depend on number operators; i.e., they are diagonal ener-

gy corrections. Recall that we are including terms for
quasiparticles of opposite spin, where the quasiparticle
spin is not determined by the spin of the oxygen hole but
by the spin of the free-carrier component. Thus a spin-up
(down) particle can be a free carrier ylghi (I//tBhi) or a
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flipped carrier clhA I (clhB, ) on the 3 (8) sublattice. We will use the spatial identity that lych —= (I+ h)8( —h) in order to
simplify the notation. Sometimes this notational simplification leads to double counting. Accordingly, we will divide by
two wherever appropriate.

We now separate HAB into a Coulomb and an exchange pairing term, thus

HAB -UAB+ I AB, (7.3)

where UAB is the Coulomb repulsion between two carriers. We assume that in principle the Coulomb repulsion of all up
(down) carriers with all other up (down) carriers as well as the Coulomb potential energy from all the point charges in
the system have been included in HA(B). Thus UAB is just the Coulomb repulsion between an up and a down carrier; i.e.,

UAB g U( I l )Ah I
—

l28~21 ) (till&Ah &t +I,Ah
&
f+ Cl, h &At Cl, h

&A I ) (tIII2Bh&t )ifl2Bh& J +Clzh&BI CI&h2B&) ~

ll, l2, hl, h2

The term U( ( I)Ah I
—

l28h2 ( ) is tQe Coulomb potential energy between two holes, one at site l )Ah I and the other at
I28h2. We assume that this depends only on the distance between the holes. Thus, for holes further than a few neighbors
we would take U(rt —r2) e /(B' )rt r2) )—. We rewrite UAB in terms of mean-field operators plus fluctuations, thus
defining

&W)~hfYIAhf) (YfBht+IBhJ) ~f and(cl4tclhAt) (cliBtclhBI) ne

and noting that nf+n, —,
'

p we have

U~a UHF+ ~Usa

where UHF is the Hartree-Fock or mean-field Coulomb energy which is present in the system more-or-less independent of
whether we pair the particles or not. If, however, we try to evaluate UHF as an individual term, it would, of course,
diverge. Nonetheless, when combined with all the other Coulomb terms implicitly in HA and HB the net would be a finite
and constant energy per carrier.

The residual carrier-carrier Coulomb potential is then

~UAB Z U( I I)ah I
—I28h21)(tll(Ah, t )III,Ah, t+Cl, h, AtCI, h, At Z P)()II(Bh,i)Ill, Bh, t+Ci,h,B,Cl,h,Bt 2 P)

le 2e le 2

(7.4)

If we bring two holes closer together than expected on average, we raise the Coulomb energy of the system. Thus for a
superconducting state, we have a positive contribution to the energy from hUAB. On the other hand, we lower the
Coulomb energy if we keep the holes further apart than on average. Thus if the holes are correlated so as to avoid each
other we have a negative contribution to the energy from dUAB. On the other hand, both pairing and correlating also
raise the kinetic energy of the particles. Nonetheless, clearly the Hartree-Fock solution will have higher energy than the
correlated solution. Furthermore, if the system can support a superconducting state the Hartree-Fock solution will also
be higher in energy than the superconducting state. The question will be whether the correlated state or the supercon-
ducting state will be the lowest in energy at any given density. Crude estimates can set bounds on the maximum correla-
tion energy in the correlated solution versus the cost in Coulomb energy in the pairing solution; but only a careful calcu-
lation of both can truly estimate the net pairing energy.

The pairing potential VAB is the sum of four terms, two of which are attractive, and two of which are most likely to be
repulsive. We write these terms as

VAB 2 (Keff+ Jl) Z (Cli&AIClh~AttllfAh2)YIAhqJ+ IIC~ BlhIC& pB(tBhq YtIBhqt)
I,hI, h2

1+ T (Keff Jl) Z (CIJj&AtClh&AtC(l+h, )hzB(C(l+h~)hqBt+Clji~B)Clh, BIC/I+h~)hqAtC(I+hi)h&At
l,hl, h2

+ (2Keff Jl) Z (CIA~A tClh~AtC(l+hg) —h~BIC(l+h~) —h~BI)
l,hl

—Jt Xr (CI$)AIClh~AtCf I+he) —hqBIC(l+h~) hB +3Ill,C)CIBI, hCB—(lI+h~) —h+tC(l+h~) —h3At)
Ie 2e 3

(7.5)

where in the last term the summation is over h2&h~ and
83%152. The first term (for h t ah 2) is the energy savings
(K,ff+ Jt, the —,

' is due to double counting) for having a
flipped carrier on one sublattice and a free-carrier nearest
neighbor to the flipped Cu spin, for example, Cu(8)-0-
Cu(A)-0-Cu(8) (f j f J f ). The second term is the ener-

gy cost (assuming Jt (Keff, it will be a savings otherwise)
for having two "overlapping" Hipped carriers such as

I

Cu(8)-0-Cu(8)-Cu(A) (f J J f f ). This saves an
enhanced J=Jt (enhanced by the presence of the oxygen
holes) but also costs exchange energy K,ff between the Cu
and the 0 hole. The third term is the energy cost to com-
pletely overlap two flipped carriers; i.e., put the oxygen
holes on the same site while having both neighboring Cu's
flipped Cu(A)f -O(f ))-Cu(8)f . Besides the obvious
large Coulomb cost of this configuration (contributing to
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SQUAB) the flipped carriers also lose their effective ex-
change energy, thus an additional cost of 2K,ff. The last
term is the only term which is likely to be net attractive
after the SQUAB correction. This is the energy savings for
having nearby "nonoverlapping" flipped carriers; i.e.,
Cu(A) -0-Cu(8) -0-Cu(A) -0-Cu(8) ( f ]f f f J ). This
configuration saves 2JJ. (The 2 was again reduced to 1

because of double counting. )
The last term in the Hamiltonian h~~ is a "rehybridiza-

tion" term in which there are two "rehybridization" pro-
cesses: (1) two nonoverlapping flipped carriers of opposite
spins rehybridized to two free carriers (also of opposite
spins) [Cu(A)-0-Cu(8)-0-Cu(A)-0-Cu(8): f ff f ] f

]Jf] and (2) a free ] carrier and a nearest-
neighbor flipped f carrier rehybridized to a free f carrier

I

and a free J carrier [Cu(8) -0-Cu(A) -0-Cu(8):
f J f ] f ~ f f J J f ]. In this latter process the two oxygen f
holes have interchanged roles and the Cu has flipped its
spin. Due to indistinguishability it may seem irrelevant
which hole has exchanged with the Cu; however, in k
space this leads to matrix elements connecting (ck f lp —k J)
with (filkf, ffI kf) when the free carrier unflips the Cu spin
associated with the flipped carrier versus (ckf, y kJ) con-
nected to (ykf, fil k J) when the flipped carrier unflips its
associated Cu spin. Thus the former does lead to definite
pairing which may or may not be net attractive. Thus we
have

hAB h)a +h)a,
where

hAB Y Jl Z (filIAh, f Y(l+h2)B( —h3) Jclh)Atc(I+h2) h3BJ+C(l+—hg) —h3BJCIJ&AffiI(I+h&)B( h3) J filIAh
(,hl, h2, h3

for h f Wh2 and h3eh2. The second rehybridization term is

(7.6a)

hAB Keff Z (QIAh ~ J Yah q f WIAh z'J Clh, A f
+Clh &A t ffIIAh & J fiIIAh 2 f filIAh

~ J + blah ~ f Yah 2 J fillah 2 f Clh &a J
+CI3

~
BI Ylah q f blah 2 J fjrlah

~ f )
(,hI, h2

+ «de+id ~e) Z (y(~h~ J QF4h3f+IAh2JCIh~Af+Clll, Af Y(AhgJ +IAh3f YIAh~J+ Yah~ f'W(8h3J Ylah2fClh~BJ
21

(,hl, h2, h3

+ Clh)a JIJV/ah2f Ylah3J blah) f ) sr (7.6b)

gkjo
lk (l+rja~ ~J(j

l
(7.7)

where rl are vectors from the 1A (18) Cu site for o
(J ) to the oxygen orbital occupied by the carrier; i.e., for
j 1,2, rlf —a /2 and rIJ a, /2, etc.

~here in the second summation h f ~h2eh3eh f and in the
first summation h f ah2. If we consider how the expansion
of our basis set will affect the pairing interactions, we note
that the inclusion of bases in which the oxygen hole has
hopped away from a spin deviation causes hAB to have re-
tarded airing components. Retarded pairing resulting
from h a corresponds to the exchange of a virtual mag-
non between carriers of opposite spin. Retarded pairing in

h)a corresponds to the annihilation of two magnons emit-
ted by two carriers of opposite spin through the quartic
term of the spin Hamiltonian.

In order to bilinearize the Hamiltonian we make a
mean-field approximation, first for the "normal uncorre-
lated" or Hartree-Fock state (0 HF), from which we ob-
tain the "normal fully-correlated" state by a Gutzwiller-
like projection (Oc). Then we rebilinearize the Hamil-
tonian with the superconducting mean-field approxima-
tion to obtain the "superconducting" state (9' ).

To simplify the notation we define f)tIIAjf fl,2j-f, f,
CljAf fl 2j f 0 IBjJ fl 2j —I J CljBJ fl 2J I «r j-I 2 3 4.
Thus the free f carrier on oxygen-site lA1 becomes parti-
cle 11 f, the flipped f carrier which has a down hole on
oxygen-site lA1 becomes particle 12f, etc. The carrier
particles are then fl; for i 1-8, and o f, ). For i odd
(even) particles are free (flipped) carriers.

The Hamiltonian is transformed from coordinate space
to momentum space by defining the following Fourier
transforms:

for

flAi~JI&iie j~2i2e2fI2j 2e&&
-o

I lf+r, ,
—12+rl,e, I

( I a) I I a +a& I J8rceo.

This solution is obtained from the uncorrelated normal-
state solution by a Gutzwiller-like projection which pro-
jects out any configurations which give finite expectations
for these operators.

For the case of the "superconducting" phase we define
mean-field variables ak ' ' -(gkj, fg —kj,J) with which the
following bilinearized Hamiltonian results:

HMF EdI + Z 4k (gkj ~fgkj2f+g kj~ Jg —kj2J)—
J I,J2,k

+XI4 (gkl'~ fg kj qJ +g —kj q Igkj ~ f ) ~— (7.9)
j,k

where the gk
' ' are the single-particle Hamiltonian ma-

trix elements as in Eq. (6.14) and I4 ' ' comes from
Fourier transforming the terms in V~g and h~g. The
effect of h, Uz~ is included self-consistently as it adds to
Ep. These terms are complicated functions of k, jf and

j2, and the mean-field expectations. They can be written

For the normal-state uncorrelated mean-field Hamil-
tonian we define mean-field variables f)j,l,~ (gkj, ~gkj, ~)
We obtain the equivalent of the Hartree-Fock solution in
self-consistent field

E + g (~Vij2)+&Vij2))
jl,j2,k

X (gkj&fgkj 21+g —kj~ Jg —kj&J ) . (7.8)

For the normal-state maximally correlated Hamiltonian
we assume that
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in closed form and certainly can be calculated. In fact the
problem is solvable at this level. Since we have not yet
done these calculations, and as it is not difficult to derive
the self-consistent expression for Ak

' ' and Eo (although
the algebra is messy), we save these unappealing expres-
sions and calculations for a future paper. The exact ex-
pressions as well as the precise calculations are not en-
lightening given the uncertainty in the energy parameters,
especially since this will predict static long-range order at
a finite temperature T, which, of course, is not relevant to
a 2D system. Thus at this level all that we could predict
with any degree of confidence is whether the 2D sheets
can support a superconducting phase at T 0. In the next
section we discuss how this result, when coupled to the
third dimension, could lead to a phase transition at finite

C ~

To conclude this section, we show that, in general, the
solution of Eq. (7.9) does exhibit a gap. (The gap itself
should exhibit extended s-wave and d-wave character
which is obtained from the Fourier transforms of V~e. )
The elementary excitations are the eigenoperators of the
following matrix:

(k
L 4, '

where gk and ~h are SX8 matrices, thus Lkf is 16f416.
This is a matrix in the operator space of

[gklfsgk2f~ ~ ~ ~ ~gkSfsg —kl»~g —k2»s ~ ~ ~ yg-kS»] ~

t

We first diagonalize gk which is the quasiparticle Hamil-
tonian and apply this transformation (Tk) to ~h (~d

Tj~hT). Then the Fermi level p and the Fermi mo-
mentum (ek, —

g p) are set by particle conservation.
Thus, if [i4]ff«(ek f

—ek 2) then the BCS spectrum
near kF results from quasidegenerate perturbation theory;
i.e., Ekf (ekf —g) +[6k]ff. Relaxing the restriction
[4k] f f ((ek f ek, 2 does not, in general, close the gap.

VIII. THE THIRD DIMENSION

Until now this entire paper has focused only on the
two-dimensional sheets common to all of the known high-
T, superconductors. In this section we discuss the role of
the third dimension. Common to each of the supercon-
ductors is one or two oxygens coordinated along the z axis
to each Cu in a sheet. Thus free carriers and flipped car-
riers can delocalize to some extent onto the fifth (and
sixth in La2 —Sr„CuQ4) coordinated oxygen. In addi-
tion, the pairing term arising from a free and flipped car-
riers on neighboring sites includes the configuration when
one or the other is on this extra oxygen. This in itself,
however, cannot turn 2D superconductivity (if it exists
only at T-0) into full superconductivity. If supercon-
ductivity in the 2D Cu02 sheets maps onto the XYHamil-
tonian (i.e., with a two-component order parameter), then
superconductivity can exist at finite T via a Kosterlitz-
Thouless phase transition. We recognize this, but we
submit that without knowing the mechanism this mapping
has not been proven. Furthermore, there is some evidence

exp(in aj )e„i,
J g ~ OO OO

(8.1)

where each aj is a continuous variable from 0 to 2n. The
corresponding eigenvalues are

ef,,»

—2Wg cosaj,
)

(8.2)

where we have taken the energy zero to be that of each
state in the unperturbed system. Now we need to inter-
pret the meaning of aj. In the case of two (N 1) cou-
pled superconductors af can be identified with the phase
difference between the two superconductors. ' Thus the
total energy of the system is lowered by 2W when the
phase difference vanishes. In this case a~ can be similarly
identified with &J+ f

—
»f»J, and thus the lowest-energy state

has phase coherence between all the sheets. This is the
origin of static long-range order.

For a single superconductor, the phase of the order pa-
rameter and the number of Cooper pairs are conjugate
variables. The superconducting state has a fixed value for
the phase, hence for the jth superconductor we have

X,,- g exp(ivy)y„, ,
y~ —OO OO

(8.3)

where yoj is an eigenstate of the unperturbed system with
a definite number of carriers and y„j. is obtained from pe
by adding v Cooper pairs. The wave function for N+1

that the phase transition is three dimensional and may
have an order parameter with greater than two com-
ponents. We consider here what couples the sheets to
each other which may drive a three-dimensional phase
transition. Several possibilities come to mind, one of
which is both elegant and appealing.

We can liken these highly anisotropic materials to
weakly coupled superconductors in which the 20 sheets
are separated by insulating material; i.e., sc-I-sc-I-sc-I-
sc-I . Then as long as charge can tunnel across the in-

sulating material long-range phase coherence will be es-
tablished by the same mechanism by which current flows
and superconductivity is maintained through an insulating
barrier (typically 20 A thick) coupling two superconduc-
tors; i.e., the proximity effect. We reproduce here a sim-
ple model (the perturbation theory method or the
"Cooper-pair model" ' illustrating this effect. We gen-
eralize to N+1 superconductors coupled by N insulating
barriers. We define a matrix element W which is the
transfer integral for transferring one Cooper pair from the
jth superconductor to the j+1st superconductor. Next
we define O'„J which is obtained from % OJ by transferring
n Cooper pairs between the j and j+1st superconductor
where ~OJ is the unperturbed eigenstate for the jth super-
conductor. Assuming that all the superconducting sheets
are at the same potential, there is no energy cost in
transfering Cooper pairs between sheets, hence all O'„J are
degenerate. We assume that the coupling is weak, hence
only one Cooper pair is transferred at a time and only be-
tween neighboring sheets. This is equivalent to N uncou-
pled linear chains with only nearest-neighbor interactions.
Thus the eigenstates are
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such isolated superconductors is then

QX&, gg g exp 'igvigj' Qe„,;.
J VI V2 VN+ I J

We now rewrite this as

+exp iM'+yf X~,M, j

(8.4)

(8.5)

where XM is a state which has a de6nite number of Cooper
pairs, a total of M(N+1) in the N+ 1 superconductors

y

X~ g exp i g nj(QJ+~ QJ)—j 1Nll I,N2, . . . , NN

X yM ~ I 1~M- n2+n I 2
' ' ' QM- n&, N+1 ~

(8.6)

This, however, has the form of e i,,l since

PM —n1, 1+M-n2+n1, 2
' ' ' PM-nN, N+1 +nI+n2 ' ' ' +nN ~

That is, it is obtained from y~ ~yet 2 y~pr+~ by
transferring n& Cooper pairs from layer 1 to layer 2, n2
from layer 2 to layer 3, nf from layer j to j+1,and 6nally
n~ from layer N to N+1. Thus we see that, indeed we
can identify ay with &J+~

—
p, . We include this to show

that we do not need pairing in the third dimension to have
superconductivity, but because of the 2D sheets we may
need this 3D coupling energy to drive the phase transition.
From here we argue by analogy the role of Win determin-
ing T, much as we expect the out-of-plane spin coupling
to drive the Neel transition in the nonsuperconducting rel-
atives.

To our knowledge it has not been rigorously shown that
the Neel transition temperature in the nonsuperconduct-
ing relatives of the Cu-0 perovskites satisfies the following
heuristic 62 self-consistent equation; nonetheless, we will
use it for argument's sake

y

Tw Jz 2 Jxy
(8.7)

Jxy Jxy TN

where ag(J,»/T) is the 2D correlation length (a is the lat-
tice constant), that is

(S(r~) S(r2))~ ~ exp( —~ri —r2l/() ~

r1 —r2

where + ( —) is for site r2 on the same (opposite) sublat-
tice as site r ~. J,» is the superexchange coupling in the 2D
sheet and J, is the exchange coupling between the sheets.
There have been several derivations for ((J,»/T)
which differ in method and detail, but basically agree with
each other with the one exception which is a 6t to simula-
tions. These differences, however, are not signi6cant
providing that the transition is driven by the third dimen-
sion as opposed to following parasitically. Since TN
(Refs. 37 and 38) is greater while J,» (Refs. 40, 41, and
63) is smaller in YBa2Cu306 than in La2Cu04, this is ap-
parently the case. The reason that the static long-range
order does not exist in 2D is that the appropriate suscepti-
bility diverges as 1/k . Thus the integral over k would
diverge logarithmically in two dimensions if the order pa-
rameter does not vanish. 6 For similar reasons a nonvan-
ishing order parameter in a superconductor will not exist

in 2D except again at T 0. Thus we expect long-range
phase coherence which goes exponentially in BENT [if not
Kosterlitz-Thouless, A exp(h/) T —To ~

')] and we ex-
pect that the static long-range order is established in an
analogous fashion as the antiferromagnetic phase transi-
tion. As yet, we have no theory for ((6/T) in the super-
conductor where g is the number of superconducting pairs
in phase coherence. This number is macroscopic when the
system is a bulk superconductor. This does not affect our
hypothesis that T, will be determined by a self-consistent
equation similar to Eq. (8.7).

IX. DISCUSSION AND CONCLUSION

We have seen that a central thesis of this work is that
poor screening exists in a Cu02 sheet due to the nearly-
filled-shell nature of the Cu and 0 ions and that this leads
to significant intra-atomic and interatomic screened
Coulomb interactions between quasiparticles. There is
evidence for this from both experimental measurements
(Auger spectroscopy) and ab initio calculations of
Schliiter etal. ,

27 Harmon and co-workers, 2s and Mc
Mahan etal 29 How. ever, further indirect support comes
from both neutron'5's39 and polarized light scatter-
ing~ 4'45 in that both observe a Heisenberg spin system to
exist in the superconducting materials (i.e., with charge
carriers), a fact which we believe to be a direct conse-
quence of poor screening and a substantial interatomic U
as explained in Sec. III. Cluster calculations in which
correlation is included have also reached this conclusion. '9

The validity of a Heisenberg description of the spin sys-
tem is supported by our semiempirical configuration-
interaction calculations for spin states of a small cluster
(reported in Sec IV) as .well as by ab initio calculations of
Martin and Saxe. 63 Although the values of the interatom-
ic U are not known with any degree of con6dence, we have
suggested reasonable upper and lower bounds and found
that only quantitative details change between these limits.
The importance of interatomic U has also been recognized
in the work of others. ' ' Thus we believe that our
Hamiltonian is realistic since it is based on energy param-
eters which were derived from a variety of semiempirical
and ab initio sources, and which form a self-consistent set
as seen in Sec. IV. The relatively large values of the U
suggest that the theory of Schrieffer, Wen, and Zhang
may not be applicable to these materials. In addition, nu-
merical simulations by Hirsch and co-workerss6 have sug-
gested that the simplest (single-band) Hubbard Hamil-
tonians are incapable of explaining superconductivity.
Several workers are realistically computing or sem-
iempirically deriving from photoemission measurements '

the values of the energy parameters. This will provide
quantitative certainty. However, it is very unlikely that
the qualitative description of the carrier quasiparticle and
the pairing interactions which we have presented here will
be affected by re6nement of the parameters. Zaanen and
Oles and Shen et al. ' have argued that these materials
represent charge-transfer (as opposed to Mott-Hubbard)
insulators and mixed valence metals when doped. Furth-
ermore, Zaanen and Oles have pointed out that the pres-
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ence of a substantial oxygen-oxygen transfer integral rpp

precludes a transformation from a realistic Hamiltonian
to a simple (nearest-neighbor hopping) one-band Hub-
bard model which is possible in the absence of t~~ T. his
then casts doubt on the applicability of resonating
valence-band (RVB) theory. We support these con-
clusions of Zaanen and Oles.

The strong interactions which exist between the carriers
and the spin system are only due in part to the large value
of the Cu-0 transfer integral suggested by the band-
structure calculations. In Sec. III we found that
significant valence fluctuations occur between the Cu d
and d'0 configurations. Valence fluctuations have also
been recognized to be important in the work of Newns '

and d' assisted transport are the I/6 processes in the
work of Zaanen and Oles. s It is important to recognize,
however, that these fluctuations are increased by the pres-
ence of a carrier due to the Coulomb interactions which
lower the relative energy of the virtual state. This de-
creases the energy of a carrier hole on an oxygen p orbit-
al (along the Cu-0 axis) by significantly increasing the
probability of a carrier making spin deviations in the local
antiferromagnetic order. This causes the oxygen orbital,
which takes the carrier hole, to be p and not p„which we
compute would be preferred by -0.8 eV if one only con-
sidered the Madelung potential. These results are in con-
tradiction to the conclusions of Goddard's group'9 and the
assumptions of Birgeneau er al We fi. nd that the near
degeneracy of the p d p and psd'Op5 configurations
causes a dramatic stabilization of a p hole. This leads to
important consequences for carrier-spin interactions since
a p carrier interacts strongly, whereas a p, hole interacts
weakly's experimental evidence supports strong interac-
tions. On the other hand, the proximity in energy of the
p, orbitals and the magnitude of the matrix element which
connects the p to the p, between sites (which we estimate
to be -0.3 eV) necessarily produces some p, admixture
in the carrier at kWO or kWX in conventional notation30
(at k 0 the p -p, interaction vanishes). Its effect is to
dilute the strength of the carrier-spin interactions; the de-
gree to which this occurs is the subject of current work.

Other workers have suggested spin-driven pairing in
these materials such as in the early work of Emery, "
Hirsch, ' and Parmenter. ' However, we saw (Sec. VII)
that pairing is not driven by increased mobility, '2 a con-
cept which also has been disputed by Trugman; the
charge carriers have high mobility even without the chan-
nels which produce spin deviations. (The original Emery
model" has also been disputed. ) Strong-coupling arises
because the configurations which involve spin deviations
(the "flipped carriers") and those which do not (the "free
holes" ) are close in energy relative to the magnitude of
the matrix elements which couple them; thus they must
mix strongly and nonperturbatively. This remarkable
fact, represented by the model Hamiltonian matrix in Eq.
(6.19), means that localized spin polarons do not form in
these materials in that the carriers do not carry a spin de-
viation along with them as they move; instead, the carriers
move as free holes since they can easily self-heal an asso-
ciated spin deviation. In addition, the traditional view of a
spin polaron is that of spin deviations which are stabilized

by a preferred exchange coupling between the carriers and
the local spins. We have found (Sec. IV) that this energy
is quite small. Thus the carriers are much better de-
scribed by the concept of the spin hybrid, formalized in
Sec. VII.

When we state that the carriers have "high mobility"
even though there is a large probability of being associat-
ed with a spin deviation (which thus increases the strength
of spin-driven pairing), we are speaking locally and not
considering the effects of scattering off spin deviations
(produced by zero-point fluctuations, other carriers, or
domain boundaries) or off Coulomb interactions with
each other. All these processes are substantial and signif-
icantly reduce the mean free path of a carrier; thus these
materials may be in the dirty superconductor limit.

The spin-hybrid carriers do not permit the existence of
boson entities because the carriers move as spin- —,

' free
holes. This causes superconducting pairing in the Cooper
sense, s as has been concluded in the Ginzberg-Landau
analysis of Bardeen, Ginsberg, and Salamon, 4 and is in
contrast to the s inless (boson) holes of Kivelson, Rokh-
sar, and Sethna, 0 which is a consequence of the RVB pic-
ture of Anderson. s9

The exact nature of pairing is much less certain. There
are obviously a variety of retarded and unretarded pairing
interactions of which we cannot judge the relative impor-
tance without quantitative detail. The simplest interac-
tion to understand is the unretarded (direct) one which
has been suggested as an obvious possibility by us and oth-
ers. ' We find that this interaction is indeed expected
from the existence of spin-hybrid carriers. The energy of
this interaction is certainly larger than 2J-0.06-0.12 eV,
while the Coulomb correction is less certain because of the
unknown variation of U with distance. Recently, Emery
has suggested that the pairing is unretarded based on an
analysis of muon-spin resonance data. 7s

The importance of Josephson tunneling in the deter-
mination of T, is an appealing idea because of the formal
similarity with the Neel transition now being studied in
detail. s Obviously, an important next step is to compute
the tunneling rate between Cu02 sheets in these materials.
These calculations are underway.

We feel that the most important new result contained in
this paper is the development of the spin-hybrid descrip-
tion of the carrier quasiparticles. Given the existence of
the Cu spins and the strong coupling between the carrier
and spin systems, we believe the existence of the spin hy-
brid to be inevitable. This in turn necessarily leads to
spin-driven pairing. While the strength of the pairing and
the nature of the phase transition remains to be deter-
mined, the spin-hybrid model forms a basic foundation
upon which to build.

APPENDIX A: EFFECTIVE TRANSFER AND
EXCHANGE-TRANSPORT INTEGKA. S

In this appendix we show how we estimate the effective
transfer integrals tPO and tds as defined in Sec. VI. We
6rst consider the eigenstates and eigenvalues of two holes
in three orbitals as we did in Sec. IV to estimate the su-
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perexchange energy J. However, now we examine two ox-
ygen orbitals nearest neighbor to one Cu orbital. There
are two possibilities, the oxygens along the ai (or a2) axis
(referred to below as bent 0-Cu-0) and along the a (or
ap) axes (referred to as linear). In the latter case the oxy-
gens are not coupled by direct hopping, tpp; in the former
case they are. Again there are nine spin-orbital bases for
which three are triplets, six are singlets. The basis for the
triplet matrix is &1 I/J2(pid —dp|), PP I/J2(p|p2—p~i), and p3 I/&2(p2d —dp2). The Hamiltonian
matrix in this basis is

0 —tpd

tpp

AF. t~
tpd K

The unitary transformation which takes the antibonding
("k 0") Xi I/J2(pl +&3 ) and bonding ("k z")
combinations X3 I/J2(pi —

p3 ) shows that only X3 in-
teracts with the virtual state $2 The lo. west two eigenval-
ues are

—p~2). The Hamiltonian matrix in this basis is

—K
—

tpd

tpp0 —JZtpd

tpg

AF.

tpp

—t~ 0

tpp

—K

tpd

—%2tpd —
tpd

—t~
0 —

tpp 0

alp)t tpd tpd

AUd 0 0
o ~U, 0
0 0 hUP

The unitary transformation which takes the antibonding
(k 0) XP I/42(pi +pg) and bonding (k x) combina-
tions X3 I/%2(&P —

p3 ) shows now that only X( interacts
with the virtual states (p2, pf,pg). The lowest two eigen-
values are

Eg(k 0) tpp
——tg)o(k 0) —tgo(k 0)

—t'(k-o) —K,
Es(k x) tpp

—K,
Er(k 0) —tpp+ K,

Er(k z) tpp td)o(k ~x)+K,
where

where

td)o(k 0) = J2t~ tan —,
' tan

JStpd
AF-+ K+ tpp

td)o(k x) J2tpqtan —, tanT I —I J8 tp)t« —K —tPP ~

The linear 0-Cu-0 triplet Hamiltonian and eigenvalues
are obtained by simply replacing tpp by zero. Note also
that hole energies are the negative of these eigenvalues.

The basis for the singlet matrix is pl I/J2(pid
+dpi), pg I/v 2(pip2+p2pi)) y3 I/J2(p2d+dp2))
p4 dd, pg 1/E2(p ip i +p@2), and pg I/E2(p ip i

I

t&o(k 0) =2tpd tan —,
' tan

4t~
hUd+ K+ tpp

2tpd
t o(k 0) = tpq tan 2 tan

We now rewrite these energies (we drop the p since it is a
very weak term and does not add to the physics) in the fol-
lowing form:

Ev (k 0) -—[t 'k(k -0)+t '3o(k x)+t„'k(k 0)+t k(k -x)l t —[t '—I.(k -0) —t„').(k -tr)]
—[td'f(k 0) —t '3(k x)]+t )o(k 0)+t f(k 0),

Eg(k x) —[tgo(k 0)+td'fo(k x)+tP(k 0)+td'3(k x)]+tpp —[tg/o(k tt) —td'3o(k 0)]
—[t~$(k -z) —tP(k -0)]+toto(k -rr)+t~)(k -tr),

Er(k 0) —[telo(k 0)+tJ/o(k-tt)+tJ k(k-0)+t'ai((k-x)] —
tpp

—[tJ)o(k-0) —t~3o(k-x)]
—[t„'k(k -o) —t)k(k -~)]—t,'L(k -o) —t 2J (k -o),

ET(k a) [tycho(k 0)+ td(o(k x) + tdr(k 0)+ tdk(k x)]+ tpp [td lo(k x) tpo(k 0)]
—[t,'I(k -~) —tJ/(k -O)] —t24(k - ) —t,')(k -~).

Using these results, we now de6ne an effective Hamiltonian such that UE U H,~ with U the unitary transformation to
singlet-antibonding, singlet-bonding, triplet-antibonding, and triplet-bonding combinations of two holes in two oxygen
orbitals, and E is a diagonal matrix of the four lowest eigenvalues of the coupled system, thus

1 1 1 1

1 —1 1 —1
U —1 —1 1 1

—1 1 1 —1
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and E is

'E, (k -0)
0
0
0

0 0

E,(k-«) 0
0 Ez(k 0)
0 0

0
ET(k -«)

Then we find that the diagonal energy (the diagonal elements of H, ff) is

[Hoff]jj s [Ev (k 0)+Eg(k «) +ET(k 0) +ET (k «)] —
s [tdis (k 0)+ tds(k 0) + tycho(k «)] .

The 12 (and 34) element which represents transport and no exchange is

[Hoff]12 s [Es(k «)+Ex(k 0) —Er (k 0) Er (k «)]

t»———,
' [trio(k -0) —trio(k -«) —tgs(k -0)]= —t» ——,

' tds(k 0),

which is reasonable; i.e., there is no transport without exchange through trio but there is transport without exchange
through tzs and of course t». There is some interference due to trio fluctuations but it is not significant.

The 13 (and 24) element which represents pure exchange is

[Hoff] f3 4 [Er(k 0) +Er(k «) Eg(k -—0) Er(k -—«)]

K+ s [trio(k 0) —trio(k «)+tgs(k 0)]=K+ s tds =Koff.

Recall that there are also some p4 contributions to K,ff that have been dropped. See. Sec. IV for the more-Precise deter-
mination of K,ff from three holes in three sites Cu-O-Cu.

Finally, the 14 (and 23) element which represents simultaneous transport and exchange is

[Hoff] l4 s [ET(k 0) —Ev (k 0) —Er(k «)+Eg(k «)]+ s [tdio(k 0)+tdio(k «)+tds(k 0)] .

From these results we now identify

tPo= s [tycho(k ~0)+tdio(k ~«)]
and

tds= 4 t~s(k -0) .

Calculations yield telo =0.56 eV for AF. 1 eV, 0.48 eV
for AF 1.5 eV, 0.42 eV for AF 2 eV, and finally 0.36
eV for AF 2.5 eV. The triplet bonding (k «) is lower
in energy than the triplet antibonding (k 0) for AF up to
about 1.6 eV, thus actually it is a close call. Since this tPo
averages tPo from the singlet antibonding with that from
the triplet bonding, we get a lower crossover energy at
about 1 eV. Whatever the case the triplet bonding and
the triplet antibonding combinations are very nearly de-
generate for the relative phase of two oxygens along the a&

or a2 axes. Calculations yield tzs 0.063 eV for ~ 1

eV (hU 5 eV), 0.072 eV for AF 1.5 eV (hU 4.5 eV),
0.084 eV for AF. 2 eV (hU 4 eV), and finally 0.096 eV
for AF- 2.5 eV (hU 3.5 eV).

APPENDIX B: EXTENSION OF
SPIN-HYBRID MODEL

In this appendix we illustrate the expansion towards a
more-detailed model Hamiltonian from which the com-

piete hybridization of the carrier quasiparticle may be ob-
tained using our parameters from Secs. II and IV. We
first consider only six local spin configurations. From here
the generalization to include still more local spin
configurations will be obvious. In addition to the above
free-carrier () f t) and flipped-carrier (t J f ) configura-
tions, we consider four others, dI'p/dl', or (f tf ) in short-
hand, and dI'psdfpl' (f ) t) where the p$ is this latter
configuration may be any one of the three oxygen orbitals
neighboring the dI' but not neighboring the dI'. We call
these configurations the "double-flipped-carrier " as it
represents the exchange of the two Cu spins (two spin de-
viations) in association with a carrier hole. We will see,
however, that the double-flipped-carrier components are
weak relative to the free-carrier and the flipped-carrier
components; however, they do serve to slightly enhance
the flipped-carrier component.

The energy of the double-flipped-carrier with the car-
rier hole between the exchange Cu spins is —3J, since
there are six unfavorable Cu-Cu spin pairs. The remain-
ing three double-flipped-carrier configurations have ener-

gy K,p —2.5J since the carrier hole is not blocking the
favorable exchange between the two flipped Cu's and is in-
stead blocking one of the unfavorable spin pairs created
by the spin flip. In terms of these six conngurations, the
submatrices are 6x6. (For the purposes here we take the
simplifying case of y 0). Thus
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3J —Kff 0

Keff Keff Keff

0 —Keff —3J
~11 J 0 0

0 0

0 0

——'J+K a

—
2 J+K.a

Recall from Sec. VI, Eq. (6.16) that

h i2+ Ii i4 2Bo+2Bick,ck +i 2B2sk, ck, ,

l 2 it 14 2B I sk sky + i 2B2ck sky

Jl i3 824 (Co Co) +Ci(ck~ ck, ) +iC2(sk~ sk, )

where BJ and CJ are constant matrices with dimension the number of configurations. For notational convenience we
define u = 2 (td4+t&I), v =tpp+ —2 td~, w —=

2 td~, x —=2tpp + 2 (td~ —tPo), and p
—' (td8 —tPo).

&o-

u —u 0
—u w 0

0 0 0
0 —u w

0 0 0
0 —u 0

0 0
—u 0

w 0
0 w

w 0
0 w

0
Q

w

p, Bi

0.

0x -uO 00
—u vO —u0 —u

0 00 v0 v

0 —uv Ov 0
0 00 vP v

0 —uv pv 0,

u —u 0
—u v 0

0 00
0 —u v

0 00
0 —u v

0

p

0,

0 0
Q 0 Q

v 0 v

0 v

v 0 v

0 v

u —u00 00
—u w 0 0 —u 0

0 000 w0
0 000 Ow
0 —uw0 00
0 ppw 00,

y —upp 00
—u w00 —uO

0 000 w0
0 000 Ow
0 —uwO 00
0 0pw 00,

C2

u —upp 00
—u w 0 0 —u 0

0 000 wO
0 000 Ow
0 —uw0 00
0 0pw 00,

It is not dimcult to include a finite r, however, the additional complexity d~s not add anything to the physics Thus
for k 0 we have

Hp

3J+4fpp +3tgs Keff 6Q

Keff 6Q Keff+ 3fd8+2fpp

0 —Kea

—4u

2Q

—4u 2(tpp+ tds) Eds

—Kea'

—3J 2(tpp+ td~)

2(tpp+tse) —
2 J+K,ff

tds 2(tpp+tgs)

2Q

les

—4u

2 (tpp + td s)

2(tpp+ td s)

——, J+Kgff 2(tpp+tdi)

2(tpp+ tds) —
g J+Keff

We now diagonalize this matrix to find the spin hybrid
given a choice of model parameters consistent with those
from the earlier sections (tp 0.53 eV, J-0.06 eV,
K ff 0.1 eV, tss 0.06 eV, tdi'o 0.56 eV); we find only
36% of the lowest-energy band is free-carrier configura-
tion, 41% is flipped-carrier configuration and 2.6% is
double-flipped-carrier with the carrier hole between the
exchange Cu's, and finally 20.5% is the remaining
double-flipped-carrier configurations. Use of a finite

y 0.1 makes about a 1% change in the results.
Other configurations which we have not yet discussed

include spin deviations d (o t, ) ) that are removed in

I

real space from the associated carrier at p, (r j, t ). Al-
though carriers can create spin deviations by direct and
indirect exchange, as has been pointed out by others, "'
the carrier will not just leave, because to do so would raise
the energy of the system until such a time that a created
spin flip on sublattice A can find and annihilate a spin flip
on sublattice 8, hence restoring order to the lattice.
Another process that can restore order to the lattice is
creating a spin flip on sublattice A and later annihilating a
spin flip on sublattice 8, since spin flips exist from zero-
point fluctuations. These two processes of returning the
system to an equal energy configuration compete with re-
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tarded pairing, since a third process which can restore or-
der to the lattice is one carrier creating the spin flip and a
second carrier annihilating the spin flip at some later time.
These first two processes are dificult to include in the
theory. Including configurations with the hole removed
from the spin deviation will increase both the flipped and
double-flipped components. However, we do not expect
configurations in which the hole is greatly removed from
the spin deviation to contribute substantially. Preliminary
calculations found the component of the free-carrier
configuration dropping to 30%, the flipped-carrier com-
ponent increasing to 46%, and the double-flipped-carrier
configurations to a total of 24%. A future publication will

report extensive calculations which more precisely (than

the crude estimates presented in Appendix A) determine
tdi and td)o as well as the effect of including configurations
where the hole is removed from the spin deviations.

ACKNOWLEDGMENTS

We have benefited from conversations with many peo-
ple including R. Birgeneau, K. Schweizer, P. Feibelman,
R. Martin, M. Schliiter, V. Emery, B. Harmon, A. Mc
Mahan, J. Allen, D. Newns, D. Scalapino, J. Schirber, E.
Venturini, and J. Zaanen, and wish to recognize the en-
couraging support of V. Narayanamurti. This work was
supported by the U.S. Department of Energy under Con-
tract No. DE-AC04-76DP00789.

' J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 189 (1986}.
M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng,

L. Gao, Z. J. Huang, Y. Z. Wang, and C. W. Chu, Phys. Rev.
Lett. 5$, 908 (1987).

3H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J.
Appl. Phys. Lett. (to be published); R. M. Hazen, C. T.
Prewitt, R. J. Angel, N. L. Ross, L. W. Finger, C. G. Hadidi-
acos, D. R. Veblen, P. J. Heaney, P. H. Hor, R. L. Meng,
Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, Z. J. Huang, L. Gao,
J. Bechtold, and C. W. Chu (unpublished).

4A. Herman and Z. Sheng, Superconductor Week, February 22,
1988, p. 5; D. S. Ginley, E. L. Venturini, J. F. Kwak, R. J.
Baughman, M. L. Carr, P. F. Hlava, J. E. Schirber, and
B. Morosin (unpublished).

sJ. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973);
J. Kosterlitz, ibid 7, 1046 (.1974).

N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133
(1966); Hydrodynamic Fluctuations, Broken Symtnetry, and
Correlation Functions, edited by D. Forster (Benjamin/
Cummings, Reading, MA, 1975).

7J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

SL. N. Cooper, Phys. Rev. 104, 1189 (1956).
D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34,

8190 (1986).
J. Miyake, S. Schmitt-Rink, and C. Varma, Phys. Rev. B 34,
6554 (1986).

"V.Emery, Phys. Rev. Lett. 5$, 2794 (1987).
'zJ. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987).
'3R. H. Parmenter, Phys. Rev. Lett. 59, 923 (1987).

C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State
Commun. 62, 681 (1987).

~5G. Shirane, Y. Endoh, R. J. Birgeneau, M. A. Kastner, Y. Hi-
daka, M. Oda, M. Suzuki, and T. Murakami, Phys. Rev. Lett.
59, 1613 (1987).
W. W. Warren, Jr., R. E. Walstedt, G. F. Brennert, G. P.
Espinosa, and J. P. Remeika, Phys. Rev. Lett. 59, 1860
(1987).
J. E. Schirber, B. Morosin, R. M. Merrill, P. F. Hlava, E. L.
Venturini, J. F. Kwak, P. J. Nigrey, R. J. Baughman, and
D. S. Ginley, Physica C 152, 121 (1988).

' A. Aharony, R. J. Birgeneau, A. Coniglio, M. A. Kastner, and
H. E. Stanley (unpublished).

' Y. Guo, J-M. Langlois, and W. A. Goddard III, Science 239,
896 (1988).
R. J. Birgeneau, M. A. Kastner, and A. Aharmony, Z Phys.
(to be published).

'J. E. Hirsch, S. Tang, E. Loh, Jr., and D. J. Scalapino, Phys.
Rev. Lett. 60, 1668 (1988).
S. P. Kowalczyk, R. A. Pollak, F. R. McFeely, L. Ley, and
D. A. Shirley, Phys. Rev. B 8, 2387 (1973).

ZsD. A. Shirley, Phys. Rev. A 7, 1520 (1973).
24M. L. Knotek and P. J. Feibelman, Phys. Rev. Lett. 40, 964

(1978).
zST. Jach and C. J. Powell, Phys. Rev. Lett. 46, 953 (1981).

D. M. Zehner, J. R. Noonan, and H. H. Maden, J. Vac. Sci.
Technol. 20, 859 (1982).
M. Schluter, M. S. Hybertsen, and N. E. Christensen, in

Proceedings of the International Conference on High-T, Su
perconductors: Materials and Mechanisms of Superconduc
tivity, Interlaken, Switzerland, 1988, edited by J. Muller and
J. L. Olsen [Physica C (to be published}].
C. F. Chen, X. W. Wang, T. C. Leung, and B. N. Harmon
(unpublished).

Z9A. K. McMahan, R. M. Martin, and S. Satpathy (unpub-
lished).

3OL. F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).
3'Y. Fukuda and I. Toyoshima, Surf. Sci 15$, 482 (1985).

One can show that for the Cu02 planar system that half the
bandwidth is given by

W/2-4t»+%St~tan[ ,' tan '(-%2t~/t»)]

which is given to a good approximation by 8(t»+t~)/3 for
0 ~ t»/trs ~ l.

33V. Emery (private communication).
34D. E. Ramaker, N. H. Turner, J. S. Murday, L. E. Toth,

M. Osofsky, and F. L. Hutson, Phys. Rev. B 36, 5672 (1987).
The ion orbitals were calculated self-consistently at the
Hartree-Fock double-g level by embedding the ion in a
Madelung potential produced by an array of point charges ap-
propriate to the La compound. The resulting wave functions
were used to compute two-electron Coulomb integrals be-
tween Cu and 0 ions at 1.87-A separation. These in turn
were used to compute the exchange interaction between
symmetrically orthogonalized Cu 3d and 0 2p orbitals.
J. Redinger, J. Yu, A. J. Freeman, and P. Weinberger, Phys.
Lett. A 124, 463 (1987).
D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M.
Newsam, C. R. Safinya, and H. E. King, Jr., Phys. Rev. Lett.
5$, 2802 (1987).

3sJ. M. Tranquada etal. , Phys. Rev. Lett. 60, 156 (1988);
N. Nishida et al. , Jpn. J. Appl. Phys. Pt. 2, 26, L1856 (1987);
J:Phys. Soc. Jpn. 57, 599 (1988).

39R. J. Birgeneau et al. (unpublished).



38 ELECTRONIC STRUCTURE OF Cu02 SHEETS AND SPIN-. . . 4659

K. B. Lyons, P. A. Fleury, L. F. Schneemeyer, and J. V.
Waszczak, Phys. Rev. Lett. 60, 732 (1988).
K. B. Lyons, P. A. Fleury, J. P. Remeika, and T. J. Negran,
Phys. Rev. B 37, 2353 (1988).

42J. M. Traquada et al. , Phys. Rev. B 36, 5263 (1987); Z.-X.
Shen et al. , ibid 36. , 8414 (1987); N. Nucker, J. Fink, J. C.
Fuggle, P. J. Durham, and W. M. Temmerman, ibid. 37, 5158
(1988}.
M. Onellion, Y. Chang, D. W. Niles, R. Joynt, G. Margari-
tondo, N. G. Stoffel, and J. M. Tarascon, Phys. Rev. B 36,
819 (1987); R. L. Kurtz, R. L. Stockbauer, D. Mueller,
A. Shih, L. E. Toth, M. Osofsky, and S. A. Wolf, ibid. 35,
8818 (1987).

~Y. Endoh, K. Yamada, R. J. Birgeneau, M. A. Kastner, Y. Hi-
daka, M. Oda, M. Suzuki, and T. Murakami, Phys. Rev. Lett.
59, 1613 (1987}.

45I. Ohana, Y. C. Liu, P. J. Picone, A. Lusnikov, M. S.
Dresselhaus, G. Dresselhaus, H. P. Jenssen, D. R. Gabbe,
H. J. Zeiger, and A. J. Strauss (unpublished).
S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev.
Lett. 60, 1057 (1988).

47D. P. Arovas and A. Auerbach (unpublished).
4sE. B.Stechel and K. S. Schweizer (unpublished).
49E. Manousakis and R. Salvador, Phys. Rev. Lett. 60, 840

(1988).
MJ. B.Parkinson, J. Phys. C 2, 2012 (1969).
'Z. Shen, J. W. Allen, J. J. Yeh, J.-S. Kang, W. Ellis,

W. Spicer, I. Lindau, M. B. Maple, Y. D. Dalichaouch, M. S.
Torikachvili, J. Z. Sun, and T. H. Geballe, Phys. Rev. B 36,
8414 (1987).

s2T. Holstein and H. Primakoff, Phys. Rev. 5$, 1098 (1940).
S3T. Matsubara, Prog. Theor. Phys. (Kyoto) 14, 351 (1955).
s4M. Takahashi, Prog. Theor. Phys. Suppl. $7, 233 (1986).
ssSee, for example, J. CaBaway, Quantum Theory of the Solid

State (Academic, New York, 1974).
K. S.Schweizer (unpublished).
R. B. Stinchcombe, in Phase Transitions and Critical Phe-
nomena, edited by C. Domb and J. L. Lebowitz (Academic,
New York, 1983),Vol. 7, p. 151, and references therein.

ssM. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

D. R. Nelson, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, New
York, 1983), Vol. 7, p. 1, and references therein.

S. E. Inderhees, M. B. Salamon, N. Goldenfeld, J. P. Rice,
B. G. Pazol, and D. M. Ginsberg, Phys. Rev. Lett. 60, 1178
(1988).

'R. A. Ferrell and R. E. Prange, Phys. Rev. Lett. 10, 479
(1963); also reproduced by B. D. Josephson, in Superconduc
tivity, edited by R. D. Parks (Marcel Dekker, New York,
1969),p. 423.
R. J. Birgeneau, G. Shirane, and H. J. Guggenheim, Phys.
Rev. Lett. 22, 720 (1969);Phys. Rev. B 1, 2211 (1970); R. J.
Birgeneau, J. Skalyo, Jr., and G. Shirane, J. Appl. Phys. 41,
1303 (1970).

s3R. L. Martin and P. W. Saxe (unpublished).
~J. E. Hirsch, S. Tang, E. Loh, and D. J. Scalapino (unpub-

lished).
J. R. Schrieffer, X.-G. Wen, and S.-C. Zhang, Phys. Rev.
Lett. 60, 944 (1988).

SsJ. E. Hirsch and H. Q. Lin (unpublished); H. Q. Lin, J. E.
Hirsch, and D. J. Scalapino (unpublished).

S7J. Zaanen and A. M. Oles, Phys. Rev. B 37, 9423 (1988);
A. M. Oles and J. Zaanen, in Proceedings of the International
Conference on High-T, Superconductors: Materials and
Mechanisms of Superconductivity, Interlaken, Switzerland,
1988, edited by J. Muller and J. L. Olsen [Physica C (to be
published)].

SSF. C. Zhang and T. M. Rice, Phys. Rev. B 3'7, 3759 (1988).
sSP. W. Anderson, Science 235, 1196 (1987); G. Baskaran,

Z. Zou, and P. W. Anderson, Solid State Commun. 63, 973
(1987).
S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B
35, 8865 (1987).

71D. M. Newns, Phys. Rev. B 36, 5595 (1987).
72S. A. Trugman, Phys. Rev. B 37, 1597 (1988).
7sP. W. Anderson, J. Phys Chem. .Solids 11,26 (1959).
74J. Bardeen, D. M. Ginsberg, and M. B. Salamon, in Proceed-

ings of the Conference on Novel Mechanisms of Supercon-
ductivity, Berkeley, California, 1987 (unpublished).

7sV. Emery, Nature 32$, 756 (1987).


